| Safe Haskell | None | 
|---|---|
| Language | Haskell2010 | 
Polysemy
Contents
- Core Types
- Running Sem
- Type synonyms for user convenience
- Interoperating With Other Monads
- Lifting
- Trivial Interpretation
- Creating New Effects
- Combinators for Interpreting First-Order Effects
- Combinators for Interpreting Higher-Order Effects
- Combinators for Interpreting Directly to IO
- Kind Synonyms
- Composing IO-based Interpreters
- Tactics
Synopsis
- data Sem r a
- type Member e r = MemberNoError e r
- type MemberWithError e r = (MemberNoError e r, WhenStuck (LocateEffect e r) (AmbiguousSend e r))
- type family Members es r :: Constraint where ...
- run :: Sem '[] a -> a
- runM :: Monad m => Sem '[Embed m] a -> m a
- runFinal :: Monad m => Sem '[Final m] a -> m a
- type InterpreterFor e r = forall a. Sem (e ': r) a -> Sem r a
- type InterpretersFor es r = forall a. Sem (Append es r) a -> Sem r a
- newtype Embed m (z :: Type -> Type) a where
- embed :: Member (Embed m) r => m a -> Sem r a
- embedToFinal :: (Member (Final m) r, Functor m) => Sem (Embed m ': r) a -> Sem r a
- data Final m z a
- embedFinal :: (Member (Final m) r, Functor m) => m a -> Sem r a
- raise :: forall e r a. Sem r a -> Sem (e ': r) a
- raiseUnder :: forall e2 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': (e2 ': r)) a
- raiseUnder2 :: forall e2 e3 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': (e2 ': (e3 ': r))) a
- raiseUnder3 :: forall e2 e3 e4 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': (e2 ': (e3 ': (e4 ': r)))) a
- raise2Under :: forall e3 e1 e2 r a. Sem (e1 ': (e2 ': r)) a -> Sem (e1 ': (e2 ': (e3 ': r))) a
- raise3Under :: forall e4 e1 e2 e3 r a. Sem (e1 ': (e2 ': (e3 ': r))) a -> Sem (e1 ': (e2 ': (e3 ': (e4 ': r)))) a
- raise_ :: forall r r' a. Raise r r' => Sem r a -> Sem r' a
- subsume_ :: forall r r' a. Subsume r r' => Sem r a -> Sem r' a
- subsume :: forall e r a. Member e r => Sem (e ': r) a -> Sem r a
- makeSem :: Name -> Q [Dec]
- makeSem_ :: Name -> Q [Dec]
- interpret :: FirstOrder e "interpret" => (forall x rInitial. e (Sem rInitial) x -> Sem r x) -> Sem (e ': r) a -> Sem r a
- intercept :: (Member e r, FirstOrder e "intercept") => (forall x rInitial. e (Sem rInitial) x -> Sem r x) -> Sem r a -> Sem r a
- reinterpret :: forall e1 e2 r a. FirstOrder e1 "reinterpret" => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': r) x) -> Sem (e1 ': r) a -> Sem (e2 ': r) a
- reinterpret2 :: forall e1 e2 e3 r a. FirstOrder e1 "reinterpret2" => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': (e3 ': r)) x) -> Sem (e1 ': r) a -> Sem (e2 ': (e3 ': r)) a
- reinterpret3 :: forall e1 e2 e3 e4 r a. FirstOrder e1 "reinterpret3" => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': (e3 ': (e4 ': r))) x) -> Sem (e1 ': r) a -> Sem (e2 ': (e3 ': (e4 ': r))) a
- rewrite :: forall e1 e2 r a. (forall rInitial x. e1 (Sem rInitial) x -> e2 (Sem rInitial) x) -> Sem (e1 ': r) a -> Sem (e2 ': r) a
- transform :: forall e1 e2 r a. Member e2 r => (forall rInitial x. e1 (Sem rInitial) x -> e2 (Sem rInitial) x) -> Sem (e1 ': r) a -> Sem r a
- interpretH :: (forall x rInitial. e (Sem rInitial) x -> Tactical e (Sem rInitial) r x) -> Sem (e ': r) a -> Sem r a
- interceptH :: Member e r => (forall x rInitial. e (Sem rInitial) x -> Tactical e (Sem rInitial) r x) -> Sem r a -> Sem r a
- reinterpretH :: forall e1 e2 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': r) x) -> Sem (e1 ': r) a -> Sem (e2 ': r) a
- reinterpret2H :: forall e1 e2 e3 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': (e3 ': r)) x) -> Sem (e1 ': r) a -> Sem (e2 ': (e3 ': r)) a
- reinterpret3H :: forall e1 e2 e3 e4 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': (e3 ': (e4 ': r))) x) -> Sem (e1 ': r) a -> Sem (e2 ': (e3 ': (e4 ': r))) a
- withLowerToIO :: Member (Embed IO) r => ((forall x. Sem r x -> IO x) -> IO () -> IO a) -> Sem r a
- type Effect = (Type -> Type) -> Type -> Type
- type EffectRow = [Effect]
- (.@) :: Monad m => (forall x. Sem r x -> m x) -> (forall y. (forall x. Sem r x -> m x) -> Sem (e ': r) y -> Sem r y) -> Sem (e ': r) z -> m z
- (.@@) :: Monad m => (forall x. Sem r x -> m x) -> (forall y. (forall x. Sem r x -> m x) -> Sem (e ': r) y -> Sem r (f y)) -> Sem (e ': r) z -> m (f z)
- type Tactical e m r x = forall f. Functor f => Sem (WithTactics e f m r) (f x)
- type WithTactics e f m r = Tactics f m (e ': r) ': r
- getInitialStateT :: forall f m r e. Sem (WithTactics e f m r) (f ())
- pureT :: a -> Tactical e m r a
- runTSimple :: m a -> Tactical e m r a
- bindTSimple :: forall m f r e a b. (a -> m b) -> f a -> Sem (WithTactics e f m r) (f b)
- runT :: m a -> Sem (WithTactics e f m r) (Sem (e ': r) (f a))
- bindT :: (a -> m b) -> Sem (WithTactics e f m r) (f a -> Sem (e ': r) (f b))
- getInspectorT :: forall e f m r. Sem (WithTactics e f m r) (Inspector f)
- newtype Inspector f = Inspector {}
Core Types
The Sem monad handles computations of arbitrary extensible effects.
 A value of type Sem r describes a program with the capabilities of
 r. For best results, r should always be kept polymorphic, but you can
 add capabilities via the Member constraint.
The value of the Sem monad is that it allows you to write programs
 against a set of effects without a predefined meaning, and provide that
 meaning later. For example, unlike with mtl, you can decide to interpret an
 Error effect traditionally as an Either, or instead
 as (a significantly faster) IO Exception. These
 interpretations (and others that you might add) may be used interchangeably
 without needing to write any newtypes or Monad instances. The only
 change needed to swap interpretations is to change a call from
 runError to errorToIOFinal.
The effect stack r can contain arbitrary other monads inside of it. These
 monads are lifted into effects via the Embed effect. Monadic values can be
 lifted into a Sem via embed.
Higher-order actions of another monad can be lifted into higher-order actions
 of Sem via the Final effect, which is more powerful
 than Embed, but also less flexible to interpret.
A Sem can be interpreted as a pure value (via run) or as any
 traditional Monad (via runM or runFinal).
 Each effect E comes equipped with some interpreters of the form:
runE ::Sem(E ': r) a ->Semr a
which is responsible for removing the effect E from the effect stack. It
 is the order in which you call the interpreters that determines the
 monomorphic representation of the r parameter.
Order of interpreters can be important - it determines behaviour of effects that manipulate state or change control flow. For example, when interpreting this action:
>>>:{example :: Members '[State String, Error String] r => Sem r String example = do put "start" let throwing, catching :: Members '[State String, Error String] r => Sem r String throwing = do modify (++"-throw") throw "error" get catching = do modify (++"-catch") get catch @String throwing (\ _ -> catching) :}
when handling Error first, state is preserved after error
 occurs:
>>>:{example & runError & fmap (either id id) & evalState "" & runM & (print =<<) :} "start-throw-catch"
while handling State first discards state in such cases:
>>>:{example & evalState "" & runError & fmap (either id id) & runM & (print =<<) :} "start-catch"
A good rule of thumb is to handle effects which should have "global" behaviour over other effects later in the chain.
After all of your effects are handled, you'll be left with either
 a Sem '[] aSem '[ Embed m ] aSem '[ Final m ] arun, runM, and
 runFinal.
Examples
As an example of keeping r polymorphic, we can consider the type
Member(StateString) r =>Semr ()
to be a program with access to
get::Semr Stringput:: String ->Semr ()
methods.
By also adding a
Member(ErrorBool) r
constraint on r, we gain access to the
throw:: Bool ->Semr acatch::Semr a -> (Bool ->Semr a) ->Semr a
functions as well.
In this sense, a Member (State s) rMonadState s mSem monad may have
 an arbitrary number of the same effect.
For example, we can write a Sem program which can output either
 Ints or Bools:
foo :: (Member(OutputInt) r ,Member(OutputBool) r ) =>Semr () foo = dooutput@Int 5outputTrue
Notice that we must use -XTypeApplications to specify that we'd like to
 use the (Output Int) effect.
Since: 0.1.2.0
Instances
| Monad (Sem f) Source # | |
| Functor (Sem f) Source # | |
| Member Fixpoint r => MonadFix (Sem r) Source # | |
| Defined in Polysemy.Internal | |
| Member (Fail :: (Type -> Type) -> Type -> Type) r => MonadFail (Sem r) Source # | Since: 1.1.0.0 | 
| Defined in Polysemy.Internal | |
| Applicative (Sem f) Source # | |
| Member (Embed IO) r => MonadIO (Sem r) Source # | This instance will only lift  | 
| Defined in Polysemy.Internal | |
| Member NonDet r => Alternative (Sem r) Source # | |
| Member NonDet r => MonadPlus (Sem r) Source # | Since: 0.2.1.0 | 
| Citizen (Sem r a -> b) (Sem r a -> b) Source # | |
| Defined in Polysemy.Law | |
| Citizen (Sem r a) (Sem r a) Source # | |
| Defined in Polysemy.Law | |
type Member e r = MemberNoError e r Source #
A proof that the effect e is available somewhere inside of the effect
 stack r.
type MemberWithError e r = (MemberNoError e r, WhenStuck (LocateEffect e r) (AmbiguousSend e r)) Source #
Like Member, but will produce an error message if the types are
 ambiguous. This is the constraint used for actions generated by
 makeSem.
Be careful with this. Due to quirks of TypeError,
 the custom error messages emitted by this can potentially override other,
 more helpful error messages.
 See the discussion in
 Issue #227.
Since: 1.2.3.0
type family Members es r :: Constraint where ... Source #
Makes constraints of functions that use multiple effects shorter by
 translating single list of effects into multiple Member constraints:
foo ::Members'[OutputInt ,OutputBool ,StateString ] r =>Semr ()
translates into:
foo :: (Member(OutputInt) r ,Member(OutputBool) r ,Member(StateString) r ) =>Semr ()
Since: 0.1.2.0
Running Sem
runFinal :: Monad m => Sem '[Final m] a -> m a Source #
Lower a Sem containing only a single lifted, final Monad into that
 monad.
If you also need to process an Embed membedToFinal.
Since: 1.2.0.0
Type synonyms for user convenience
type InterpreterFor e r = forall a. Sem (e ': r) a -> Sem r a Source #
Type synonym for interpreters that consume an effect without changing the return value. Offered for user convenience.
r Is kept polymorphic so it's possible to place constraints upon it:
teletypeToIO ::Member(Embed IO) r =>InterpreterForTeletype r
type InterpretersFor es r = forall a. Sem (Append es r) a -> Sem r a Source #
Variant of InterpreterFor that takes a list of effects.
 @since 1.5.0.0
Interoperating With Other Monads
Embed
newtype Embed m (z :: Type -> Type) a where Source #
An effect which allows a regular Monad m into the Sem
 ecosystem. Monadic actions in m can be lifted into Sem via
 embed.
For example, you can use this effect to lift IO actions directly into
 Sem:
embed(putStrLn "hello") ::Member(EmbedIO) r =>Semr ()
That being said, you lose out on a significant amount of the benefits of
 Sem by using embed directly in application code; doing
 so will tie your application code directly to the underlying monad, and
 prevent you from interpreting it differently. For best results, only use
 Embed in your effect interpreters.
Consider using trace and traceToIO as
 a substitute for using putStrLn directly.
Since: 1.0.0.0
embed :: Member (Embed m) r => m a -> Sem r a Source #
Embed a monadic action m in Sem.
Since: 1.0.0.0
Final
For advanced uses of Final, including creating your own interpreters
 that make use of it, see Polysemy.Final
An effect for embedding higher-order actions in the final target monad of the effect stack.
This is very useful for writing interpreters that interpret higher-order effects in terms of the final monad.
Final is more powerful than Embed, but is also less flexible
 to interpret (compare runEmbedded with finalToFinal).
 If you only need the power of embed, then you should use Embed instead.
Beware: Final actions are interpreted as actions of the final monad,
 and the effectful state visible to
 withWeavingToFinal / withStrategicToFinal
 / interpretFinal
 is that of all interpreters run in order to produce the final monad.
This means that any interpreter built using Final will not
 respect local/global state semantics based on the order of
 interpreters run. You should signal interpreters that make use of
 Final by adding a - suffix to the names of these.Final
State semantics of effects that are not interpreted in terms of the final monad will always appear local to effects that are interpreted in terms of the final monad.
State semantics between effects that are interpreted in terms of the final monad depend on the final monad. For example, if the final monad is a monad transformer stack, then state semantics will depend on the order monad transformers are stacked.
Since: 1.2.0.0
Instances
| type DefiningModule Final Source # | |
| Defined in Polysemy.Final | |
embedFinal :: (Member (Final m) r, Functor m) => m a -> Sem r a Source #
withWeavingToFinal admits an implementation of embed.
Just like embed, you are discouraged from using this in application code.
Since: 1.2.0.0
Lifting
raiseUnder :: forall e2 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': (e2 ': r)) a Source #
Like raise, but introduces a new effect underneath the head of the
 list. See raiseUnder2 or raiseUnder3 for introducing more effects. If
 you need to introduce even more of them, check out subsume_.
raiseUnder can be used in order to turn transformative interpreters
 into reinterpreters. This is especially useful if you're writing an
 interpreter which introduces an intermediary effect, and then want to use
 an existing interpreter on that effect.
For example, given:
fooToBar ::MemberBar r =>Sem(Foo ': r) a ->Semr a runBar ::Sem(Bar ': r) a ->Semr a
You can write:
runFoo ::Sem(Foo ': r) a ->Semr a runFoo = runBar -- Consume Bar . fooToBar -- Interpret Foo in terms of the new Bar .raiseUnder-- Introduces Bar under Foo
Since: 1.2.0.0
raiseUnder2 :: forall e2 e3 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': (e2 ': (e3 ': r))) a Source #
Like raise, but introduces two new effects underneath the head of the
 list.
Since: 1.2.0.0
raiseUnder3 :: forall e2 e3 e4 e1 r a. Sem (e1 ': r) a -> Sem (e1 ': (e2 ': (e3 ': (e4 ': r)))) a Source #
Like raise, but introduces three new effects underneath the head of the
 list.
Since: 1.2.0.0
raise2Under :: forall e3 e1 e2 r a. Sem (e1 ': (e2 ': r)) a -> Sem (e1 ': (e2 ': (e3 ': r))) a Source #
Like raise, but introduces an effect two levels underneath the head of
 the list.
Since: 1.4.0.0
raise3Under :: forall e4 e1 e2 e3 r a. Sem (e1 ': (e2 ': (e3 ': r))) a -> Sem (e1 ': (e2 ': (e3 ': (e4 ': r)))) a Source #
Like raise, but introduces an effect three levels underneath the head
 of the list.
Since: 1.4.0.0
raise_ :: forall r r' a. Raise r r' => Sem r a -> Sem r' a Source #
Introduce an arbitrary number of effects on top of the effect stack. This
 function is highly polymorphic, so it may be good idea to use its more
 concrete versions (like raise) or type annotations to avoid vague errors
 in ambiguous contexts.
Since: 1.4.0.0
subsume_ :: forall r r' a. Subsume r r' => Sem r a -> Sem r' a Source #
Allows reordering and adding known effects on top of the effect stack, as
 long as the polymorphic "tail" of new stack is a raise-d version of the
 original one. This function is highly polymorphic, so it may be a good idea
 to use its more concrete version (subsume), fitting functions from the
 raise family or type annotations to avoid vague errors in ambiguous
 contexts.
Since: 1.4.0.0
Trivial Interpretation
subsume :: forall e r a. Member e r => Sem (e ': r) a -> Sem r a Source #
Interprets an effect in terms of another identical effect.
This is useful for defining interpreters that use reinterpretH
 without immediately consuming the newly introduced effect.
 Using such an interpreter recursively may result in duplicate effects,
 which may then be eliminated using subsume.
For a version that can introduce an arbitrary number of new effects and
 reorder existing ones, see subsume_.
Since: 1.2.0.0
Creating New Effects
Effects should be defined as a GADT (enable -XGADTs), with kind (*
 -> *) -> * -> *. Every primitive action in the effect should be its
 own constructor of the type. For example, we can model an effect which
 interacts with a tty console as follows:
data Console m a where WriteLine :: String -> Console m () ReadLine :: Console m String
Notice that the a parameter gets instantiated at the desired return
 type of the actions. Writing a line returns a (), but reading one
 returns String.
By enabling -XTemplateHaskell, we can use the makeSem function
 to generate smart constructors for the actions. These smart constructors
 can be invoked directly inside of the Sem monad.
makeSem ''Console
results in the following definitions:
writeLine ::MemberConsole r => String ->Semr () readLine ::MemberConsole r =>Semr String
Effects which don't make use of the m parameter are known as
 "first-order effects."
Higher-Order Effects
Every effect has access to the m parameter, which corresponds to the
 Sem monad it's used in. Using this parameter, we're capable of
 writing effects which themselves contain subcomputations.
For example, the definition of Error is
dataErrore m a whereThrow:: e ->Errore m aCatch:: m a -> (e -> m a) ->Errore m a
where Catch is an action that can run an exception
 handler if its first argument calls throw.
makeSem ''Error
throw::Member(Errore) r => e ->Semr acatch::Member(Errore) r =>Semr a -> (e ->Semr a) ->Semr a
As you see, in the smart constructors, the m parameter has become Sem r
makeSem :: Name -> Q [Dec] Source #
If T is a GADT representing an effect algebra, as described in the
 module documentation for Polysemy, $( automatically
 generates a smart constructor for every data constructor of makeSem ''T)T. This also
 works for data family instances. Names of smart constructors are created by
 changing first letter to lowercase or removing prefix : in case of
 operators. Fixity declaration is preserved for both normal names and
 operators.
Since: 0.1.2.0
makeSem_ :: Name -> Q [Dec] Source #
Like makeSem, but does not provide type signatures and fixities. This
 can be used to attach Haddock comments to individual arguments for each
 generated function.
data Output o m a where
  Output :: o -> Output o m ()
makeSem_ ''Output
-- | Output the value @o@.
output :: forall o r
       .  Member (Output o) r
       => o         -- ^ Value to output.
       -> Sem r ()  -- ^ No result.
Because of limitations in Template Haskell, signatures have to follow some rules to work properly:
- makeSem_must be used before the explicit type signatures
- signatures have to specify argument of Semrepresenting union of effects asr(e.g.Semr ()
- all arguments in effect's type constructor have to follow naming scheme from data constructor's declaration:
data Foo e m a where FooC1 :: Foo x m () FooC2 :: Foo (Maybe x) m ()
should have x in type signature of fooC1:
fooC1 :: forall x r. Member (Foo x) r => Sem r ()
and Maybe x in signature of fooC2:
fooC2 :: forall x r. Member (Foo (Maybe x)) r => Sem r ()
- all effect's type variables and rhave to be explicitly quantified usingforall(order is not important)
These restrictions may be removed in the future, depending on changes to the compiler.
Change in (TODO(Sandy): version): in case of GADTs, signatures now only use names from data constructor's type and not from type constructor declaration.
Since: 0.1.2.0
Combinators for Interpreting First-Order Effects
Arguments
| :: FirstOrder e "interpret" | |
| => (forall x rInitial. e (Sem rInitial) x -> Sem r x) | A natural transformation from the handled effect to other effects
 already in  | 
| -> Sem (e ': r) a | |
| -> Sem r a | 
The simplest way to produce an effect handler. Interprets an effect e by
 transforming it into other effects inside of r.
Arguments
| :: (Member e r, FirstOrder e "intercept") | |
| => (forall x rInitial. e (Sem rInitial) x -> Sem r x) | A natural transformation from the handled effect to other effects
 already in  | 
| -> Sem r a | |
| -> Sem r a | 
Like interpret, but instead of handling the effect, allows responding to
 the effect while leaving it unhandled. This allows you, for example, to
 intercept other effects and insert logic around them.
Arguments
| :: forall e1 e2 r a. FirstOrder e1 "reinterpret" | |
| => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': r) x) | A natural transformation from the handled effect to the new effect. | 
| -> Sem (e1 ': r) a | |
| -> Sem (e2 ': r) a | 
Like interpret, but instead of removing the effect e, reencodes it in
 some new effect f. This function will fuse when followed by
 runState, meaning it's free to reinterpret in terms of
 the State effect and immediately run it.
Arguments
| :: forall e1 e2 e3 r a. FirstOrder e1 "reinterpret2" | |
| => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': (e3 ': r)) x) | A natural transformation from the handled effect to the new effects. | 
| -> Sem (e1 ': r) a | |
| -> Sem (e2 ': (e3 ': r)) a | 
Like reinterpret, but introduces two intermediary effects.
Arguments
| :: forall e1 e2 e3 e4 r a. FirstOrder e1 "reinterpret3" | |
| => (forall rInitial x. e1 (Sem rInitial) x -> Sem (e2 ': (e3 ': (e4 ': r))) x) | A natural transformation from the handled effect to the new effects. | 
| -> Sem (e1 ': r) a | |
| -> Sem (e2 ': (e3 ': (e4 ': r))) a | 
Like reinterpret, but introduces three intermediary effects.
rewrite :: forall e1 e2 r a. (forall rInitial x. e1 (Sem rInitial) x -> e2 (Sem rInitial) x) -> Sem (e1 ': r) a -> Sem (e2 ': r) a Source #
Rewrite an effect e1 directly into e2, and put it on the top of the
 effect stack.
Since: 1.2.3.0
transform :: forall e1 e2 r a. Member e2 r => (forall rInitial x. e1 (Sem rInitial) x -> e2 (Sem rInitial) x) -> Sem (e1 ': r) a -> Sem r a Source #
Transform an effect e1 into an effect e2 that is already somewhere
 inside of the stack.
Since: 1.2.3.0
Combinators for Interpreting Higher-Order Effects
Arguments
| :: Member e r | |
| => (forall x rInitial. e (Sem rInitial) x -> Tactical e (Sem rInitial) r x) | A natural transformation from the handled effect to other effects
 already in  | 
| -> Sem r a | Unlike  | 
| -> Sem r a | 
Arguments
| :: forall e1 e2 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': r) x) | A natural transformation from the handled effect to the new effect. | 
| -> Sem (e1 ': r) a | |
| -> Sem (e2 ': r) a | 
Like reinterpret, but for higher-order effects.
See the notes on Tactical for how to use this function.
Arguments
| :: forall e1 e2 e3 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': (e3 ': r)) x) | A natural transformation from the handled effect to the new effects. | 
| -> Sem (e1 ': r) a | |
| -> Sem (e2 ': (e3 ': r)) a | 
Like reinterpret2, but for higher-order effects.
See the notes on Tactical for how to use this function.
Arguments
| :: forall e1 e2 e3 e4 r a. (forall rInitial x. e1 (Sem rInitial) x -> Tactical e1 (Sem rInitial) (e2 ': (e3 ': (e4 ': r))) x) | A natural transformation from the handled effect to the new effects. | 
| -> Sem (e1 ': r) a | |
| -> Sem (e2 ': (e3 ': (e4 ': r))) a | 
Like reinterpret3, but for higher-order effects.
See the notes on Tactical for how to use this function.
Combinators for Interpreting Directly to IO
Arguments
| :: Member (Embed IO) r | |
| => ((forall x. Sem r x -> IO x) -> IO () -> IO a) | A lambda that takes the lowering function, and a finalizing  | 
| -> Sem r a | 
Run an effect stack all the way down to IO by running it in a new
 thread, and temporarily turning the current thread into an event poll.
This function creates a thread, and so should be compiled with -threaded.
Since: 0.5.0.0
Kind Synonyms
Composing IO-based Interpreters
Arguments
| :: Monad m | |
| => (forall x. Sem r x -> m x) | The lowering function, likely  | 
| -> (forall y. (forall x. Sem r x -> m x) -> Sem (e ': r) y -> Sem r y) | |
| -> Sem (e ': r) z | |
| -> m z | 
Some interpreters need to be able to lower down to the base monad (often
 IO) in order to function properly --- some good examples of this are
 lowerError and lowerResource.
However, these interpreters don't compose particularly nicely; for example,
 to run lowerResource, you must write:
runM . lowerError runM
Notice that runM is duplicated in two places here. The situation gets
 exponentially worse the more intepreters you have that need to run in this
 pattern.
Instead, .@ performs the composition we'd like. The above can be written as
(runM .@ lowerError)
The parentheses here are important; without them you'll run into operator precedence errors.
Warning: This combinator will duplicate work that is intended to be
 just for initialization. This can result in rather surprising behavior. For
 a version of .@ that won't duplicate work, see the .@! operator in
 polysemy-zoo.
Interpreters using Final may be composed normally, and
 avoid the work duplication issue. For that reason, you're encouraged to use
 - interpreters instead of Finallower- interpreters whenever
 possible.
Arguments
| :: Monad m | |
| => (forall x. Sem r x -> m x) | The lowering function, likely  | 
| -> (forall y. (forall x. Sem r x -> m x) -> Sem (e ': r) y -> Sem r (f y)) | |
| -> Sem (e ': r) z | |
| -> m (f z) | 
Like .@, but for interpreters which change the resulting type --- eg.
 lowerError.
Tactics
Higher-order effects need to explicitly thread other effects' state through themselves. Tactics are a domain-specific language for describing exactly how this threading should take place.
The first computation to be run should use runT, and subsequent
 computations in the same environment should use bindT. Any
 first-order constructors which appear in a higher-order context may use
 pureT to satisfy the typechecker.
type Tactical e m r x = forall f. Functor f => Sem (WithTactics e f m r) (f x) Source #
Tactical is an environment in which you're capable of explicitly
 threading higher-order effect states. This is provided by the (internal)
 effect Tactics, which is capable of rewriting monadic actions so they run
 in the correct stateful environment.
Inside a Tactical, you're capable of running pureT, runT and bindT
 which are the main tools for rewriting monadic stateful environments.
For example, consider trying to write an interpreter for
 Resource, whose effect is defined as:
dataResourcem a whereBracket:: m a -> (a -> m ()) -> (a -> m b) ->Resourcem b
Here we have an m a which clearly needs to be run first, and then
 subsequently call the a -> m () and a -> m b arguments. In a Tactical
 environment, we can write the threading code thusly:
Bracketalloc dealloc use -> do alloc' <-runTalloc dealloc' <-bindTdealloc use' <-bindTuse
where
alloc' ::Sem(Resource': r) (f a1) dealloc' :: f a1 ->Sem(Resource': r) (f ()) use' :: f a1 ->Sem(Resource': r) (f x)
The f type here is existential and corresponds to "whatever
 state the other effects want to keep track of." f is always
 a Functor.
alloc', dealloc' and use' are now in a form that can be
 easily consumed by your interpreter. At this point, simply bind
 them in the desired order and continue on your merry way.
We can see from the types of dealloc' and use' that since they both
 consume a f a1, they must run in the same stateful environment. This
 means, for illustration, any puts run inside the use
 block will not be visible inside of the dealloc block.
Power users may explicitly use getInitialStateT and bindT to construct
 whatever data flow they'd like; although this is usually unnecessary.
type WithTactics e f m r = Tactics f m (e ': r) ': r Source #
getInitialStateT :: forall f m r e. Sem (WithTactics e f m r) (f ()) Source #
Arguments
| :: m a | The monadic action to lift. This is usually a parameter in your effect. | 
| -> Tactical e m r a | 
Run a monadic action in a Tactical environment. The stateful environment
 used will be the same one that the effect is initally run in.
 Use bindTSimple if you'd prefer to explicitly manage your stateful
 environment.
This is a less flexible but significantly simpler variant of runT.
 Instead of returning a Sem action corresponding to the provided action,
 runTSimple runs the action immediately.
Since: 1.5.0.0
Arguments
| :: forall m f r e a b. (a -> m b) | The monadic continuation to lift. This is usually a parameter in your effect. Continuations executed via  | 
| -> f a | |
| -> Sem (WithTactics e f m r) (f b) | 
Lift a kleisli action into the stateful environment.
 You can use bindTSimple to execute an effect parameter of the form
 a -> m b by providing the result of a runTSimple or another
 bindTSimple.
This is a less flexible but significantly simpler variant of bindT.
 Instead of returning a Sem kleisli action corresponding to the
 provided kleisli action, bindTSimple runs the kleisli action immediately.
Since: 1.5.0.0
Arguments
| :: m a | The monadic action to lift. This is usually a parameter in your effect. | 
| -> Sem (WithTactics e f m r) (Sem (e ': r) (f a)) | 
Arguments
| :: (a -> m b) | The monadic continuation to lift. This is usually a parameter in your effect. Continuations lifted via  | 
| -> Sem (WithTactics e f m r) (f a -> Sem (e ': r) (f b)) | 
getInspectorT :: forall e f m r. Sem (WithTactics e f m r) (Inspector f) Source #
Get a natural transformation capable of potentially inspecting values
 inside of f. Binding the result of getInspectorT produces a function that
 can sometimes peek inside values returned by bindT.
This is often useful for running callback functions that are not managed by polysemy code.
Example
We can use the result of getInspectorT to "undo" pureT (or any of the other
 Tactical functions):
ins <-getInspectorTfa <-pureT"hello" fb <-pureTTrue let a =inspectins fa -- Just "hello" b =inspectins fb -- Just True
A container for inspect. See the documentation for getInspectorT.
Constructors
| Inspector | |
| Fields 
 | |