Loading [Contrib]/a11y/accessibility-menu.js

optics-core-0.2: Optics as an abstract interface: core definitions

Safe HaskellNone
LanguageHaskell2010

Optics.IxSetter

Contents

Description

An IxSetter is an indexed version of a Setter. See the "Indexed optics" section of the overview documentation in the Optics module of the main optics package for more details on indexed optics.

Synopsis

Formation

type IxSetter i s t a b = Optic A_Setter (WithIx i) s t a b Source #

Type synonym for a type-modifying indexed setter.

type IxSetter' i s a = Optic' A_Setter (WithIx i) s a Source #

Type synonym for a type-preserving indexed setter.

Introduction

isets :: ((i -> a -> b) -> s -> t) -> IxSetter i s t a b Source #

Build an indexed setter from a function to modify the element(s).

Elimination

iover :: (Is k A_Setter, is `HasSingleIndex` i) => Optic k is s t a b -> (i -> a -> b) -> s -> t Source #

Apply an indexed setter as a modifier.

Computation

iover (isets f) ≡ f

Well-formedness

Additional introduction forms

imapped :: FunctorWithIndex i f => IxSetter i (f a) (f b) a b Source #

Indexed setter via the FunctorWithIndex class.

iover imappedimap

Additional elimination forms

iset :: (Is k A_Setter, is `HasSingleIndex` i) => Optic k is s t a b -> (i -> b) -> s -> t Source #

Apply an indexed setter.

iset o f ≡ iover o (i _ -> f i)

iset' :: (Is k A_Setter, is `HasSingleIndex` i) => Optic k is s t a b -> (i -> b) -> s -> t Source #

Apply an indexed setter, strictly.

iover' :: (Is k A_Setter, is `HasSingleIndex` i) => Optic k is s t a b -> (i -> a -> b) -> s -> t Source #

Apply an indexed setter as a modifier, strictly.

Subtyping

data A_Setter :: OpticKind Source #

Tag for a setter.

Instances
Is A_Traversal A_Setter Source # 
Instance details

Defined in Optics.Internal.Optic.Subtyping

Is An_AffineTraversal A_Setter Source # 
Instance details

Defined in Optics.Internal.Optic.Subtyping

Is A_Prism A_Setter Source # 
Instance details

Defined in Optics.Internal.Optic.Subtyping

Methods

implies :: proxy A_Prism A_Setter p -> (Constraints A_Prism p -> r) -> Constraints A_Setter p -> r Source #

Is A_Lens A_Setter Source # 
Instance details

Defined in Optics.Internal.Optic.Subtyping

Methods

implies :: proxy A_Lens A_Setter p -> (Constraints A_Lens p -> r) -> Constraints A_Setter p -> r Source #

Is An_Iso A_Setter Source # 
Instance details

Defined in Optics.Internal.Optic.Subtyping

Methods

implies :: proxy An_Iso A_Setter p -> (Constraints An_Iso p -> r) -> Constraints A_Setter p -> r Source #

IxOptic A_Setter s t a b Source # 
Instance details

Defined in Optics.Indexed.Core

Methods

noIx :: NonEmptyIndices is => Optic A_Setter is s t a b -> Optic A_Setter NoIx s t a b Source #

Re-exports

class Functor f => FunctorWithIndex i f | f -> i where Source #

Class for Functors that have an additional read-only index available.

Minimal complete definition

Nothing

Methods

imap :: (i -> a -> b) -> f a -> f b Source #

imap :: TraversableWithIndex i f => (i -> a -> b) -> f a -> f b Source #

Instances
FunctorWithIndex Int [] Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Int -> a -> b) -> [a] -> [b] Source #

FunctorWithIndex Int ZipList Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Int -> a -> b) -> ZipList a -> ZipList b Source #

FunctorWithIndex Int NonEmpty Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Int -> a -> b) -> NonEmpty a -> NonEmpty b Source #

FunctorWithIndex Int IntMap Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Int -> a -> b) -> IntMap a -> IntMap b Source #

FunctorWithIndex Int Seq Source #

The position in the Seq is available as the index.

Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Int -> a -> b) -> Seq a -> Seq b Source #

FunctorWithIndex () Maybe Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (() -> a -> b) -> Maybe a -> Maybe b Source #

FunctorWithIndex () Par1 Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (() -> a -> b) -> Par1 a -> Par1 b Source #

FunctorWithIndex () Identity Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (() -> a -> b) -> Identity a -> Identity b Source #

Ix i => FunctorWithIndex i (Array i) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (i -> a -> b) -> Array i a -> Array i b Source #

FunctorWithIndex k (Map k) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (k -> a -> b) -> Map k a -> Map k b Source #

FunctorWithIndex k ((,) k) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (k -> a -> b) -> (k, a) -> (k, b) Source #

FunctorWithIndex Void (V1 :: Type -> Type) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Void -> a -> b) -> V1 a -> V1 b Source #

FunctorWithIndex Void (U1 :: Type -> Type) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Void -> a -> b) -> U1 a -> U1 b Source #

FunctorWithIndex Void (Proxy :: Type -> Type) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Void -> a -> b) -> Proxy a -> Proxy b Source #

FunctorWithIndex i f => FunctorWithIndex i (Rec1 f) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (i -> a -> b) -> Rec1 f a -> Rec1 f b Source #

FunctorWithIndex i m => FunctorWithIndex i (IdentityT m) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (i -> a -> b) -> IdentityT m a -> IdentityT m b Source #

FunctorWithIndex i f => FunctorWithIndex i (Reverse f) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (i -> a -> b) -> Reverse f a -> Reverse f b Source #

FunctorWithIndex i f => FunctorWithIndex i (Backwards f) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (i -> a -> b) -> Backwards f a -> Backwards f b Source #

FunctorWithIndex r ((->) r :: Type -> Type) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (r -> a -> b) -> (r -> a) -> r -> b Source #

FunctorWithIndex Void (K1 i c :: Type -> Type) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Void -> a -> b) -> K1 i c a -> K1 i c b Source #

FunctorWithIndex [Int] Tree Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: ([Int] -> a -> b) -> Tree a -> Tree b Source #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :+: g) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Either i j -> a -> b) -> (f :+: g) a -> (f :+: g) b Source #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :*: g) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Either i j -> a -> b) -> (f :*: g) a -> (f :*: g) b Source #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Product f g) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Either i j -> a -> b) -> Product f g a -> Product f g b Source #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Sum f g) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: (Either i j -> a -> b) -> Sum f g a -> Sum f g b Source #

FunctorWithIndex i m => FunctorWithIndex (e, i) (ReaderT e m) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: ((e, i) -> a -> b) -> ReaderT e m a -> ReaderT e m b Source #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (f :.: g) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: ((i, j) -> a -> b) -> (f :.: g) a -> (f :.: g) b Source #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (Compose f g) Source # 
Instance details

Defined in Optics.Internal.Indexed

Methods

imap :: ((i, j) -> a -> b) -> Compose f g a -> Compose f g b Source #