Safe Haskell | None |
---|---|
Language | Haskell2010 |
This module defines basic functionality for indexed optics. See the "Indexed
optics" section of the overview documentation in the Optics
module of the
main optics
package for more details.
Synopsis
- class IxOptic k s t a b where
- noIx :: NonEmptyIndices is => Optic k is s t a b -> Optic k NoIx s t a b
- conjoined :: is `HasSingleIndex` i => Optic k NoIx s t a b -> Optic k is s t a b -> Optic k is s t a b
- (%) :: (Is k m, Is l m, m ~ Join k l, ks ~ Append is js) => Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b
- (<%>) :: (m ~ Join k l, Is k m, Is l m, IxOptic m s t a b, is `HasSingleIndex` i, js `HasSingleIndex` j) => Optic k is s t u v -> Optic l js u v a b -> Optic m (WithIx (i, j)) s t a b
- (%>) :: (m ~ Join k l, Is k m, Is l m, IxOptic k s t u v, NonEmptyIndices is) => Optic k is s t u v -> Optic l js u v a b -> Optic m js s t a b
- (<%) :: (m ~ Join k l, Is l m, Is k m, IxOptic l u v a b, NonEmptyIndices js) => Optic k is s t u v -> Optic l js u v a b -> Optic m is s t a b
- reindexed :: is `HasSingleIndex` i => (i -> j) -> Optic k is s t a b -> Optic k (WithIx j) s t a b
- icompose :: (i -> j -> ix) -> Optic k '[i, j] s t a b -> Optic k (WithIx ix) s t a b
- icompose3 :: (i1 -> i2 -> i3 -> ix) -> Optic k '[i1, i2, i3] s t a b -> Optic k (WithIx ix) s t a b
- icompose4 :: (i1 -> i2 -> i3 -> i4 -> ix) -> Optic k '[i1, i2, i3, i4] s t a b -> Optic k (WithIx ix) s t a b
- icompose5 :: (i1 -> i2 -> i3 -> i4 -> i5 -> ix) -> Optic k '[i1, i2, i3, i4, i5] s t a b -> Optic k (WithIx ix) s t a b
- icomposeN :: forall k i is s t a b. (CurryCompose is, NonEmptyIndices is) => Curry is i -> Optic k is s t a b -> Optic k (WithIx i) s t a b
- module Optics.IxAffineFold
- module Optics.IxAffineTraversal
- module Optics.IxFold
- module Optics.IxGetter
- module Optics.IxLens
- module Optics.IxSetter
- module Optics.IxTraversal
- class Functor f => FunctorWithIndex i f | f -> i where
- imap :: (i -> a -> b) -> f a -> f b
- class (FunctorWithIndex i f, Foldable f) => FoldableWithIndex i f | f -> i where
- itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f ()
- ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f ()
- class (FoldableWithIndex i t, Traversable t) => TraversableWithIndex i t | t -> i where
- itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b)
- ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b)
Class for optic kinds that can be indexed
class IxOptic k s t a b where Source #
Class for optic kinds that can have indices.
noIx :: NonEmptyIndices is => Optic k is s t a b -> Optic k NoIx s t a b Source #
Convert an indexed optic to its unindexed equivalent.
Instances
(s ~ t, a ~ b) => IxOptic A_Fold s t a b Source # | |
Defined in Optics.Indexed.Core | |
(s ~ t, a ~ b) => IxOptic An_AffineFold s t a b Source # | |
Defined in Optics.Indexed.Core noIx :: NonEmptyIndices is => Optic An_AffineFold is s t a b -> Optic An_AffineFold NoIx s t a b Source # | |
(s ~ t, a ~ b) => IxOptic A_Getter s t a b Source # | |
Defined in Optics.Indexed.Core | |
IxOptic A_Setter s t a b Source # | |
Defined in Optics.Indexed.Core | |
IxOptic A_Traversal s t a b Source # | |
Defined in Optics.Indexed.Core noIx :: NonEmptyIndices is => Optic A_Traversal is s t a b -> Optic A_Traversal NoIx s t a b Source # | |
IxOptic An_AffineTraversal s t a b Source # | |
Defined in Optics.Indexed.Core noIx :: NonEmptyIndices is => Optic An_AffineTraversal is s t a b -> Optic An_AffineTraversal NoIx s t a b Source # | |
IxOptic A_Lens s t a b Source # | |
Defined in Optics.Indexed.Core |
conjoined :: is `HasSingleIndex` i => Optic k NoIx s t a b -> Optic k is s t a b -> Optic k is s t a b Source #
Composition of indexed optics
(%) :: (Is k m, Is l m, m ~ Join k l, ks ~ Append is js) => Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b infixl 9 Source #
Compose two optics of compatible flavours.
Returns an optic of the appropriate supertype. If either or both optics are indexed, the composition preserves all the indices.
(<%>) :: (m ~ Join k l, Is k m, Is l m, IxOptic m s t a b, is `HasSingleIndex` i, js `HasSingleIndex` j) => Optic k is s t u v -> Optic l js u v a b -> Optic m (WithIx (i, j)) s t a b infixl 9 Source #
Compose two indexed optics. Their indices are composed as a pair.
>>>
itoListOf (ifolded <%> ifolded) ["foo", "bar"]
[((0,0),'f'),((0,1),'o'),((0,2),'o'),((1,0),'b'),((1,1),'a'),((1,2),'r')]
(%>) :: (m ~ Join k l, Is k m, Is l m, IxOptic k s t u v, NonEmptyIndices is) => Optic k is s t u v -> Optic l js u v a b -> Optic m js s t a b infixl 9 Source #
Compose two indexed optics and drop indices of the left one. (If you want
to compose a non-indexed and an indexed optic, you can just use (%
).)
>>>
itoListOf (ifolded %> ifolded) ["foo", "bar"]
[(0,'f'),(1,'o'),(2,'o'),(0,'b'),(1,'a'),(2,'r')]
(<%) :: (m ~ Join k l, Is l m, Is k m, IxOptic l u v a b, NonEmptyIndices js) => Optic k is s t u v -> Optic l js u v a b -> Optic m is s t a b infixl 9 Source #
Compose two indexed optics and drop indices of the right one. (If you want
to compose an indexed and a non-indexed optic, you can just use (%
).)
>>>
itoListOf (ifolded <% ifolded) ["foo", "bar"]
[(0,'f'),(0,'o'),(0,'o'),(1,'b'),(1,'a'),(1,'r')]
reindexed :: is `HasSingleIndex` i => (i -> j) -> Optic k is s t a b -> Optic k (WithIx j) s t a b Source #
Remap the index.
>>>
itoListOf (reindexed succ ifolded) "foo"
[(1,'f'),(2,'o'),(3,'o')]
>>>
itoListOf (ifolded %& reindexed succ) "foo"
[(1,'f'),(2,'o'),(3,'o')]
icompose :: (i -> j -> ix) -> Optic k '[i, j] s t a b -> Optic k (WithIx ix) s t a b Source #
Flatten indices obtained from two indexed optics.
>>>
itoListOf (ifolded % ifolded %& icompose (,)) ["foo","bar"]
[((0,0),'f'),((0,1),'o'),((0,2),'o'),((1,0),'b'),((1,1),'a'),((1,2),'r')]
icompose3 :: (i1 -> i2 -> i3 -> ix) -> Optic k '[i1, i2, i3] s t a b -> Optic k (WithIx ix) s t a b Source #
Flatten indices obtained from three indexed optics.
>>>
itoListOf (ifolded % ifolded % ifolded %& icompose3 (,,)) [["foo","bar"],["xyz"]]
[((0,0,0),'f'),((0,0,1),'o'),((0,0,2),'o'),((0,1,0),'b'),((0,1,1),'a'),((0,1,2),'r'),((1,0,0),'x'),((1,0,1),'y'),((1,0,2),'z')]
icompose4 :: (i1 -> i2 -> i3 -> i4 -> ix) -> Optic k '[i1, i2, i3, i4] s t a b -> Optic k (WithIx ix) s t a b Source #
Flatten indices obtained from four indexed optics.
icompose5 :: (i1 -> i2 -> i3 -> i4 -> i5 -> ix) -> Optic k '[i1, i2, i3, i4, i5] s t a b -> Optic k (WithIx ix) s t a b Source #
Flatten indices obtained from five indexed optics.
icomposeN :: forall k i is s t a b. (CurryCompose is, NonEmptyIndices is) => Curry is i -> Optic k is s t a b -> Optic k (WithIx i) s t a b Source #
Flatten indices obtained from arbitrary number of indexed optics.
Indexed optic flavours
module Optics.IxAffineFold
module Optics.IxAffineTraversal
module Optics.IxFold
module Optics.IxGetter
module Optics.IxLens
module Optics.IxSetter
module Optics.IxTraversal
Functors with index
class Functor f => FunctorWithIndex i f | f -> i where Source #
Class for Functor
s that have an additional read-only index available.
Nothing
imap :: (i -> a -> b) -> f a -> f b Source #
imap :: TraversableWithIndex i f => (i -> a -> b) -> f a -> f b Source #
Instances
Foldable with index
class (FunctorWithIndex i f, Foldable f) => FoldableWithIndex i f | f -> i where Source #
Class for Foldable
s that have an additional read-only index available.
Nothing
ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m Source #
ifoldMap :: (TraversableWithIndex i f, Monoid m) => (i -> a -> m) -> f a -> m Source #
Instances
itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () Source #
Traverse FoldableWithIndex
ignoring the results.
ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () Source #
Flipped itraverse_
.
Traversable with index
class (FoldableWithIndex i t, Traversable t) => TraversableWithIndex i t | t -> i where Source #
Class for Traversable
s that have an additional read-only index available.
itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) Source #
Instances
ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) Source #
Flipped itraverse