Copyright | (c) Erich Gut |
---|---|
License | BSD3 |
Maintainer | zerich.gut@gmail.com |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Multiplicative
structures with a power function (
.^
)
Synopsis
- class (Multiplicative f, Number (Exponent f)) => Exponential f where
- opower :: (Entity p, Number r) => Orientation p -> r -> Orientation p
- class Multiplicative f => Real f where
Exponential
class (Multiplicative f, Number (Exponent f)) => Exponential f where Source #
Multiplicative
structures with a partially defined power function with numbers as exponents.
Properties
For all
f
anda
holds:- For all
f
holds:f
.^
1==
f - For all
f
holds:f
.^
(-1)==
invert
f - For all
f
anda
with
andstart
f==
end
fa
not in[-1,1]
holds:
andstart
(f^
a)==
start
f
.end
(f^
a)==
end
f - For all
f
,a
andb
with
holds:start
f==
end
ff
.^
(a*
b)==
(f^
a)^
b - For all
f
with
holds:start
f==
end
ff
.^
0 ==one
(end
f) - For all
f
,a
andb
with
holds:start
f==
end
ff
.^
(a+
b)==
f^
a*
f^
b - For all
a
andp
holds:(
.one
p)^
a==
one
p - For all
f
,g
anda
with
,start
f==
end
fstart
g==
end
g
andstart
f==
start
gf
holds:*
g==
g*
f(f
.*
g)^
a==
f^
a*
g^
a
Note
Instances
Galoisian x => Exponential (GL2 x) Source # | |
Oriented x => Exponential (GLT x) Source # | |
Oriented x => Exponential (ColTrafo x) Source # | |
Oriented a => Exponential (RowTrafo a) Source # | |
Entity x => Exponential (ProductSymbol x) Source # | |
Defined in OAlg.Entity.Product.ProductSymbol type Exponent (ProductSymbol x) Source # (^) :: ProductSymbol x -> Exponent (ProductSymbol x) -> ProductSymbol x Source # | |
(Entity i, Ord i) => Exponential (Permutation i) Source # | |
Defined in OAlg.Entity.Sequence.Permutation type Exponent (Permutation i) Source # (^) :: Permutation i -> Exponent (Permutation i) -> Permutation i Source # | |
Multiplicative c => Exponential (Inv c) Source # | |
(Oriented x, Typeable p, p ~ Point x) => Exponential (Dim x p) Source # | |
(Oriented a, Integral r) => Exponential (Product r a) Source # | |
opower :: (Entity p, Number r) => Orientation p -> r -> Orientation p Source #
the power of an orientation by an number.
Note opower
fulfill the properties of Exponential
for any number structure.
Real
class Multiplicative f => Real f where Source #
reals.
Instances
Entity p => Real (Orientation p) Source # | |
Defined in OAlg.Structure.Exponential power :: Number r => Orientation p -> r -> Orientation p Source # |