Copyright | (c) Erich Gut |
---|---|
License | BSD3 |
Maintainer | zerich.gut@gmail.com |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
additive structures, i.e. structures with a partially defined addition (
.+
)
Synopsis
- class Fibred a => Additive a where
- zero' :: Additive a => p a -> Root a -> a
- data Add
- class (ForgetfulFbr s, Transformable s Add) => ForgetfulAdd s
- class Additive a => Abelian a where
- isZero :: Additive a => a -> Bool
- data Abl
- class (ForgetfulFbr s, ForgetfulAdd s, Transformable s Abl) => ForgetfulAbl s
Additive
class Fibred a => Additive a where Source #
Fibred
structures with a partialy defined addition and having
zero
as the neutral element of the summation. An entity of a Additive
structure will be called a summand.
Properties Let a
be a Additive
structure, then holds:
- For all
r
in
holds:Root
a
.root
(zero
r)==
r - For all
f
,g
ina
with
holds:root
f==
root
gf
.+
g==
g+
f - For all
f
ina
holds:f
+
zero
(root
f)==
f - For all
f
,g
,h
ina
with
holds:root
f==
root
g==
root
h(f
.+
g)+
h==
f+
(g+
h) - For all
f
ina
andn
inN
holds:
andntimes
0 f ==zero
(root
f)
.ntimes
(n+
1) f==
f+
ntimes
n f
the neutral element associated to each root
. If there is no ambiguity
for
we will briefly denote it by zero
r0 r
or just 0
.
(+) :: a -> a -> a infixl 6 Source #
the addition for two summands.
ntimes :: N -> a -> a Source #
n
times of a summand.
Instances
type representing the class of Additive
structures.
Instances
ForgetfulAdd Add Source # | |
Defined in OAlg.Structure.Additive.Definition | |
ForgetfulTyp Add Source # | |
Defined in OAlg.Structure.Additive.Definition | |
ForgetfulFbr Add Source # | |
Defined in OAlg.Structure.Additive.Definition | |
Transformable Abl Add Source # | |
Transformable Add Ent Source # | |
Transformable Add Typ Source # | |
Transformable Add Fbr Source # | |
Transformable Dst Add Source # | |
(Semiring r, Commutative r) => EmbeddableMorphism (HomSymbol r) Add Source # | |
Defined in OAlg.Entity.Matrix.Vector | |
EmbeddableMorphism h Add => EmbeddableMorphism (OpHom h) Add Source # | |
Defined in OAlg.Hom.Oriented.Definition | |
Transformable (Alg k) Add Source # | |
Transformable (Vec k) Add Source # | |
type Hom Add h Source # | |
Defined in OAlg.Hom.Additive | |
type Structure Add x Source # | |
Defined in OAlg.Structure.Additive.Definition |
class (ForgetfulFbr s, Transformable s Add) => ForgetfulAdd s Source #
transformable to Additive
structure.
Instances
ForgetfulAdd Abl Source # | |
Defined in OAlg.Structure.Additive.Definition | |
ForgetfulAdd Add Source # | |
Defined in OAlg.Structure.Additive.Definition | |
ForgetfulAdd Dst Source # | |
Defined in OAlg.Structure.Distributive.Definition | |
ForgetfulAdd (Alg k) Source # | |
Defined in OAlg.Structure.Algebraic.Definition | |
ForgetfulAdd (Vec k) Source # | |
Defined in OAlg.Structure.Vectorial.Definition |
Abelian
class Additive a => Abelian a where Source #
Additive
structures having for each summand an additve inverse.
Properties Let a
be a Additive
structure, then holds:
negation of a summand.
(-) :: a -> a -> a infixl 6 Source #
subtraction of two summands.
Properties
ztimes :: Z -> a -> a Source #
z
times of a sumand.
Instances
type representing the class of Abelian
structures.
Instances
ForgetfulAbl Abl Source # | |
Defined in OAlg.Structure.Additive.Definition | |
ForgetfulAdd Abl Source # | |
Defined in OAlg.Structure.Additive.Definition | |
ForgetfulTyp Abl Source # | |
Defined in OAlg.Structure.Additive.Definition | |
ForgetfulFbr Abl Source # | |
Defined in OAlg.Structure.Additive.Definition | |
Transformable Abl Ent Source # | |
Transformable Abl Add Source # | |
Transformable Abl Typ Source # | |
Transformable Abl Fbr Source # | |
type Structure Abl x Source # | |
Defined in OAlg.Structure.Additive.Definition |
class (ForgetfulFbr s, ForgetfulAdd s, Transformable s Abl) => ForgetfulAbl s Source #
transformable to Abelian
structure.
Instances
ForgetfulAbl Abl Source # | |
Defined in OAlg.Structure.Additive.Definition |