Haskell Implementation of Merkle Tree Logs
This packages implements Merkle Tree Logs similar to those described in RFC 6962
in Haskell.
Merkle Logs are a append-only data structure. The tree layout in this
implementation of Merkle trees is based on the description of Merkle trees in
RFC 6962. With this tree layout extending a Merkle tree requires chaining a
logarithmic number of nodes at the end of the tree. Unlike RFC 6962 the Merkle
trees in this module support the creation of unbalanced MerkleTrees by nesting
sub-trees as leafs of Merkle trees. Also, unlike RFC 6962 this module generates
fully self-contained inclusion proofs that don't rely on the client being aware
of the balancing of the Merkle Tree that was used to generate the proof.
The implementation stores Merkle trees in a packed format in memory. This allows
for efficient construction, serialization, and querying. Trees are opaque
objects that are allocated and deallocated as well as serialized and
deserialized as a whole, which matches many use cases. Also, trees can be
nested, by building larger Merkle trees that have smaller trees as inputs to
their leafs.
The overhead per indexed item is 64 bytes when 256 bit hashes are used. Thus,
about 16,000 items can be index in 1MB of memory.
We plan to make the trees extensible and support loading and storing trees in
chunks that represent immutable full subtrees. Please file an issue on GitHub if
you need this feature.
Proofs
Proofs are self contained and don't rely on a particular implementation of
Merkle tree. In particular, proofs don't depend on how the tree is balanced.
A proof contains the proof subject (the input for which inclusion is proven) as
a plain ByteString
. The result of validating a proof is a Merkle tree root
that must match the root of the Merkle tree that includes the subject. A proof
doesn't include the root hash of the Merkle tree, because the root must be
obtained from a trusted / authenticated source. Including it in the proof would
thus be redundant and may even be misleading.
At the moment only inclusion / audit proofs are supported. We plan to also
implement consistency proofs. Please file an issue on GitHub if you need
consistency proofs.
Build and Installation
The package can be build with cabal via
cabal new-update
cabal new-build merkle-log
The test suite can be run with
cabal new-test merkle-log
Benchmarks are available via
cabal new-bench merkle-log
Benchmarks
The following benchmark results compare the performance of this package with
the Merkle tree implementations in the packages
merkle-tree and
hash-tree for different hash
functions on a 64bit Intel CPU.
Create tree:
Create inclusion proof:
Verify inclusion proof: