Copyright | (C) 2012-2015 Edward Kmett |
---|---|

License | BSD-style (see the file LICENSE) |

Maintainer | Edward Kmett <ekmett@gmail.com> |

Stability | experimental |

Portability | non-portable |

Safe Haskell | Trustworthy |

Language | Haskell2010 |

Simple matrix operation for low-dimensional primitives.

## Synopsis

- (!*!) :: (Functor m, Foldable t, Additive t, Additive n, Num a) => m (t a) -> t (n a) -> m (n a)
- (!+!) :: (Additive m, Additive n, Num a) => m (n a) -> m (n a) -> m (n a)
- (!-!) :: (Additive m, Additive n, Num a) => m (n a) -> m (n a) -> m (n a)
- (!*) :: (Functor m, Foldable r, Additive r, Num a) => m (r a) -> r a -> m a
- (*!) :: (Num a, Foldable t, Additive f, Additive t) => t a -> t (f a) -> f a
- (!!*) :: (Functor m, Functor r, Num a) => m (r a) -> a -> m (r a)
- (*!!) :: (Functor m, Functor r, Num a) => a -> m (r a) -> m (r a)
- (!!/) :: (Functor m, Functor r, Fractional a) => m (r a) -> a -> m (r a)
- column :: Representable f => LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
- adjoint :: (Functor m, Distributive n, Conjugate a) => m (n a) -> n (m a)
- type M22 a = V2 (V2 a)
- type M23 a = V2 (V3 a)
- type M24 a = V2 (V4 a)
- type M32 a = V3 (V2 a)
- type M33 a = V3 (V3 a)
- type M34 a = V3 (V4 a)
- type M42 a = V4 (V2 a)
- type M43 a = V4 (V3 a)
- type M44 a = V4 (V4 a)
- m33_to_m44 :: Num a => M33 a -> M44 a
- m43_to_m44 :: Num a => M43 a -> M44 a
- det22 :: Num a => M22 a -> a
- det33 :: Num a => M33 a -> a
- det44 :: Num a => M44 a -> a
- inv22 :: Fractional a => M22 a -> M22 a
- inv33 :: Fractional a => M33 a -> M33 a
- inv44 :: Fractional a => M44 a -> M44 a
- identity :: (Num a, Traversable t, Applicative t) => t (t a)
- class Functor m => Trace m where
- translation :: (Representable t, R3 t, R4 v) => Lens' (t (v a)) (V3 a)
- transpose :: (Distributive g, Functor f) => f (g a) -> g (f a)
- fromQuaternion :: Num a => Quaternion a -> M33 a
- mkTransformation :: Num a => Quaternion a -> V3 a -> M44 a
- mkTransformationMat :: Num a => M33 a -> V3 a -> M44 a
- _m22 :: (Representable t, R2 t, R2 v) => Lens' (t (v a)) (M22 a)
- _m23 :: (Representable t, R2 t, R3 v) => Lens' (t (v a)) (M23 a)
- _m24 :: (Representable t, R2 t, R4 v) => Lens' (t (v a)) (M24 a)
- _m32 :: (Representable t, R3 t, R2 v) => Lens' (t (v a)) (M32 a)
- _m33 :: (Representable t, R3 t, R3 v) => Lens' (t (v a)) (M33 a)
- _m34 :: (Representable t, R3 t, R4 v) => Lens' (t (v a)) (M34 a)
- _m42 :: (Representable t, R4 t, R2 v) => Lens' (t (v a)) (M42 a)
- _m43 :: (Representable t, R4 t, R3 v) => Lens' (t (v a)) (M43 a)
- _m44 :: (Representable t, R4 t, R4 v) => Lens' (t (v a)) (M44 a)
- lu :: (Num a, Fractional a, Foldable m, Traversable m, Applicative m, Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) => m (m a) -> (m (m a), m (m a))
- luFinite :: (Num a, Fractional a, Functor m, Finite m, n ~ Size m, KnownNat n, Num (m a)) => m (m a) -> (m (m a), m (m a))
- forwardSub :: (Num a, Fractional a, Foldable m, Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) => m (m a) -> m a -> m a
- forwardSubFinite :: (Num a, Fractional a, Foldable m, n ~ Size m, KnownNat n, Additive m, Finite m) => m (m a) -> m a -> m a
- backwardSub :: (Num a, Fractional a, Foldable m, Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) => m (m a) -> m a -> m a
- backwardSubFinite :: (Num a, Fractional a, Foldable m, n ~ Size m, KnownNat n, Additive m, Finite m) => m (m a) -> m a -> m a
- luSolve :: (Num a, Fractional a, Foldable m, Traversable m, Applicative m, Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) => m (m a) -> m a -> m a
- luSolveFinite :: (Num a, Fractional a, Functor m, Finite m, n ~ Size m, KnownNat n, Num (m a)) => m (m a) -> m a -> m a
- luInv :: (Num a, Fractional a, Foldable m, Traversable m, Applicative m, Additive m, Distributive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) => m (m a) -> m (m a)
- luInvFinite :: (Num a, Fractional a, Functor m, Finite m, n ~ Size m, KnownNat n, Num (m a)) => m (m a) -> m (m a)
- luDet :: (Num a, Fractional a, Foldable m, Traversable m, Applicative m, Additive m, Trace m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) => m (m a) -> a
- luDetFinite :: (Num a, Fractional a, Functor m, Finite m, n ~ Size m, KnownNat n, Num (m a)) => m (m a) -> a

# Documentation

(!*!) :: (Functor m, Foldable t, Additive t, Additive n, Num a) => m (t a) -> t (n a) -> m (n a) infixl 7 Source #

Matrix product. This can compute any combination of sparse and dense multiplication.

`>>>`

V2 (V2 19 25) (V2 43 58)`V2 (V3 1 2 3) (V3 4 5 6) !*! V3 (V2 1 2) (V2 3 4) (V2 4 5)`

`>>>`

V2 (V3 0 0 2) (V3 0 0 15)`V2 (fromList [(1,2)]) (fromList [(2,3)]) !*! fromList [(1,V3 0 0 1), (2, V3 0 0 5)]`

(!+!) :: (Additive m, Additive n, Num a) => m (n a) -> m (n a) -> m (n a) infixl 6 Source #

Entry-wise matrix addition.

`>>>`

V2 (V3 8 10 12) (V3 5 7 9)`V2 (V3 1 2 3) (V3 4 5 6) !+! V2 (V3 7 8 9) (V3 1 2 3)`

(!-!) :: (Additive m, Additive n, Num a) => m (n a) -> m (n a) -> m (n a) infixl 6 Source #

Entry-wise matrix subtraction.

`>>>`

V2 (V3 (-6) (-6) (-6)) (V3 3 3 3)`V2 (V3 1 2 3) (V3 4 5 6) !-! V2 (V3 7 8 9) (V3 1 2 3)`

(!*) :: (Functor m, Foldable r, Additive r, Num a) => m (r a) -> r a -> m a infixl 7 Source #

Matrix * column vector

`>>>`

V2 50 122`V2 (V3 1 2 3) (V3 4 5 6) !* V3 7 8 9`

(*!) :: (Num a, Foldable t, Additive f, Additive t) => t a -> t (f a) -> f a infixl 7 Source #

Row vector * matrix

`>>>`

V3 15 18 21`V2 1 2 *! V2 (V3 3 4 5) (V3 6 7 8)`

(!!*) :: (Functor m, Functor r, Num a) => m (r a) -> a -> m (r a) infixl 7 Source #

Matrix-scalar product

`>>>`

V2 (V2 5 10) (V2 15 20)`V2 (V2 1 2) (V2 3 4) !!* 5`

(*!!) :: (Functor m, Functor r, Num a) => a -> m (r a) -> m (r a) infixl 7 Source #

Scalar-matrix product

`>>>`

V2 (V2 5 10) (V2 15 20)`5 *!! V2 (V2 1 2) (V2 3 4)`

(!!/) :: (Functor m, Functor r, Fractional a) => m (r a) -> a -> m (r a) infixl 7 Source #

Matrix-scalar division

column :: Representable f => LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b) Source #

adjoint :: (Functor m, Distributive n, Conjugate a) => m (n a) -> n (m a) Source #

Hermitian conjugate or conjugate transpose

`>>>`

V2 (V2 (1.0 :+ (-2.0)) (5.0 :+ (-6.0))) (V2 (3.0 :+ (-4.0)) (7.0 :+ (-8.0)))`adjoint (V2 (V2 (1 :+ 2) (3 :+ 4)) (V2 (5 :+ 6) (7 :+ 8)))`

m33_to_m44 :: Num a => M33 a -> M44 a Source #

Convert a 3x3 matrix to a 4x4 matrix extending it with 0's in the new row and column.

m43_to_m44 :: Num a => M43 a -> M44 a Source #

Convert from a 4x3 matrix to a 4x4 matrix, extending it with the `[ 0 0 0 1 ]`

column vector

det22 :: Num a => M22 a -> a Source #

2x2 matrix determinant.

`>>>`

a * d - b * c`det22 (V2 (V2 a b) (V2 c d))`

det33 :: Num a => M33 a -> a Source #

3x3 matrix determinant.

`>>>`

a * (e * i - f * h) - d * (b * i - c * h) + g * (b * f - c * e)`det33 (V3 (V3 a b c) (V3 d e f) (V3 g h i))`

inv22 :: Fractional a => M22 a -> M22 a Source #

2x2 matrix inverse.

`>>>`

V2 (V2 (-2.0) 1.0) (V2 1.5 (-0.5))`inv22 $ V2 (V2 1 2) (V2 3 4)`

inv33 :: Fractional a => M33 a -> M33 a Source #

3x3 matrix inverse.

`>>>`

V3 (V3 0.0 0.5 (-1.0)) (V3 (-0.5) (-0.75) 3.5) (V3 0.5 0.25 (-1.5))`inv33 $ V3 (V3 1 2 4) (V3 4 2 2) (V3 1 1 1)`

identity :: (Num a, Traversable t, Applicative t) => t (t a) Source #

The identity matrix for any dimension vector.

`>>>`

V4 (V4 1 0 0 0) (V4 0 1 0 0) (V4 0 0 1 0) (V4 0 0 0 1)`identity :: M44 Int`

`>>>`

V3 (V3 1 0 0) (V3 0 1 0) (V3 0 0 1)`identity :: V3 (V3 Int)`

class Functor m => Trace m where Source #

Nothing

trace :: Num a => m (m a) -> a Source #

Compute the trace of a matrix

`>>>`

a + d`trace (V2 (V2 a b) (V2 c d))`

diagonal :: m (m a) -> m a Source #

Compute the diagonal of a matrix

`>>>`

V2 a d`diagonal (V2 (V2 a b) (V2 c d))`

#### Instances

Trace Complex Source # | |

Trace IntMap Source # | |

Trace V1 Source # | |

Trace V2 Source # | |

Trace V3 Source # | |

Trace V4 Source # | |

Trace V0 Source # | |

Trace Quaternion Source # | |

Defined in Linear.Trace trace :: Num a => Quaternion (Quaternion a) -> a Source # diagonal :: Quaternion (Quaternion a) -> Quaternion a Source # | |

Trace Plucker Source # | |

Ord k => Trace (Map k) Source # | |

(Eq k, Hashable k) => Trace (HashMap k) Source # | |

Dim n => Trace (V n) Source # | |

(Trace f, Trace g) => Trace (Product f g) Source # | |

(Distributive g, Trace g, Trace f) => Trace (Compose g f) Source # | |

translation :: (Representable t, R3 t, R4 v) => Lens' (t (v a)) (V3 a) Source #

Extract the translation vector (first three entries of the last column) from a 3x4 or 4x4 matrix.

transpose :: (Distributive g, Functor f) => f (g a) -> g (f a) Source #

`transpose`

is just an alias for `distribute`

transpose (V3 (V2 1 2) (V2 3 4) (V2 5 6))

V2 (V3 1 3 5) (V3 2 4 6)

fromQuaternion :: Num a => Quaternion a -> M33 a Source #

Build a rotation matrix from a unit `Quaternion`

.

mkTransformation :: Num a => Quaternion a -> V3 a -> M44 a Source #

Build a transformation matrix from a rotation expressed as a
`Quaternion`

and a translation vector.

mkTransformationMat :: Num a => M33 a -> V3 a -> M44 a Source #

Build a transformation matrix from a rotation matrix and a translation vector.

_m22 :: (Representable t, R2 t, R2 v) => Lens' (t (v a)) (M22 a) Source #

Extract a 2x2 matrix from a matrix of higher dimensions by dropping excess rows and columns.

_m23 :: (Representable t, R2 t, R3 v) => Lens' (t (v a)) (M23 a) Source #

Extract a 2x3 matrix from a matrix of higher dimensions by dropping excess rows and columns.

_m24 :: (Representable t, R2 t, R4 v) => Lens' (t (v a)) (M24 a) Source #

Extract a 2x4 matrix from a matrix of higher dimensions by dropping excess rows and columns.

_m32 :: (Representable t, R3 t, R2 v) => Lens' (t (v a)) (M32 a) Source #

Extract a 3x2 matrix from a matrix of higher dimensions by dropping excess rows and columns.

_m33 :: (Representable t, R3 t, R3 v) => Lens' (t (v a)) (M33 a) Source #

Extract a 3x3 matrix from a matrix of higher dimensions by dropping excess rows and columns.

_m34 :: (Representable t, R3 t, R4 v) => Lens' (t (v a)) (M34 a) Source #

Extract a 3x4 matrix from a matrix of higher dimensions by dropping excess rows and columns.

_m42 :: (Representable t, R4 t, R2 v) => Lens' (t (v a)) (M42 a) Source #

Extract a 4x2 matrix from a matrix of higher dimensions by dropping excess rows and columns.

_m43 :: (Representable t, R4 t, R3 v) => Lens' (t (v a)) (M43 a) Source #

Extract a 4x3 matrix from a matrix of higher dimensions by dropping excess rows and columns.

_m44 :: (Representable t, R4 t, R4 v) => Lens' (t (v a)) (M44 a) Source #

Extract a 4x4 matrix from a matrix of higher dimensions by dropping excess rows and columns.

lu :: (Num a, Fractional a, Foldable m, Traversable m, Applicative m, Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) => m (m a) -> (m (m a), m (m a)) Source #

luFinite :: (Num a, Fractional a, Functor m, Finite m, n ~ Size m, KnownNat n, Num (m a)) => m (m a) -> (m (m a), m (m a)) Source #

Compute the (L, U) decomposition of a square matrix using Crout's
algorithm, using the vector's `Finite`

instance to provide an index.

forwardSub :: (Num a, Fractional a, Foldable m, Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) => m (m a) -> m a -> m a Source #

Solve a linear system with a lower-triangular matrix of coefficients with forwards substitution.

forwardSubFinite :: (Num a, Fractional a, Foldable m, n ~ Size m, KnownNat n, Additive m, Finite m) => m (m a) -> m a -> m a Source #

Solve a linear system with a lower-triangular matrix of coefficients with
forwards substitution, using the vector's `Finite`

instance to provide an
index.

backwardSub :: (Num a, Fractional a, Foldable m, Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) => m (m a) -> m a -> m a Source #

Solve a linear system with an upper-triangular matrix of coefficients with backwards substitution.

backwardSubFinite :: (Num a, Fractional a, Foldable m, n ~ Size m, KnownNat n, Additive m, Finite m) => m (m a) -> m a -> m a Source #

Solve a linear system with an upper-triangular matrix of coefficients with
backwards substitution, using the vector's `Finite`

instance to provide an
index.

luSolve :: (Num a, Fractional a, Foldable m, Traversable m, Applicative m, Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) => m (m a) -> m a -> m a Source #

Solve a linear system with LU decomposition.

luSolveFinite :: (Num a, Fractional a, Functor m, Finite m, n ~ Size m, KnownNat n, Num (m a)) => m (m a) -> m a -> m a Source #

Solve a linear system with LU decomposition, using the vector's `Finite`

instance to provide an index.

luInv :: (Num a, Fractional a, Foldable m, Traversable m, Applicative m, Additive m, Distributive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) => m (m a) -> m (m a) Source #

Invert a matrix with LU decomposition.

luInvFinite :: (Num a, Fractional a, Functor m, Finite m, n ~ Size m, KnownNat n, Num (m a)) => m (m a) -> m (m a) Source #

Invert a matrix with LU decomposition, using the vector's `Finite`

instance
to provide an index.

luDet :: (Num a, Fractional a, Foldable m, Traversable m, Applicative m, Additive m, Trace m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) => m (m a) -> a Source #

Compute the determinant of a matrix using LU decomposition.