{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
module Linear.Matrix
( (!*!), (!+!), (!-!), (!*), (*!), (!!*), (*!!), (!!/)
, column
, adjoint
, M22, M23, M24, M32, M33, M34, M42, M43, M44
, m33_to_m44, m43_to_m44
, det22, det33, det44, inv22, inv33, inv44
, identity
, Trace(..)
, translation
, transpose
, fromQuaternion
, mkTransformation
, mkTransformationMat
, _m22, _m23, _m24
, _m32, _m33, _m34
, _m42, _m43, _m44
#if MIN_VERSION_base(4,8,0)
, lu
, luFinite
, forwardSub
, forwardSubFinite
, backwardSub
, backwardSubFinite
, luSolve
, luSolveFinite
, luInv
, luInvFinite
, luDet
, luDetFinite
#endif
) where
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative
#endif
import Control.Lens hiding (index)
import Control.Lens.Internal.Context
import Data.Distributive
import Data.Foldable as Foldable
import Data.Functor.Rep
import Linear.Quaternion
import Linear.V2
import Linear.V3
import Linear.V4
import Linear.Vector
import Linear.Conjugate
import Linear.Trace
#if MIN_VERSION_base(4,8,0)
import GHC.TypeLits
import Linear.V
#endif
column :: Representable f => LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column :: LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context a b) s t a b
l f a -> f (f b)
f f s
es = f b -> f t
o (f b -> f t) -> f (f b) -> f (f t)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a -> f (f b)
f f a
i where
go :: s -> Context a b t
go = LensLike (Context a b) s t a b
l ((b -> b) -> a -> Context a b b
forall a b t. (b -> t) -> a -> Context a b t
Context b -> b
forall a. a -> a
id)
i :: f a
i = (Rep f -> a) -> f a
forall (f :: * -> *) a. Representable f => (Rep f -> a) -> f a
tabulate ((Rep f -> a) -> f a) -> (Rep f -> a) -> f a
forall a b. (a -> b) -> a -> b
$ \ Rep f
e -> Context a b t -> a
forall (w :: * -> * -> * -> *) a c t.
IndexedComonadStore w =>
w a c t -> a
ipos (Context a b t -> a) -> Context a b t -> a
forall a b. (a -> b) -> a -> b
$ s -> Context a b t
go (f s -> Rep f -> s
forall (f :: * -> *) a. Representable f => f a -> Rep f -> a
index f s
es Rep f
e)
o :: f b -> f t
o f b
eb = (Rep f -> t) -> f t
forall (f :: * -> *) a. Representable f => (Rep f -> a) -> f a
tabulate ((Rep f -> t) -> f t) -> (Rep f -> t) -> f t
forall a b. (a -> b) -> a -> b
$ \ Rep f
e -> b -> Context a b t -> t
forall (w :: * -> * -> * -> *) c a t.
IndexedComonadStore w =>
c -> w a c t -> t
ipeek (f b -> Rep f -> b
forall (f :: * -> *) a. Representable f => f a -> Rep f -> a
index f b
eb Rep f
e) (s -> Context a b t
go (f s -> Rep f -> s
forall (f :: * -> *) a. Representable f => f a -> Rep f -> a
index f s
es Rep f
e))
infixl 7 !*!
(!*!) :: (Functor m, Foldable t, Additive t, Additive n, Num a) => m (t a) -> t (n a) -> m (n a)
m (t a)
f !*! :: m (t a) -> t (n a) -> m (n a)
!*! t (n a)
g = (t a -> n a) -> m (t a) -> m (n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\ t a
f' -> (n a -> n a -> n a) -> n a -> t (n a) -> n a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' n a -> n a -> n a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
(^+^) n a
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero (t (n a) -> n a) -> t (n a) -> n a
forall a b. (a -> b) -> a -> b
$ (a -> n a -> n a) -> t a -> t (n a) -> t (n a)
forall (f :: * -> *) a b c.
Additive f =>
(a -> b -> c) -> f a -> f b -> f c
liftI2 a -> n a -> n a
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
(*^) t a
f' t (n a)
g) m (t a)
f
infixl 6 !+!
(!+!) :: (Additive m, Additive n, Num a) => m (n a) -> m (n a) -> m (n a)
m (n a)
as !+! :: m (n a) -> m (n a) -> m (n a)
!+! m (n a)
bs = (n a -> n a -> n a) -> m (n a) -> m (n a) -> m (n a)
forall (f :: * -> *) a.
Additive f =>
(a -> a -> a) -> f a -> f a -> f a
liftU2 n a -> n a -> n a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
(^+^) m (n a)
as m (n a)
bs
infixl 6 !-!
(!-!) :: (Additive m, Additive n, Num a) => m (n a) -> m (n a) -> m (n a)
m (n a)
as !-! :: m (n a) -> m (n a) -> m (n a)
!-! m (n a)
bs = (n a -> n a -> n a) -> m (n a) -> m (n a) -> m (n a)
forall (f :: * -> *) a.
Additive f =>
(a -> a -> a) -> f a -> f a -> f a
liftU2 n a -> n a -> n a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
(^-^) m (n a)
as m (n a)
bs
infixl 7 !*
(!*) :: (Functor m, Foldable r, Additive r, Num a) => m (r a) -> r a -> m a
m (r a)
m !* :: m (r a) -> r a -> m a
!* r a
v = (r a -> a) -> m (r a) -> m a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\r a
r -> r a -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
Foldable.sum (r a -> a) -> r a -> a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> r a -> r a -> r a
forall (f :: * -> *) a b c.
Additive f =>
(a -> b -> c) -> f a -> f b -> f c
liftI2 a -> a -> a
forall a. Num a => a -> a -> a
(*) r a
r r a
v) m (r a)
m
infixl 7 *!
(*!) :: (Num a, Foldable t, Additive f, Additive t) => t a -> t (f a) -> f a
t a
f *! :: t a -> t (f a) -> f a
*! t (f a)
g = t (f a) -> f a
forall (f :: * -> *) (v :: * -> *) a.
(Foldable f, Additive v, Num a) =>
f (v a) -> v a
sumV (t (f a) -> f a) -> t (f a) -> f a
forall a b. (a -> b) -> a -> b
$ (a -> f a -> f a) -> t a -> t (f a) -> t (f a)
forall (f :: * -> *) a b c.
Additive f =>
(a -> b -> c) -> f a -> f b -> f c
liftI2 a -> f a -> f a
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
(*^) t a
f t (f a)
g
infixl 7 *!!
(*!!) :: (Functor m, Functor r, Num a) => a -> m (r a) -> m (r a)
a
s *!! :: a -> m (r a) -> m (r a)
*!! m (r a)
m = (r a -> r a) -> m (r a) -> m (r a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (a
s a -> r a -> r a
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^) m (r a)
m
{-# INLINE (*!!) #-}
infixl 7 !!*
(!!*) :: (Functor m, Functor r, Num a) => m (r a) -> a -> m (r a)
!!* :: m (r a) -> a -> m (r a)
(!!*) = (a -> m (r a) -> m (r a)) -> m (r a) -> a -> m (r a)
forall a b c. (a -> b -> c) -> b -> a -> c
flip a -> m (r a) -> m (r a)
forall (m :: * -> *) (r :: * -> *) a.
(Functor m, Functor r, Num a) =>
a -> m (r a) -> m (r a)
(*!!)
{-# INLINE (!!*) #-}
infixl 7 !!/
(!!/) :: (Functor m, Functor r, Fractional a) => m (r a) -> a -> m (r a)
m (r a)
m !!/ :: m (r a) -> a -> m (r a)
!!/ a
s = (r a -> r a) -> m (r a) -> m (r a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (r a -> a -> r a
forall (f :: * -> *) a.
(Functor f, Fractional a) =>
f a -> a -> f a
^/ a
s) m (r a)
m
{-# INLINE (!!/) #-}
adjoint :: (Functor m, Distributive n, Conjugate a) => m (n a) -> n (m a)
adjoint :: m (n a) -> n (m a)
adjoint = (n a -> n a) -> m (n a) -> n (m a)
forall (g :: * -> *) (f :: * -> *) a b.
(Distributive g, Functor f) =>
(a -> g b) -> f a -> g (f b)
collect ((a -> a) -> n a -> n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Conjugate a => a -> a
conjugate)
{-# INLINE adjoint #-}
type M22 a = V2 (V2 a)
type M23 a = V2 (V3 a)
type M24 a = V2 (V4 a)
type M32 a = V3 (V2 a)
type M33 a = V3 (V3 a)
type M34 a = V3 (V4 a)
type M42 a = V4 (V2 a)
type M43 a = V4 (V3 a)
type M44 a = V4 (V4 a)
fromQuaternion :: Num a => Quaternion a -> M33 a
fromQuaternion :: Quaternion a -> M33 a
fromQuaternion (Quaternion a
w (V3 a
x a
y a
z)) =
V3 a -> V3 a -> V3 a -> M33 a
forall a. a -> a -> a -> V3 a
V3 (a -> a -> a -> V3 a
forall a. a -> a -> a -> V3 a
V3 (a
1a -> a -> a
forall a. Num a => a -> a -> a
-a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
y2a -> a -> a
forall a. Num a => a -> a -> a
+a
z2)) (a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
xya -> a -> a
forall a. Num a => a -> a -> a
-a
zw)) (a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
xza -> a -> a
forall a. Num a => a -> a -> a
+a
yw)))
(a -> a -> a -> V3 a
forall a. a -> a -> a -> V3 a
V3 (a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
xya -> a -> a
forall a. Num a => a -> a -> a
+a
zw)) (a
1a -> a -> a
forall a. Num a => a -> a -> a
-a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
x2a -> a -> a
forall a. Num a => a -> a -> a
+a
z2)) (a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
yza -> a -> a
forall a. Num a => a -> a -> a
-a
xw)))
(a -> a -> a -> V3 a
forall a. a -> a -> a -> V3 a
V3 (a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
xza -> a -> a
forall a. Num a => a -> a -> a
-a
yw)) (a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
yza -> a -> a
forall a. Num a => a -> a -> a
+a
xw)) (a
1a -> a -> a
forall a. Num a => a -> a -> a
-a
2a -> a -> a
forall a. Num a => a -> a -> a
*(a
x2a -> a -> a
forall a. Num a => a -> a -> a
+a
y2)))
where x2 :: a
x2 = a
xa -> a -> a
forall a. Num a => a -> a -> a
*a
x
y2 :: a
y2 = a
ya -> a -> a
forall a. Num a => a -> a -> a
*a
y
z2 :: a
z2 = a
za -> a -> a
forall a. Num a => a -> a -> a
*a
z
xy :: a
xy = a
xa -> a -> a
forall a. Num a => a -> a -> a
*a
y
xz :: a
xz = a
xa -> a -> a
forall a. Num a => a -> a -> a
*a
z
xw :: a
xw = a
xa -> a -> a
forall a. Num a => a -> a -> a
*a
w
yz :: a
yz = a
ya -> a -> a
forall a. Num a => a -> a -> a
*a
z
yw :: a
yw = a
ya -> a -> a
forall a. Num a => a -> a -> a
*a
w
zw :: a
zw = a
za -> a -> a
forall a. Num a => a -> a -> a
*a
w
{-# INLINE fromQuaternion #-}
mkTransformationMat :: Num a => M33 a -> V3 a -> M44 a
mkTransformationMat :: M33 a -> V3 a -> M44 a
mkTransformationMat (V3 V3 a
r1 V3 a
r2 V3 a
r3) (V3 a
tx a
ty a
tz) =
V4 a -> V4 a -> V4 a -> V4 a -> M44 a
forall a. a -> a -> a -> a -> V4 a
V4 (V3 a -> a -> V4 a
forall a. V3 a -> a -> V4 a
snoc3 V3 a
r1 a
tx) (V3 a -> a -> V4 a
forall a. V3 a -> a -> V4 a
snoc3 V3 a
r2 a
ty) (V3 a -> a -> V4 a
forall a. V3 a -> a -> V4 a
snoc3 V3 a
r3 a
tz) (a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 a
0 a
0 a
0 a
1)
where snoc3 :: V3 a -> a -> V4 a
snoc3 (V3 a
x a
y a
z) = a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 a
x a
y a
z
{-# INLINE mkTransformationMat #-}
mkTransformation :: Num a => Quaternion a -> V3 a -> M44 a
mkTransformation :: Quaternion a -> V3 a -> M44 a
mkTransformation = M33 a -> V3 a -> M44 a
forall a. Num a => M33 a -> V3 a -> M44 a
mkTransformationMat (M33 a -> V3 a -> M44 a)
-> (Quaternion a -> M33 a) -> Quaternion a -> V3 a -> M44 a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Quaternion a -> M33 a
forall a. Num a => Quaternion a -> M33 a
fromQuaternion
{-# INLINE mkTransformation #-}
m43_to_m44 :: Num a => M43 a -> M44 a
m43_to_m44 :: M43 a -> M44 a
m43_to_m44
(V4 (V3 a
a a
b a
c)
(V3 a
d a
e a
f)
(V3 a
g a
h a
i)
(V3 a
j a
k a
l)) =
V4 a -> V4 a -> V4 a -> V4 a -> M44 a
forall a. a -> a -> a -> a -> V4 a
V4 (a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 a
a a
b a
c a
0)
(a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 a
d a
e a
f a
0)
(a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 a
g a
h a
i a
0)
(a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 a
j a
k a
l a
1)
m33_to_m44 :: Num a => M33 a -> M44 a
m33_to_m44 :: M33 a -> M44 a
m33_to_m44 (V3 V3 a
r1 V3 a
r2 V3 a
r3) = V4 a -> V4 a -> V4 a -> V4 a -> M44 a
forall a. a -> a -> a -> a -> V4 a
V4 (V3 a -> V4 a
forall a. Num a => V3 a -> V4 a
vector V3 a
r1) (V3 a -> V4 a
forall a. Num a => V3 a -> V4 a
vector V3 a
r2) (V3 a -> V4 a
forall a. Num a => V3 a -> V4 a
vector V3 a
r3) (V3 a -> V4 a
forall a. Num a => V3 a -> V4 a
point V3 a
0)
identity :: (Num a, Traversable t, Applicative t) => t (t a)
identity :: t (t a)
identity = t a -> t (t a)
forall (t :: * -> *) a. (Traversable t, Num a) => t a -> t (t a)
scaled (a -> t a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
1)
translation :: (Representable t, R3 t, R4 v) => Lens' (t (v a)) (V3 a)
translation :: Lens' (t (v a)) (V3 a)
translation = LensLike (Context a a) (v a) (v a) a a
-> Lens (t (v a)) (t (v a)) (t a) (t a)
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context a a) (v a) (v a) a a
forall (t :: * -> *) a. R4 t => Lens' (t a) a
_w((t a -> f (t a)) -> t (v a) -> f (t (v a)))
-> ((V3 a -> f (V3 a)) -> t a -> f (t a))
-> (V3 a -> f (V3 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(V3 a -> f (V3 a)) -> t a -> f (t a)
forall (t :: * -> *) a. R3 t => Lens' (t a) (V3 a)
_xyz
_m22 :: (Representable t, R2 t, R2 v) => Lens' (t (v a)) (M22 a)
_m22 :: Lens' (t (v a)) (M22 a)
_m22 = LensLike (Context (V2 a) (V2 a)) (v a) (v a) (V2 a) (V2 a)
-> Lens (t (v a)) (t (v a)) (t (V2 a)) (t (V2 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V2 a) (V2 a)) (v a) (v a) (V2 a) (V2 a)
forall (t :: * -> *) a. R2 t => Lens' (t a) (V2 a)
_xy((t (V2 a) -> f (t (V2 a))) -> t (v a) -> f (t (v a)))
-> ((M22 a -> f (M22 a)) -> t (V2 a) -> f (t (V2 a)))
-> (M22 a -> f (M22 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M22 a -> f (M22 a)) -> t (V2 a) -> f (t (V2 a))
forall (t :: * -> *) a. R2 t => Lens' (t a) (V2 a)
_xy
_m23 :: (Representable t, R2 t, R3 v) => Lens' (t (v a)) (M23 a)
_m23 :: Lens' (t (v a)) (M23 a)
_m23 = LensLike (Context (V3 a) (V3 a)) (v a) (v a) (V3 a) (V3 a)
-> Lens (t (v a)) (t (v a)) (t (V3 a)) (t (V3 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V3 a) (V3 a)) (v a) (v a) (V3 a) (V3 a)
forall (t :: * -> *) a. R3 t => Lens' (t a) (V3 a)
_xyz((t (V3 a) -> f (t (V3 a))) -> t (v a) -> f (t (v a)))
-> ((M23 a -> f (M23 a)) -> t (V3 a) -> f (t (V3 a)))
-> (M23 a -> f (M23 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M23 a -> f (M23 a)) -> t (V3 a) -> f (t (V3 a))
forall (t :: * -> *) a. R2 t => Lens' (t a) (V2 a)
_xy
_m24 :: (Representable t, R2 t, R4 v) => Lens' (t (v a)) (M24 a)
_m24 :: Lens' (t (v a)) (M24 a)
_m24 = LensLike (Context (V4 a) (V4 a)) (v a) (v a) (V4 a) (V4 a)
-> Lens (t (v a)) (t (v a)) (t (V4 a)) (t (V4 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V4 a) (V4 a)) (v a) (v a) (V4 a) (V4 a)
forall (t :: * -> *) a. R4 t => Lens' (t a) (V4 a)
_xyzw((t (V4 a) -> f (t (V4 a))) -> t (v a) -> f (t (v a)))
-> ((M24 a -> f (M24 a)) -> t (V4 a) -> f (t (V4 a)))
-> (M24 a -> f (M24 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M24 a -> f (M24 a)) -> t (V4 a) -> f (t (V4 a))
forall (t :: * -> *) a. R2 t => Lens' (t a) (V2 a)
_xy
_m32 :: (Representable t, R3 t, R2 v) => Lens' (t (v a)) (M32 a)
_m32 :: Lens' (t (v a)) (M32 a)
_m32 = LensLike (Context (V2 a) (V2 a)) (v a) (v a) (V2 a) (V2 a)
-> Lens (t (v a)) (t (v a)) (t (V2 a)) (t (V2 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V2 a) (V2 a)) (v a) (v a) (V2 a) (V2 a)
forall (t :: * -> *) a. R2 t => Lens' (t a) (V2 a)
_xy((t (V2 a) -> f (t (V2 a))) -> t (v a) -> f (t (v a)))
-> ((M32 a -> f (M32 a)) -> t (V2 a) -> f (t (V2 a)))
-> (M32 a -> f (M32 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M32 a -> f (M32 a)) -> t (V2 a) -> f (t (V2 a))
forall (t :: * -> *) a. R3 t => Lens' (t a) (V3 a)
_xyz
_m33 :: (Representable t, R3 t, R3 v) => Lens' (t (v a)) (M33 a)
_m33 :: Lens' (t (v a)) (M33 a)
_m33 = LensLike (Context (V3 a) (V3 a)) (v a) (v a) (V3 a) (V3 a)
-> Lens (t (v a)) (t (v a)) (t (V3 a)) (t (V3 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V3 a) (V3 a)) (v a) (v a) (V3 a) (V3 a)
forall (t :: * -> *) a. R3 t => Lens' (t a) (V3 a)
_xyz((t (V3 a) -> f (t (V3 a))) -> t (v a) -> f (t (v a)))
-> ((M33 a -> f (M33 a)) -> t (V3 a) -> f (t (V3 a)))
-> (M33 a -> f (M33 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M33 a -> f (M33 a)) -> t (V3 a) -> f (t (V3 a))
forall (t :: * -> *) a. R3 t => Lens' (t a) (V3 a)
_xyz
_m34 :: (Representable t, R3 t, R4 v) => Lens' (t (v a)) (M34 a)
_m34 :: Lens' (t (v a)) (M34 a)
_m34 = LensLike (Context (V4 a) (V4 a)) (v a) (v a) (V4 a) (V4 a)
-> Lens (t (v a)) (t (v a)) (t (V4 a)) (t (V4 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V4 a) (V4 a)) (v a) (v a) (V4 a) (V4 a)
forall (t :: * -> *) a. R4 t => Lens' (t a) (V4 a)
_xyzw((t (V4 a) -> f (t (V4 a))) -> t (v a) -> f (t (v a)))
-> ((M34 a -> f (M34 a)) -> t (V4 a) -> f (t (V4 a)))
-> (M34 a -> f (M34 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M34 a -> f (M34 a)) -> t (V4 a) -> f (t (V4 a))
forall (t :: * -> *) a. R3 t => Lens' (t a) (V3 a)
_xyz
_m42 :: (Representable t, R4 t, R2 v) => Lens' (t (v a)) (M42 a)
_m42 :: Lens' (t (v a)) (M42 a)
_m42 = LensLike (Context (V2 a) (V2 a)) (v a) (v a) (V2 a) (V2 a)
-> Lens (t (v a)) (t (v a)) (t (V2 a)) (t (V2 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V2 a) (V2 a)) (v a) (v a) (V2 a) (V2 a)
forall (t :: * -> *) a. R2 t => Lens' (t a) (V2 a)
_xy((t (V2 a) -> f (t (V2 a))) -> t (v a) -> f (t (v a)))
-> ((M42 a -> f (M42 a)) -> t (V2 a) -> f (t (V2 a)))
-> (M42 a -> f (M42 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M42 a -> f (M42 a)) -> t (V2 a) -> f (t (V2 a))
forall (t :: * -> *) a. R4 t => Lens' (t a) (V4 a)
_xyzw
_m43 :: (Representable t, R4 t, R3 v) => Lens' (t (v a)) (M43 a)
_m43 :: Lens' (t (v a)) (M43 a)
_m43 = LensLike (Context (V3 a) (V3 a)) (v a) (v a) (V3 a) (V3 a)
-> Lens (t (v a)) (t (v a)) (t (V3 a)) (t (V3 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V3 a) (V3 a)) (v a) (v a) (V3 a) (V3 a)
forall (t :: * -> *) a. R3 t => Lens' (t a) (V3 a)
_xyz((t (V3 a) -> f (t (V3 a))) -> t (v a) -> f (t (v a)))
-> ((M43 a -> f (M43 a)) -> t (V3 a) -> f (t (V3 a)))
-> (M43 a -> f (M43 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M43 a -> f (M43 a)) -> t (V3 a) -> f (t (V3 a))
forall (t :: * -> *) a. R4 t => Lens' (t a) (V4 a)
_xyzw
_m44 :: (Representable t, R4 t, R4 v) => Lens' (t (v a)) (M44 a)
_m44 :: Lens' (t (v a)) (M44 a)
_m44 = LensLike (Context (V4 a) (V4 a)) (v a) (v a) (V4 a) (V4 a)
-> Lens (t (v a)) (t (v a)) (t (V4 a)) (t (V4 a))
forall (f :: * -> *) a b s t.
Representable f =>
LensLike (Context a b) s t a b -> Lens (f s) (f t) (f a) (f b)
column LensLike (Context (V4 a) (V4 a)) (v a) (v a) (V4 a) (V4 a)
forall (t :: * -> *) a. R4 t => Lens' (t a) (V4 a)
_xyzw((t (V4 a) -> f (t (V4 a))) -> t (v a) -> f (t (v a)))
-> ((M44 a -> f (M44 a)) -> t (V4 a) -> f (t (V4 a)))
-> (M44 a -> f (M44 a))
-> t (v a)
-> f (t (v a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(M44 a -> f (M44 a)) -> t (V4 a) -> f (t (V4 a))
forall (t :: * -> *) a. R4 t => Lens' (t a) (V4 a)
_xyzw
det22 :: Num a => M22 a -> a
det22 :: M22 a -> a
det22 (V2 (V2 a
a a
b) (V2 a
c a
d)) = a
a a -> a -> a
forall a. Num a => a -> a -> a
* a
d a -> a -> a
forall a. Num a => a -> a -> a
- a
b a -> a -> a
forall a. Num a => a -> a -> a
* a
c
{-# INLINE det22 #-}
det33 :: Num a => M33 a -> a
det33 :: M33 a -> a
det33 (V3 (V3 a
a a
b a
c)
(V3 a
d a
e a
f)
(V3 a
g a
h a
i)) = a
a a -> a -> a
forall a. Num a => a -> a -> a
* (a
ea -> a -> a
forall a. Num a => a -> a -> a
*a
ia -> a -> a
forall a. Num a => a -> a -> a
-a
fa -> a -> a
forall a. Num a => a -> a -> a
*a
h) a -> a -> a
forall a. Num a => a -> a -> a
- a
d a -> a -> a
forall a. Num a => a -> a -> a
* (a
ba -> a -> a
forall a. Num a => a -> a -> a
*a
ia -> a -> a
forall a. Num a => a -> a -> a
-a
ca -> a -> a
forall a. Num a => a -> a -> a
*a
h) a -> a -> a
forall a. Num a => a -> a -> a
+ a
g a -> a -> a
forall a. Num a => a -> a -> a
* (a
ba -> a -> a
forall a. Num a => a -> a -> a
*a
fa -> a -> a
forall a. Num a => a -> a -> a
-a
ca -> a -> a
forall a. Num a => a -> a -> a
*a
e)
{-# INLINE det33 #-}
det44 :: Num a => M44 a -> a
det44 :: M44 a -> a
det44 (V4 (V4 a
i00 a
i01 a
i02 a
i03)
(V4 a
i10 a
i11 a
i12 a
i13)
(V4 a
i20 a
i21 a
i22 a
i23)
(V4 a
i30 a
i31 a
i32 a
i33)) =
let
s0 :: a
s0 = a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
i11 a -> a -> a
forall a. Num a => a -> a -> a
- a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
i01
s1 :: a
s1 = a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
i12 a -> a -> a
forall a. Num a => a -> a -> a
- a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
i02
s2 :: a
s2 = a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
i13 a -> a -> a
forall a. Num a => a -> a -> a
- a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
i03
s3 :: a
s3 = a
i01 a -> a -> a
forall a. Num a => a -> a -> a
* a
i12 a -> a -> a
forall a. Num a => a -> a -> a
- a
i11 a -> a -> a
forall a. Num a => a -> a -> a
* a
i02
s4 :: a
s4 = a
i01 a -> a -> a
forall a. Num a => a -> a -> a
* a
i13 a -> a -> a
forall a. Num a => a -> a -> a
- a
i11 a -> a -> a
forall a. Num a => a -> a -> a
* a
i03
s5 :: a
s5 = a
i02 a -> a -> a
forall a. Num a => a -> a -> a
* a
i13 a -> a -> a
forall a. Num a => a -> a -> a
- a
i12 a -> a -> a
forall a. Num a => a -> a -> a
* a
i03
c5 :: a
c5 = a
i22 a -> a -> a
forall a. Num a => a -> a -> a
* a
i33 a -> a -> a
forall a. Num a => a -> a -> a
- a
i32 a -> a -> a
forall a. Num a => a -> a -> a
* a
i23
c4 :: a
c4 = a
i21 a -> a -> a
forall a. Num a => a -> a -> a
* a
i33 a -> a -> a
forall a. Num a => a -> a -> a
- a
i31 a -> a -> a
forall a. Num a => a -> a -> a
* a
i23
c3 :: a
c3 = a
i21 a -> a -> a
forall a. Num a => a -> a -> a
* a
i32 a -> a -> a
forall a. Num a => a -> a -> a
- a
i31 a -> a -> a
forall a. Num a => a -> a -> a
* a
i22
c2 :: a
c2 = a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
i33 a -> a -> a
forall a. Num a => a -> a -> a
- a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
i23
c1 :: a
c1 = a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
i32 a -> a -> a
forall a. Num a => a -> a -> a
- a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
i22
c0 :: a
c0 = a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
i31 a -> a -> a
forall a. Num a => a -> a -> a
- a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
i21
in a
s0 a -> a -> a
forall a. Num a => a -> a -> a
* a
c5 a -> a -> a
forall a. Num a => a -> a -> a
- a
s1 a -> a -> a
forall a. Num a => a -> a -> a
* a
c4 a -> a -> a
forall a. Num a => a -> a -> a
+ a
s2 a -> a -> a
forall a. Num a => a -> a -> a
* a
c3 a -> a -> a
forall a. Num a => a -> a -> a
+ a
s3 a -> a -> a
forall a. Num a => a -> a -> a
* a
c2 a -> a -> a
forall a. Num a => a -> a -> a
- a
s4 a -> a -> a
forall a. Num a => a -> a -> a
* a
c1 a -> a -> a
forall a. Num a => a -> a -> a
+ a
s5 a -> a -> a
forall a. Num a => a -> a -> a
* a
c0
{-# INLINE det44 #-}
inv22 :: Fractional a => M22 a -> M22 a
inv22 :: M22 a -> M22 a
inv22 m :: M22 a
m@(V2 (V2 a
a a
b) (V2 a
c a
d)) = (a
1 a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
det) a -> M22 a -> M22 a
forall (m :: * -> *) (r :: * -> *) a.
(Functor m, Functor r, Num a) =>
a -> m (r a) -> m (r a)
*!! V2 a -> V2 a -> M22 a
forall a. a -> a -> V2 a
V2 (a -> a -> V2 a
forall a. a -> a -> V2 a
V2 a
d (-a
b)) (a -> a -> V2 a
forall a. a -> a -> V2 a
V2 (-a
c) a
a)
where det :: a
det = M22 a -> a
forall a. Num a => M22 a -> a
det22 M22 a
m
{-# INLINE inv22 #-}
inv33 :: Fractional a => M33 a -> M33 a
inv33 :: M33 a -> M33 a
inv33 m :: M33 a
m@(V3 (V3 a
a a
b a
c)
(V3 a
d a
e a
f)
(V3 a
g a
h a
i))
= (a
1 a -> a -> a
forall a. Fractional a => a -> a -> a
/ a
det) a -> M33 a -> M33 a
forall (m :: * -> *) (r :: * -> *) a.
(Functor m, Functor r, Num a) =>
a -> m (r a) -> m (r a)
*!! V3 a -> V3 a -> V3 a -> M33 a
forall a. a -> a -> a -> V3 a
V3 (a -> a -> a -> V3 a
forall a. a -> a -> a -> V3 a
V3 a
a' a
b' a
c')
(a -> a -> a -> V3 a
forall a. a -> a -> a -> V3 a
V3 a
d' a
e' a
f')
(a -> a -> a -> V3 a
forall a. a -> a -> a -> V3 a
V3 a
g' a
h' a
i')
where a' :: a
a' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
e,a
f,a
h,a
i)
b' :: a
b' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
c,a
b,a
i,a
h)
c' :: a
c' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
b,a
c,a
e,a
f)
d' :: a
d' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
f,a
d,a
i,a
g)
e' :: a
e' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
a,a
c,a
g,a
i)
f' :: a
f' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
c,a
a,a
f,a
d)
g' :: a
g' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
d,a
e,a
g,a
h)
h' :: a
h' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
b,a
a,a
h,a
g)
i' :: a
i' = (a, a, a, a) -> a
forall a. Num a => (a, a, a, a) -> a
cofactor (a
a,a
b,a
d,a
e)
cofactor :: (a, a, a, a) -> a
cofactor (a
q,a
r,a
s,a
t) = M22 a -> a
forall a. Num a => M22 a -> a
det22 (V2 a -> V2 a -> M22 a
forall a. a -> a -> V2 a
V2 (a -> a -> V2 a
forall a. a -> a -> V2 a
V2 a
q a
r) (a -> a -> V2 a
forall a. a -> a -> V2 a
V2 a
s a
t))
det :: a
det = M33 a -> a
forall a. Num a => M33 a -> a
det33 M33 a
m
{-# INLINE inv33 #-}
transpose :: (Distributive g, Functor f) => f (g a) -> g (f a)
transpose :: f (g a) -> g (f a)
transpose = f (g a) -> g (f a)
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
distribute
{-# INLINE transpose #-}
inv44 :: Fractional a => M44 a -> M44 a
inv44 :: M44 a -> M44 a
inv44 (V4 (V4 a
i00 a
i01 a
i02 a
i03)
(V4 a
i10 a
i11 a
i12 a
i13)
(V4 a
i20 a
i21 a
i22 a
i23)
(V4 a
i30 a
i31 a
i32 a
i33)) =
let s0 :: a
s0 = a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
i11 a -> a -> a
forall a. Num a => a -> a -> a
- a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
i01
s1 :: a
s1 = a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
i12 a -> a -> a
forall a. Num a => a -> a -> a
- a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
i02
s2 :: a
s2 = a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
i13 a -> a -> a
forall a. Num a => a -> a -> a
- a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
i03
s3 :: a
s3 = a
i01 a -> a -> a
forall a. Num a => a -> a -> a
* a
i12 a -> a -> a
forall a. Num a => a -> a -> a
- a
i11 a -> a -> a
forall a. Num a => a -> a -> a
* a
i02
s4 :: a
s4 = a
i01 a -> a -> a
forall a. Num a => a -> a -> a
* a
i13 a -> a -> a
forall a. Num a => a -> a -> a
- a
i11 a -> a -> a
forall a. Num a => a -> a -> a
* a
i03
s5 :: a
s5 = a
i02 a -> a -> a
forall a. Num a => a -> a -> a
* a
i13 a -> a -> a
forall a. Num a => a -> a -> a
- a
i12 a -> a -> a
forall a. Num a => a -> a -> a
* a
i03
c5 :: a
c5 = a
i22 a -> a -> a
forall a. Num a => a -> a -> a
* a
i33 a -> a -> a
forall a. Num a => a -> a -> a
- a
i32 a -> a -> a
forall a. Num a => a -> a -> a
* a
i23
c4 :: a
c4 = a
i21 a -> a -> a
forall a. Num a => a -> a -> a
* a
i33 a -> a -> a
forall a. Num a => a -> a -> a
- a
i31 a -> a -> a
forall a. Num a => a -> a -> a
* a
i23
c3 :: a
c3 = a
i21 a -> a -> a
forall a. Num a => a -> a -> a
* a
i32 a -> a -> a
forall a. Num a => a -> a -> a
- a
i31 a -> a -> a
forall a. Num a => a -> a -> a
* a
i22
c2 :: a
c2 = a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
i33 a -> a -> a
forall a. Num a => a -> a -> a
- a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
i23
c1 :: a
c1 = a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
i32 a -> a -> a
forall a. Num a => a -> a -> a
- a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
i22
c0 :: a
c0 = a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
i31 a -> a -> a
forall a. Num a => a -> a -> a
- a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
i21
det :: a
det = a
s0 a -> a -> a
forall a. Num a => a -> a -> a
* a
c5 a -> a -> a
forall a. Num a => a -> a -> a
- a
s1 a -> a -> a
forall a. Num a => a -> a -> a
* a
c4 a -> a -> a
forall a. Num a => a -> a -> a
+ a
s2 a -> a -> a
forall a. Num a => a -> a -> a
* a
c3 a -> a -> a
forall a. Num a => a -> a -> a
+ a
s3 a -> a -> a
forall a. Num a => a -> a -> a
* a
c2 a -> a -> a
forall a. Num a => a -> a -> a
- a
s4 a -> a -> a
forall a. Num a => a -> a -> a
* a
c1 a -> a -> a
forall a. Num a => a -> a -> a
+ a
s5 a -> a -> a
forall a. Num a => a -> a -> a
* a
c0
invDet :: a
invDet = a -> a
forall a. Fractional a => a -> a
recip a
det
in a
invDet a -> M44 a -> M44 a
forall (m :: * -> *) (r :: * -> *) a.
(Functor m, Functor r, Num a) =>
a -> m (r a) -> m (r a)
*!! V4 a -> V4 a -> V4 a -> V4 a -> M44 a
forall a. a -> a -> a -> a -> V4 a
V4 (a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 (a
i11 a -> a -> a
forall a. Num a => a -> a -> a
* a
c5 a -> a -> a
forall a. Num a => a -> a -> a
- a
i12 a -> a -> a
forall a. Num a => a -> a -> a
* a
c4 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i13 a -> a -> a
forall a. Num a => a -> a -> a
* a
c3)
(-a
i01 a -> a -> a
forall a. Num a => a -> a -> a
* a
c5 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i02 a -> a -> a
forall a. Num a => a -> a -> a
* a
c4 a -> a -> a
forall a. Num a => a -> a -> a
- a
i03 a -> a -> a
forall a. Num a => a -> a -> a
* a
c3)
(a
i31 a -> a -> a
forall a. Num a => a -> a -> a
* a
s5 a -> a -> a
forall a. Num a => a -> a -> a
- a
i32 a -> a -> a
forall a. Num a => a -> a -> a
* a
s4 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i33 a -> a -> a
forall a. Num a => a -> a -> a
* a
s3)
(-a
i21 a -> a -> a
forall a. Num a => a -> a -> a
* a
s5 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i22 a -> a -> a
forall a. Num a => a -> a -> a
* a
s4 a -> a -> a
forall a. Num a => a -> a -> a
- a
i23 a -> a -> a
forall a. Num a => a -> a -> a
* a
s3))
(a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 (-a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
c5 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i12 a -> a -> a
forall a. Num a => a -> a -> a
* a
c2 a -> a -> a
forall a. Num a => a -> a -> a
- a
i13 a -> a -> a
forall a. Num a => a -> a -> a
* a
c1)
(a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
c5 a -> a -> a
forall a. Num a => a -> a -> a
- a
i02 a -> a -> a
forall a. Num a => a -> a -> a
* a
c2 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i03 a -> a -> a
forall a. Num a => a -> a -> a
* a
c1)
(-a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
s5 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i32 a -> a -> a
forall a. Num a => a -> a -> a
* a
s2 a -> a -> a
forall a. Num a => a -> a -> a
- a
i33 a -> a -> a
forall a. Num a => a -> a -> a
* a
s1)
(a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
s5 a -> a -> a
forall a. Num a => a -> a -> a
- a
i22 a -> a -> a
forall a. Num a => a -> a -> a
* a
s2 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i23 a -> a -> a
forall a. Num a => a -> a -> a
* a
s1))
(a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 (a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
c4 a -> a -> a
forall a. Num a => a -> a -> a
- a
i11 a -> a -> a
forall a. Num a => a -> a -> a
* a
c2 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i13 a -> a -> a
forall a. Num a => a -> a -> a
* a
c0)
(-a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
c4 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i01 a -> a -> a
forall a. Num a => a -> a -> a
* a
c2 a -> a -> a
forall a. Num a => a -> a -> a
- a
i03 a -> a -> a
forall a. Num a => a -> a -> a
* a
c0)
(a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
s4 a -> a -> a
forall a. Num a => a -> a -> a
- a
i31 a -> a -> a
forall a. Num a => a -> a -> a
* a
s2 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i33 a -> a -> a
forall a. Num a => a -> a -> a
* a
s0)
(-a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
s4 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i21 a -> a -> a
forall a. Num a => a -> a -> a
* a
s2 a -> a -> a
forall a. Num a => a -> a -> a
- a
i23 a -> a -> a
forall a. Num a => a -> a -> a
* a
s0))
(a -> a -> a -> a -> V4 a
forall a. a -> a -> a -> a -> V4 a
V4 (-a
i10 a -> a -> a
forall a. Num a => a -> a -> a
* a
c3 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i11 a -> a -> a
forall a. Num a => a -> a -> a
* a
c1 a -> a -> a
forall a. Num a => a -> a -> a
- a
i12 a -> a -> a
forall a. Num a => a -> a -> a
* a
c0)
(a
i00 a -> a -> a
forall a. Num a => a -> a -> a
* a
c3 a -> a -> a
forall a. Num a => a -> a -> a
- a
i01 a -> a -> a
forall a. Num a => a -> a -> a
* a
c1 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i02 a -> a -> a
forall a. Num a => a -> a -> a
* a
c0)
(-a
i30 a -> a -> a
forall a. Num a => a -> a -> a
* a
s3 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i31 a -> a -> a
forall a. Num a => a -> a -> a
* a
s1 a -> a -> a
forall a. Num a => a -> a -> a
- a
i32 a -> a -> a
forall a. Num a => a -> a -> a
* a
s0)
(a
i20 a -> a -> a
forall a. Num a => a -> a -> a
* a
s3 a -> a -> a
forall a. Num a => a -> a -> a
- a
i21 a -> a -> a
forall a. Num a => a -> a -> a
* a
s1 a -> a -> a
forall a. Num a => a -> a -> a
+ a
i22 a -> a -> a
forall a. Num a => a -> a -> a
* a
s0))
{-# INLINE inv44 #-}
#if MIN_VERSION_base(4,8,0)
lu :: ( Num a
, Fractional a
, Foldable m
, Traversable m
, Applicative m
, Additive m
, Ixed (m a)
, Ixed (m (m a))
, i ~ Index (m a)
, i ~ Index (m (m a))
, Eq i
, Integral i
, a ~ IxValue (m a)
, m a ~ IxValue (m (m a))
, Num (m a)
)
=> m (m a)
-> (m (m a), m (m a))
lu :: m (m a) -> (m (m a), m (m a))
lu m (m a)
a =
let n :: i
n = Int -> i
forall a b. (Integral a, Num b) => a -> b
fromIntegral (m (m a) -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length m (m a)
a)
initU :: m (m a)
initU = m (m a)
forall a (t :: * -> *).
(Num a, Traversable t, Applicative t) =>
t (t a)
identity
initL :: m (m a)
initL = m (m a)
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero
buildLVal :: i -> i -> m (m a) -> m (m a) -> m (m a)
buildLVal !i
i !i
j !m (m a)
l !m (m a)
u =
let go :: i -> a -> a
go !i
k !a
s
| i
k i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
j = a
s
| Bool
otherwise = i -> a -> a
go (i
ki -> i -> i
forall a. Num a => a -> a -> a
+i
1)
( a
s
a -> a -> a
forall a. Num a => a -> a -> a
+ ( (m (m a)
l m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
i m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
k)
a -> a -> a
forall a. Num a => a -> a -> a
* (m (m a)
u m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
k m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
j)
)
)
s' :: a
s' = i -> a -> a
go i
0 a
0
in m (m a)
l m (m a) -> (m (m a) -> m (m a)) -> m (m a)
forall a b. a -> (a -> b) -> b
& (Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
i ((m a -> Identity (m a)) -> m (m a) -> Identity (m (m a)))
-> ((a -> Identity a) -> m a -> Identity (m a))
-> (a -> Identity a)
-> m (m a)
-> Identity (m (m a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
j) ((a -> Identity a) -> m (m a) -> Identity (m (m a)))
-> a -> m (m a) -> m (m a)
forall s t a b. ASetter s t a b -> b -> s -> t
.~ ((m (m a)
a m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
i m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
j) a -> a -> a
forall a. Num a => a -> a -> a
- a
s')
buildL :: i -> i -> m (m a) -> m (m a) -> m (m a)
buildL !i
i !i
j !m (m a)
l !m (m a)
u
| i
i i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
n = m (m a)
l
| Bool
otherwise = i -> i -> m (m a) -> m (m a) -> m (m a)
buildL (i
ii -> i -> i
forall a. Num a => a -> a -> a
+i
1) i
j (i -> i -> m (m a) -> m (m a) -> m (m a)
buildLVal i
i i
j m (m a)
l m (m a)
u) m (m a)
u
buildUVal :: i -> i -> m (m a) -> m (m a) -> m (m a)
buildUVal !i
i !i
j !m (m a)
l !m (m a)
u =
let go :: i -> a -> a
go !i
k !a
s
| i
k i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
j = a
s
| Bool
otherwise = i -> a -> a
go (i
ki -> i -> i
forall a. Num a => a -> a -> a
+i
1)
( a
s
a -> a -> a
forall a. Num a => a -> a -> a
+ ( (m (m a)
l m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
j m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
k)
a -> a -> a
forall a. Num a => a -> a -> a
* (m (m a)
u m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
k m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i)
)
)
s' :: a
s' = i -> a -> a
go i
0 a
0
in m (m a)
u m (m a) -> (m (m a) -> m (m a)) -> m (m a)
forall a b. a -> (a -> b) -> b
& (Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
j ((m a -> Identity (m a)) -> m (m a) -> Identity (m (m a)))
-> ((a -> Identity a) -> m a -> Identity (m a))
-> (a -> Identity a)
-> m (m a)
-> Identity (m (m a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i) ((a -> Identity a) -> m (m a) -> Identity (m (m a)))
-> a -> m (m a) -> m (m a)
forall s t a b. ASetter s t a b -> b -> s -> t
.~ ( ((m (m a)
a m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
j m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i) a -> a -> a
forall a. Num a => a -> a -> a
- a
s')
a -> a -> a
forall a. Fractional a => a -> a -> a
/ (m (m a)
l m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
j m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
j)
)
buildU :: i -> i -> m (m a) -> m (m a) -> m (m a)
buildU !i
i !i
j !m (m a)
l !m (m a)
u
| i
i i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
n = m (m a)
u
| Bool
otherwise = i -> i -> m (m a) -> m (m a) -> m (m a)
buildU (i
ii -> i -> i
forall a. Num a => a -> a -> a
+i
1) i
j m (m a)
l (i -> i -> m (m a) -> m (m a) -> m (m a)
buildUVal i
i i
j m (m a)
l m (m a)
u)
buildLU :: i -> m (m a) -> m (m a) -> (m (m a), m (m a))
buildLU !i
j !m (m a)
l !m (m a)
u
| i
j i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
n = (m (m a)
l, m (m a)
u)
| Bool
otherwise =
let l' :: m (m a)
l' = i -> i -> m (m a) -> m (m a) -> m (m a)
buildL i
j i
j m (m a)
l m (m a)
u
u' :: m (m a)
u' = i -> i -> m (m a) -> m (m a) -> m (m a)
buildU i
j i
j m (m a)
l' m (m a)
u
in i -> m (m a) -> m (m a) -> (m (m a), m (m a))
buildLU (i
ji -> i -> i
forall a. Num a => a -> a -> a
+i
1) m (m a)
l' m (m a)
u'
in i -> m (m a) -> m (m a) -> (m (m a), m (m a))
buildLU i
0 m (m a)
initL m (m a)
initU
luFinite :: ( Num a
, Fractional a
, Functor m
, Finite m
, n ~ Size m
, KnownNat n
, Num (m a)
)
=> m (m a)
-> (m (m a), m (m a))
luFinite :: m (m a) -> (m (m a), m (m a))
luFinite m (m a)
a =
(V n (V n a) -> m (m a))
-> (V n (V n a) -> m (m a))
-> (V n (V n a), V n (V n a))
-> (m (m a), m (m a))
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap ((V n a -> m a) -> m (V n a) -> m (m a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap V n a -> m a
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV (m (V n a) -> m (m a))
-> (V n (V n a) -> m (V n a)) -> V n (V n a) -> m (m a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. V n (V n a) -> m (V n a)
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV)
((V n a -> m a) -> m (V n a) -> m (m a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap V n a -> m a
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV (m (V n a) -> m (m a))
-> (V n (V n a) -> m (V n a)) -> V n (V n a) -> m (m a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. V n (V n a) -> m (V n a)
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV)
(V n (V n a) -> (V n (V n a), V n (V n a))
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Traversable m, Applicative m,
Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a),
i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a),
m a ~ IxValue (m (m a)), Num (m a)) =>
m (m a) -> (m (m a), m (m a))
lu ((m a -> V n a) -> V n (m a) -> V n (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m a -> V n a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV (m (m a) -> V (Size m) (m a)
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV m (m a)
a)))
forwardSub :: ( Num a
, Fractional a
, Foldable m
, Additive m
, Ixed (m a)
, Ixed (m (m a))
, i ~ Index (m a)
, i ~ Index (m (m a))
, Eq i
, Ord i
, Integral i
, a ~ IxValue (m a)
, m a ~ IxValue (m (m a))
)
=> m (m a)
-> m a
-> m a
forwardSub :: m (m a) -> m a -> m a
forwardSub m (m a)
a m a
b =
let n :: i
n = Int -> i
forall a b. (Integral a, Num b) => a -> b
fromIntegral (m a -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length m a
b)
initX :: m a
initX = m a
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero
coeff :: i -> i -> a -> m a -> a
coeff !i
i !i
j !a
s !m a
x
| i
j i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
i = a
s
| Bool
otherwise = i -> i -> a -> m a -> a
coeff i
i (i
ji -> i -> i
forall a. Num a => a -> a -> a
+i
1) (a
s a -> a -> a
forall a. Num a => a -> a -> a
+ ((m (m a)
a m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
i m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
j) a -> a -> a
forall a. Num a => a -> a -> a
* (m a
x m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
j))) m a
x
go :: i -> m a -> m a
go !i
i !m a
x
| i
i i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
n = m a
x
| Bool
otherwise = i -> m a -> m a
go (i
i i -> i -> i
forall a. Num a => a -> a -> a
+ i
1) (m a
x m a -> (m a -> m a) -> m a
forall a b. a -> (a -> b) -> b
& Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i ((a -> Identity a) -> m a -> Identity (m a)) -> a -> m a -> m a
forall s t a b. ASetter s t a b -> b -> s -> t
.~ ( ((m a
b m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i) a -> a -> a
forall a. Num a => a -> a -> a
- i -> i -> a -> m a -> a
coeff i
i i
0 a
0 m a
x)
a -> a -> a
forall a. Fractional a => a -> a -> a
/ (m (m a)
a m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
i m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i)
))
in i -> m a -> m a
go i
0 m a
initX
forwardSubFinite :: ( Num a
, Fractional a
, Foldable m
, n ~ Size m
, KnownNat n
, Additive m
, Finite m
)
=> m (m a)
-> m a
-> m a
forwardSubFinite :: m (m a) -> m a -> m a
forwardSubFinite m (m a)
a m a
b = V (Size m) a -> m a
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV (V n (V n a) -> V n a -> V n a
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Additive m, Ixed (m a),
Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i,
Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) =>
m (m a) -> m a -> m a
forwardSub ((m a -> V n a) -> V n (m a) -> V n (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m a -> V n a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV (m (m a) -> V (Size m) (m a)
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV m (m a)
a)) (m a -> V (Size m) a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV m a
b))
backwardSub :: ( Num a
, Fractional a
, Foldable m
, Additive m
, Ixed (m a)
, Ixed (m (m a))
, i ~ Index (m a)
, i ~ Index (m (m a))
, Eq i
, Ord i
, Integral i
, a ~ IxValue (m a)
, m a ~ IxValue (m (m a))
)
=> m (m a)
-> m a
-> m a
backwardSub :: m (m a) -> m a -> m a
backwardSub m (m a)
a m a
b =
let n :: i
n = Int -> i
forall a b. (Integral a, Num b) => a -> b
fromIntegral (m a -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length m a
b)
initX :: m a
initX = m a
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero
coeff :: i -> i -> a -> m a -> a
coeff !i
i !i
j !a
s !m a
x
| i
j i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
n = a
s
| Bool
otherwise = i -> i -> a -> m a -> a
coeff i
i
(i
ji -> i -> i
forall a. Num a => a -> a -> a
+i
1)
(a
s a -> a -> a
forall a. Num a => a -> a -> a
+ ((m (m a)
a m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
i m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
j) a -> a -> a
forall a. Num a => a -> a -> a
* (m a
x m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
j)))
m a
x
go :: i -> m a -> m a
go !i
i !m a
x
| i
i i -> i -> Bool
forall a. Ord a => a -> a -> Bool
< i
0 = m a
x
| Bool
otherwise = i -> m a -> m a
go (i
ii -> i -> i
forall a. Num a => a -> a -> a
-i
1)
(m a
x m a -> (m a -> m a) -> m a
forall a b. a -> (a -> b) -> b
& Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i ((a -> Identity a) -> m a -> Identity (m a)) -> a -> m a -> m a
forall s t a b. ASetter s t a b -> b -> s -> t
.~ ( ((m a
b m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i) a -> a -> a
forall a. Num a => a -> a -> a
- i -> i -> a -> m a -> a
coeff i
i (i
ii -> i -> i
forall a. Num a => a -> a -> a
+i
1) a
0 m a
x)
a -> a -> a
forall a. Fractional a => a -> a -> a
/ (m (m a)
a m (m a) -> Getting (Endo (m a)) (m (m a)) (m a) -> m a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
i m a -> Getting (Endo a) (m a) a -> a
forall s a. HasCallStack => s -> Getting (Endo a) s a -> a
^?! Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i)
))
in i -> m a -> m a
go (i
ni -> i -> i
forall a. Num a => a -> a -> a
-i
1) m a
initX
backwardSubFinite :: ( Num a
, Fractional a
, Foldable m
, n ~ Size m
, KnownNat n
, Additive m
, Finite m
)
=> m (m a)
-> m a
-> m a
backwardSubFinite :: m (m a) -> m a -> m a
backwardSubFinite m (m a)
a m a
b = V (Size m) a -> m a
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV (V n (V n a) -> V n a -> V n a
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Additive m, Ixed (m a),
Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i,
Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) =>
m (m a) -> m a -> m a
backwardSub ((m a -> V n a) -> V n (m a) -> V n (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m a -> V n a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV (m (m a) -> V (Size m) (m a)
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV m (m a)
a)) (m a -> V (Size m) a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV m a
b))
luSolve :: ( Num a
, Fractional a
, Foldable m
, Traversable m
, Applicative m
, Additive m
, Ixed (m a)
, Ixed (m (m a))
, i ~ Index (m a)
, i ~ Index (m (m a))
, Eq i
, Integral i
, a ~ IxValue (m a)
, m a ~ IxValue (m (m a))
, Num (m a)
)
=> m (m a)
-> m a
-> m a
luSolve :: m (m a) -> m a -> m a
luSolve m (m a)
a m a
b =
let (m (m a)
l, m (m a)
u) = m (m a) -> (m (m a), m (m a))
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Traversable m, Applicative m,
Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a),
i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a),
m a ~ IxValue (m (m a)), Num (m a)) =>
m (m a) -> (m (m a), m (m a))
lu m (m a)
a
in m (m a) -> m a -> m a
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Additive m, Ixed (m a),
Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i,
Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) =>
m (m a) -> m a -> m a
backwardSub m (m a)
u (m (m a) -> m a -> m a
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Additive m, Ixed (m a),
Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i,
Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) =>
m (m a) -> m a -> m a
forwardSub m (m a)
l m a
b)
luSolveFinite :: ( Num a
, Fractional a
, Functor m
, Finite m
, n ~ Size m
, KnownNat n
, Num (m a)
)
=> m (m a)
-> m a
-> m a
luSolveFinite :: m (m a) -> m a -> m a
luSolveFinite m (m a)
a m a
b = V (Size m) a -> m a
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV (V n (V n a) -> V n a -> V n a
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Traversable m, Applicative m,
Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a),
i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a),
m a ~ IxValue (m (m a)), Num (m a)) =>
m (m a) -> m a -> m a
luSolve ((m a -> V n a) -> V n (m a) -> V n (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m a -> V n a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV (m (m a) -> V (Size m) (m a)
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV m (m a)
a)) (m a -> V (Size m) a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV m a
b))
luInv :: ( Num a
, Fractional a
, Foldable m
, Traversable m
, Applicative m
, Additive m
, Distributive m
, Ixed (m a)
, Ixed (m (m a))
, i ~ Index (m a)
, i ~ Index (m (m a))
, Eq i
, Integral i
, a ~ IxValue (m a)
, m a ~ IxValue (m (m a))
, Num (m a)
)
=> m (m a)
-> m (m a)
luInv :: m (m a) -> m (m a)
luInv m (m a)
a =
let n :: i
n = Int -> i
forall a b. (Integral a, Num b) => a -> b
fromIntegral (m (m a) -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length m (m a)
a)
initA' :: m (m a)
initA' = m (m a)
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero
(m (m a)
l, m (m a)
u) = m (m a) -> (m (m a), m (m a))
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Traversable m, Applicative m,
Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a),
i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a),
m a ~ IxValue (m (m a)), Num (m a)) =>
m (m a) -> (m (m a), m (m a))
lu m (m a)
a
go :: i -> m (m a) -> m (m a)
go !i
i !m (m a)
a'
| i
i i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
n = m (m a)
a'
| Bool
otherwise = let e :: m a
e = m a
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero m a -> (m a -> m a) -> m a
forall a b. a -> (a -> b) -> b
& Index (m a) -> Traversal' (m a) (IxValue (m a))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m a)
i ((a -> Identity a) -> m a -> Identity (m a)) -> a -> m a -> m a
forall s t a b. ASetter s t a b -> b -> s -> t
.~ a
1
a'r :: m a
a'r = m (m a) -> m a -> m a
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Additive m, Ixed (m a),
Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i,
Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) =>
m (m a) -> m a -> m a
backwardSub m (m a)
u (m (m a) -> m a -> m a
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Additive m, Ixed (m a),
Ixed (m (m a)), i ~ Index (m a), i ~ Index (m (m a)), Eq i, Ord i,
Integral i, a ~ IxValue (m a), m a ~ IxValue (m (m a))) =>
m (m a) -> m a -> m a
forwardSub m (m a)
l m a
e)
in i -> m (m a) -> m (m a)
go (i
ii -> i -> i
forall a. Num a => a -> a -> a
+i
1) (m (m a)
a' m (m a) -> (m (m a) -> m (m a)) -> m (m a)
forall a b. a -> (a -> b) -> b
& Index (m (m a)) -> Traversal' (m (m a)) (IxValue (m (m a)))
forall m. Ixed m => Index m -> Traversal' m (IxValue m)
ix i
Index (m (m a))
i ((m a -> Identity (m a)) -> m (m a) -> Identity (m (m a)))
-> m a -> m (m a) -> m (m a)
forall s t a b. ASetter s t a b -> b -> s -> t
.~ m a
a'r)
in m (m a) -> m (m a)
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
transpose (i -> m (m a) -> m (m a)
go i
0 m (m a)
initA')
luInvFinite :: ( Num a
, Fractional a
, Functor m
, Finite m
, n ~ Size m
, KnownNat n
, Num (m a)
)
=> m (m a)
-> m (m a)
luInvFinite :: m (m a) -> m (m a)
luInvFinite m (m a)
a = (V n a -> m a) -> m (V n a) -> m (m a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap V n a -> m a
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV (V (Size m) (V n a) -> m (V n a)
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV (V n (V n a) -> V n (V n a)
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Traversable m, Applicative m,
Additive m, Distributive m, Ixed (m a), Ixed (m (m a)),
i ~ Index (m a), i ~ Index (m (m a)), Eq i, Integral i,
a ~ IxValue (m a), m a ~ IxValue (m (m a)), Num (m a)) =>
m (m a) -> m (m a)
luInv ((m a -> V n a) -> V n (m a) -> V n (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m a -> V n a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV (m (m a) -> V (Size m) (m a)
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV m (m a)
a))))
luDet :: ( Num a
, Fractional a
, Foldable m
, Traversable m
, Applicative m
, Additive m
, Trace m
, Ixed (m a)
, Ixed (m (m a))
, i ~ Index (m a)
, i ~ Index (m (m a))
, Eq i
, Integral i
, a ~ IxValue (m a)
, m a ~ IxValue (m (m a))
, Num (m a)
)
=> m (m a)
-> a
luDet :: m (m a) -> a
luDet m (m a)
a =
let (m (m a)
l, m (m a)
u) = m (m a) -> (m (m a), m (m a))
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Traversable m, Applicative m,
Additive m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a),
i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a),
m a ~ IxValue (m (m a)), Num (m a)) =>
m (m a) -> (m (m a), m (m a))
lu m (m a)
a
p :: m a -> a
p = (a -> a -> a) -> a -> m a -> a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl a -> a -> a
forall a. Num a => a -> a -> a
(*) a
1
in (m a -> a
p (m (m a) -> m a
forall (m :: * -> *) a. Trace m => m (m a) -> m a
diagonal m (m a)
l)) a -> a -> a
forall a. Num a => a -> a -> a
* (m a -> a
p (m (m a) -> m a
forall (m :: * -> *) a. Trace m => m (m a) -> m a
diagonal m (m a)
u))
luDetFinite :: ( Num a
, Fractional a
, Functor m
, Finite m
, n ~ Size m
, KnownNat n
, Num (m a)
)
=> m (m a)
-> a
luDetFinite :: m (m a) -> a
luDetFinite = V n (V n a) -> a
forall a (m :: * -> *) i.
(Num a, Fractional a, Foldable m, Traversable m, Applicative m,
Additive m, Trace m, Ixed (m a), Ixed (m (m a)), i ~ Index (m a),
i ~ Index (m (m a)), Eq i, Integral i, a ~ IxValue (m a),
m a ~ IxValue (m (m a)), Num (m a)) =>
m (m a) -> a
luDet (V n (V n a) -> a) -> (m (m a) -> V n (V n a)) -> m (m a) -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (m a -> V n a) -> V n (m a) -> V n (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap m a -> V n a
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV (V n (m a) -> V n (V n a))
-> (m (m a) -> V n (m a)) -> m (m a) -> V n (V n a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m (m a) -> V n (m a)
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV
#endif