{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE CPP #-}
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE DeriveGeneric #-}
#endif
#ifndef MIN_VERSION_vector
#define MIN_VERSION_vector(x,y,z) 1
#endif
#ifndef MIN_VERSION_transformers
#define MIN_VERSION_transformers(x,y,z) 1
#endif
module Linear.V4
( V4(..)
, vector, point, normalizePoint
, R1(..)
, R2(..)
, _yx
, R3(..)
, _xz, _yz, _zx, _zy
, _xzy, _yxz, _yzx, _zxy, _zyx
, R4(..)
, _xw, _yw, _zw, _wx, _wy, _wz
, _xyw, _xzw, _xwy, _xwz, _yxw, _yzw, _ywx, _ywz, _zxw, _zyw, _zwx, _zwy
, _wxy, _wxz, _wyx, _wyz, _wzx, _wzy
, _xywz, _xzyw, _xzwy, _xwyz, _xwzy, _yxzw , _yxwz, _yzxw, _yzwx, _ywxz
, _ywzx, _zxyw, _zxwy, _zyxw, _zywx, _zwxy, _zwyx, _wxyz, _wxzy, _wyxz
, _wyzx, _wzxy, _wzyx
, ex, ey, ez, ew
) where
import Control.Applicative
import Control.DeepSeq (NFData(rnf))
import Control.Monad (liftM)
import Control.Monad.Fix
import Control.Monad.Zip
import Control.Lens hiding ((<.>))
import Data.Binary as Binary
import Data.Bytes.Serial
import Data.Data
import Data.Distributive
import Data.Foldable
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.Rep
import Data.Hashable
import Data.Semigroup
import Data.Semigroup.Foldable
import Data.Serialize as Cereal
import Foreign.Ptr (castPtr)
import Foreign.Storable (Storable(..))
import GHC.Arr (Ix(..))
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706
import GHC.Generics (Generic1)
#endif
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed.Base as U
import Linear.Epsilon
import Linear.Metric
import Linear.V2
import Linear.V3
import Linear.Vector
{-# ANN module "HLint: ignore Reduce duplication" #-}
data V4 a = V4 !a !a !a !a deriving (Eq,Ord,Show,Read,Data,Typeable
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
,Generic
#endif
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706
,Generic1
#endif
)
instance Functor V4 where
fmap f (V4 a b c d) = V4 (f a) (f b) (f c) (f d)
{-# INLINE fmap #-}
a <$ _ = V4 a a a a
{-# INLINE (<$) #-}
instance Foldable V4 where
foldMap f (V4 a b c d) = f a `mappend` f b `mappend` f c `mappend` f d
{-# INLINE foldMap #-}
instance Traversable V4 where
traverse f (V4 a b c d) = V4 <$> f a <*> f b <*> f c <*> f d
{-# INLINE traverse #-}
instance Foldable1 V4 where
foldMap1 f (V4 a b c d) = f a <> f b <> f c <> f d
{-# INLINE foldMap1 #-}
instance Traversable1 V4 where
traverse1 f (V4 a b c d) = V4 <$> f a <.> f b <.> f c <.> f d
{-# INLINE traverse1 #-}
instance Applicative V4 where
pure a = V4 a a a a
{-# INLINE pure #-}
V4 a b c d <*> V4 e f g h = V4 (a e) (b f) (c g) (d h)
{-# INLINE (<*>) #-}
instance Apply V4 where
V4 a b c d <.> V4 e f g h = V4 (a e) (b f) (c g) (d h)
{-# INLINE (<.>) #-}
instance Additive V4 where
zero = pure 0
{-# INLINE zero #-}
liftU2 = liftA2
{-# INLINE liftU2 #-}
liftI2 = liftA2
{-# INLINE liftI2 #-}
instance Bind V4 where
V4 a b c d >>- f = V4 a' b' c' d' where
V4 a' _ _ _ = f a
V4 _ b' _ _ = f b
V4 _ _ c' _ = f c
V4 _ _ _ d' = f d
{-# INLINE (>>-) #-}
instance Monad V4 where
return a = V4 a a a a
{-# INLINE return #-}
V4 a b c d >>= f = V4 a' b' c' d' where
V4 a' _ _ _ = f a
V4 _ b' _ _ = f b
V4 _ _ c' _ = f c
V4 _ _ _ d' = f d
{-# INLINE (>>=) #-}
instance Num a => Num (V4 a) where
(+) = liftA2 (+)
{-# INLINE (+) #-}
(*) = liftA2 (*)
{-# INLINE (-) #-}
(-) = liftA2 (-)
{-# INLINE (*) #-}
negate = fmap negate
{-# INLINE negate #-}
abs = fmap abs
{-# INLINE abs #-}
signum = fmap signum
{-# INLINE signum #-}
fromInteger = pure . fromInteger
{-# INLINE fromInteger #-}
instance Fractional a => Fractional (V4 a) where
recip = fmap recip
{-# INLINE recip #-}
(/) = liftA2 (/)
{-# INLINE (/) #-}
fromRational = pure . fromRational
{-# INLINE fromRational #-}
instance Floating a => Floating (V4 a) where
pi = pure pi
{-# INLINE pi #-}
exp = fmap exp
{-# INLINE exp #-}
sqrt = fmap sqrt
{-# INLINE sqrt #-}
log = fmap log
{-# INLINE log #-}
(**) = liftA2 (**)
{-# INLINE (**) #-}
logBase = liftA2 logBase
{-# INLINE logBase #-}
sin = fmap sin
{-# INLINE sin #-}
tan = fmap tan
{-# INLINE tan #-}
cos = fmap cos
{-# INLINE cos #-}
asin = fmap asin
{-# INLINE asin #-}
atan = fmap atan
{-# INLINE atan #-}
acos = fmap acos
{-# INLINE acos #-}
sinh = fmap sinh
{-# INLINE sinh #-}
tanh = fmap tanh
{-# INLINE tanh #-}
cosh = fmap cosh
{-# INLINE cosh #-}
asinh = fmap asinh
{-# INLINE asinh #-}
atanh = fmap atanh
{-# INLINE atanh #-}
acosh = fmap acosh
{-# INLINE acosh #-}
instance Metric V4 where
dot (V4 a b c d) (V4 e f g h) = a * e + b * f + c * g + d * h
{-# INLINE dot #-}
instance Distributive V4 where
distribute f = V4 (fmap (\(V4 x _ _ _) -> x) f)
(fmap (\(V4 _ y _ _) -> y) f)
(fmap (\(V4 _ _ z _) -> z) f)
(fmap (\(V4 _ _ _ w) -> w) f)
{-# INLINE distribute #-}
instance Hashable a => Hashable (V4 a) where
hashWithSalt s (V4 a b c d) = s `hashWithSalt` a `hashWithSalt` b `hashWithSalt` c `hashWithSalt` d
{-# INLINE hashWithSalt #-}
class R3 t => R4 t where
_w :: Lens' (t a) a
_xyzw :: Lens' (t a) (V4 a)
_xw, _yw, _zw, _wx, _wy, _wz :: R4 t => Lens' (t a) (V2 a)
_xw f = _xyzw $ \(V4 a b c d) -> f (V2 a d) <&> \(V2 a' d') -> V4 a' b c d'
{-# INLINE _xw #-}
_yw f = _xyzw $ \(V4 a b c d) -> f (V2 b d) <&> \(V2 b' d') -> V4 a b' c d'
{-# INLINE _yw #-}
_zw f = _xyzw $ \(V4 a b c d) -> f (V2 c d) <&> \(V2 c' d') -> V4 a b c' d'
{-# INLINE _zw #-}
_wx f = _xyzw $ \(V4 a b c d) -> f (V2 d a) <&> \(V2 d' a') -> V4 a' b c d'
{-# INLINE _wx #-}
_wy f = _xyzw $ \(V4 a b c d) -> f (V2 d b) <&> \(V2 d' b') -> V4 a b' c d'
{-# INLINE _wy #-}
_wz f = _xyzw $ \(V4 a b c d) -> f (V2 d c) <&> \(V2 d' c') -> V4 a b c' d'
{-# INLINE _wz #-}
_xyw, _xzw, _xwy, _xwz, _yxw, _yzw, _ywx, _ywz, _zxw, _zyw, _zwx, _zwy, _wxy, _wxz, _wyx, _wyz, _wzx, _wzy :: R4 t => Lens' (t a) (V3 a)
_xyw f = _xyzw $ \(V4 a b c d) -> f (V3 a b d) <&> \(V3 a' b' d') -> V4 a' b' c d'
{-# INLINE _xyw #-}
_xzw f = _xyzw $ \(V4 a b c d) -> f (V3 a c d) <&> \(V3 a' c' d') -> V4 a' b c' d'
{-# INLINE _xzw #-}
_xwy f = _xyzw $ \(V4 a b c d) -> f (V3 a d b) <&> \(V3 a' d' b') -> V4 a' b' c d'
{-# INLINE _xwy #-}
_xwz f = _xyzw $ \(V4 a b c d) -> f (V3 a d c) <&> \(V3 a' d' c') -> V4 a' b c' d'
{-# INLINE _xwz #-}
_yxw f = _xyzw $ \(V4 a b c d) -> f (V3 b a d) <&> \(V3 b' a' d') -> V4 a' b' c d'
{-# INLINE _yxw #-}
_yzw f = _xyzw $ \(V4 a b c d) -> f (V3 b c d) <&> \(V3 b' c' d') -> V4 a b' c' d'
{-# INLINE _yzw #-}
_ywx f = _xyzw $ \(V4 a b c d) -> f (V3 b d a) <&> \(V3 b' d' a') -> V4 a' b' c d'
{-# INLINE _ywx #-}
_ywz f = _xyzw $ \(V4 a b c d) -> f (V3 b d c) <&> \(V3 b' d' c') -> V4 a b' c' d'
{-# INLINE _ywz #-}
_zxw f = _xyzw $ \(V4 a b c d) -> f (V3 c a d) <&> \(V3 c' a' d') -> V4 a' b c' d'
{-# INLINE _zxw #-}
_zyw f = _xyzw $ \(V4 a b c d) -> f (V3 c b d) <&> \(V3 c' b' d') -> V4 a b' c' d'
{-# INLINE _zyw #-}
_zwx f = _xyzw $ \(V4 a b c d) -> f (V3 c d a) <&> \(V3 c' d' a') -> V4 a' b c' d'
{-# INLINE _zwx #-}
_zwy f = _xyzw $ \(V4 a b c d) -> f (V3 c d b) <&> \(V3 c' d' b') -> V4 a b' c' d'
{-# INLINE _zwy #-}
_wxy f = _xyzw $ \(V4 a b c d) -> f (V3 d a b) <&> \(V3 d' a' b') -> V4 a' b' c d'
{-# INLINE _wxy #-}
_wxz f = _xyzw $ \(V4 a b c d) -> f (V3 d a c) <&> \(V3 d' a' c') -> V4 a' b c' d'
{-# INLINE _wxz #-}
_wyx f = _xyzw $ \(V4 a b c d) -> f (V3 d b a) <&> \(V3 d' b' a') -> V4 a' b' c d'
{-# INLINE _wyx #-}
_wyz f = _xyzw $ \(V4 a b c d) -> f (V3 d b c) <&> \(V3 d' b' c') -> V4 a b' c' d'
{-# INLINE _wyz #-}
_wzx f = _xyzw $ \(V4 a b c d) -> f (V3 d c a) <&> \(V3 d' c' a') -> V4 a' b c' d'
{-# INLINE _wzx #-}
_wzy f = _xyzw $ \(V4 a b c d) -> f (V3 d c b) <&> \(V3 d' c' b') -> V4 a b' c' d'
{-# INLINE _wzy #-}
_xywz, _xzyw, _xzwy, _xwyz, _xwzy, _yxzw , _yxwz, _yzxw, _yzwx, _ywxz
, _ywzx, _zxyw, _zxwy, _zyxw, _zywx, _zwxy, _zwyx, _wxyz, _wxzy, _wyxz
, _wyzx, _wzxy, _wzyx :: R4 t => Lens' (t a) (V4 a)
_xywz f = _xyzw $ \(V4 a b c d) -> f (V4 a b d c) <&> \(V4 a' b' d' c') -> V4 a' b' c' d'
{-# INLINE _xywz #-}
_xzyw f = _xyzw $ \(V4 a b c d) -> f (V4 a c b d) <&> \(V4 a' c' b' d') -> V4 a' b' c' d'
{-# INLINE _xzyw #-}
_xzwy f = _xyzw $ \(V4 a b c d) -> f (V4 a c d b) <&> \(V4 a' c' d' b') -> V4 a' b' c' d'
{-# INLINE _xzwy #-}
_xwyz f = _xyzw $ \(V4 a b c d) -> f (V4 a d b c) <&> \(V4 a' d' b' c') -> V4 a' b' c' d'
{-# INLINE _xwyz #-}
_xwzy f = _xyzw $ \(V4 a b c d) -> f (V4 a d c b) <&> \(V4 a' d' c' b') -> V4 a' b' c' d'
{-# INLINE _xwzy #-}
_yxzw f = _xyzw $ \(V4 a b c d) -> f (V4 b a c d) <&> \(V4 b' a' c' d') -> V4 a' b' c' d'
{-# INLINE _yxzw #-}
_yxwz f = _xyzw $ \(V4 a b c d) -> f (V4 b a d c) <&> \(V4 b' a' d' c') -> V4 a' b' c' d'
{-# INLINE _yxwz #-}
_yzxw f = _xyzw $ \(V4 a b c d) -> f (V4 b c a d) <&> \(V4 b' c' a' d') -> V4 a' b' c' d'
{-# INLINE _yzxw #-}
_yzwx f = _xyzw $ \(V4 a b c d) -> f (V4 b c d a) <&> \(V4 b' c' d' a') -> V4 a' b' c' d'
{-# INLINE _yzwx #-}
_ywxz f = _xyzw $ \(V4 a b c d) -> f (V4 b d a c) <&> \(V4 b' d' a' c') -> V4 a' b' c' d'
{-# INLINE _ywxz #-}
_ywzx f = _xyzw $ \(V4 a b c d) -> f (V4 b d c a) <&> \(V4 b' d' c' a') -> V4 a' b' c' d'
{-# INLINE _ywzx #-}
_zxyw f = _xyzw $ \(V4 a b c d) -> f (V4 c a b d) <&> \(V4 c' a' b' d') -> V4 a' b' c' d'
{-# INLINE _zxyw #-}
_zxwy f = _xyzw $ \(V4 a b c d) -> f (V4 c a d b) <&> \(V4 c' a' d' b') -> V4 a' b' c' d'
{-# INLINE _zxwy #-}
_zyxw f = _xyzw $ \(V4 a b c d) -> f (V4 c b a d) <&> \(V4 c' b' a' d') -> V4 a' b' c' d'
{-# INLINE _zyxw #-}
_zywx f = _xyzw $ \(V4 a b c d) -> f (V4 c b d a) <&> \(V4 c' b' d' a') -> V4 a' b' c' d'
{-# INLINE _zywx #-}
_zwxy f = _xyzw $ \(V4 a b c d) -> f (V4 c d a b) <&> \(V4 c' d' a' b') -> V4 a' b' c' d'
{-# INLINE _zwxy #-}
_zwyx f = _xyzw $ \(V4 a b c d) -> f (V4 c d b a) <&> \(V4 c' d' b' a') -> V4 a' b' c' d'
{-# INLINE _zwyx #-}
_wxyz f = _xyzw $ \(V4 a b c d) -> f (V4 d a b c) <&> \(V4 d' a' b' c') -> V4 a' b' c' d'
{-# INLINE _wxyz #-}
_wxzy f = _xyzw $ \(V4 a b c d) -> f (V4 d a c b) <&> \(V4 d' a' c' b') -> V4 a' b' c' d'
{-# INLINE _wxzy #-}
_wyxz f = _xyzw $ \(V4 a b c d) -> f (V4 d b a c) <&> \(V4 d' b' a' c') -> V4 a' b' c' d'
{-# INLINE _wyxz #-}
_wyzx f = _xyzw $ \(V4 a b c d) -> f (V4 d b c a) <&> \(V4 d' b' c' a') -> V4 a' b' c' d'
{-# INLINE _wyzx #-}
_wzxy f = _xyzw $ \(V4 a b c d) -> f (V4 d c a b) <&> \(V4 d' c' a' b') -> V4 a' b' c' d'
{-# INLINE _wzxy #-}
_wzyx f = _xyzw $ \(V4 a b c d) -> f (V4 d c b a) <&> \(V4 d' c' b' a') -> V4 a' b' c' d'
{-# INLINE _wzyx #-}
ew :: R4 t => E t
ew = E _w
instance R1 V4 where
_x f (V4 a b c d) = (\a' -> V4 a' b c d) <$> f a
{-# INLINE _x #-}
instance R2 V4 where
_y f (V4 a b c d) = (\b' -> V4 a b' c d) <$> f b
{-# INLINE _y #-}
_xy f (V4 a b c d) = (\(V2 a' b') -> V4 a' b' c d) <$> f (V2 a b)
{-# INLINE _xy #-}
instance R3 V4 where
_z f (V4 a b c d) = (\c' -> V4 a b c' d) <$> f c
{-# INLINE _z #-}
_xyz f (V4 a b c d) = (\(V3 a' b' c') -> V4 a' b' c' d) <$> f (V3 a b c)
{-# INLINE _xyz #-}
instance R4 V4 where
_w f (V4 a b c d) = V4 a b c <$> f d
{-# INLINE _w #-}
_xyzw = id
{-# INLINE _xyzw #-}
instance Storable a => Storable (V4 a) where
sizeOf _ = 4 * sizeOf (undefined::a)
{-# INLINE sizeOf #-}
alignment _ = alignment (undefined::a)
{-# INLINE alignment #-}
poke ptr (V4 x y z w) = do poke ptr' x
pokeElemOff ptr' 1 y
pokeElemOff ptr' 2 z
pokeElemOff ptr' 3 w
where ptr' = castPtr ptr
{-# INLINE poke #-}
peek ptr = V4 <$> peek ptr' <*> peekElemOff ptr' 1
<*> peekElemOff ptr' 2 <*> peekElemOff ptr' 3
where ptr' = castPtr ptr
{-# INLINE peek #-}
vector :: Num a => V3 a -> V4 a
vector (V3 a b c) = V4 a b c 0
{-# INLINE vector #-}
point :: Num a => V3 a -> V4 a
point (V3 a b c) = V4 a b c 1
{-# INLINE point #-}
normalizePoint :: Fractional a => V4 a -> V3 a
normalizePoint (V4 a b c w) = (1/w) *^ V3 a b c
{-# INLINE normalizePoint #-}
instance Epsilon a => Epsilon (V4 a) where
nearZero = nearZero . quadrance
{-# INLINE nearZero #-}
instance Ix a => Ix (V4 a) where
{-# SPECIALISE instance Ix (V4 Int) #-}
range (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) =
[V4 i1 i2 i3 i4 | i1 <- range (l1,u1)
, i2 <- range (l2,u2)
, i3 <- range (l3,u3)
, i4 <- range (l4,u4)
]
{-# INLINE range #-}
unsafeIndex (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) (V4 i1 i2 i3 i4) =
unsafeIndex (l4,u4) i4 + unsafeRangeSize (l4,u4) * (
unsafeIndex (l3,u3) i3 + unsafeRangeSize (l3,u3) * (
unsafeIndex (l2,u2) i2 + unsafeRangeSize (l2,u2) *
unsafeIndex (l1,u1) i1))
{-# INLINE unsafeIndex #-}
inRange (V4 l1 l2 l3 l4,V4 u1 u2 u3 u4) (V4 i1 i2 i3 i4) =
inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
inRange (l3,u3) i3 && inRange (l4,u4) i4
{-# INLINE inRange #-}
instance Representable V4 where
type Rep V4 = E V4
tabulate f = V4 (f ex) (f ey) (f ez) (f ew)
{-# INLINE tabulate #-}
index xs (E l) = view l xs
{-# INLINE index #-}
instance FunctorWithIndex (E V4) V4 where
imap f (V4 a b c d) = V4 (f ex a) (f ey b) (f ez c) (f ew d)
{-# INLINE imap #-}
instance FoldableWithIndex (E V4) V4 where
ifoldMap f (V4 a b c d) = f ex a `mappend` f ey b `mappend` f ez c `mappend` f ew d
{-# INLINE ifoldMap #-}
instance TraversableWithIndex (E V4) V4 where
itraverse f (V4 a b c d) = V4 <$> f ex a <*> f ey b <*> f ez c <*> f ew d
{-# INLINE itraverse #-}
type instance Index (V4 a) = E V4
type instance IxValue (V4 a) = a
instance Ixed (V4 a) where
ix = el
instance Each (V4 a) (V4 b) a b where
each = traverse
data instance U.Vector (V4 a) = V_V4 {-# UNPACK #-} !Int !(U.Vector a)
data instance U.MVector s (V4 a) = MV_V4 {-# UNPACK #-} !Int !(U.MVector s a)
instance U.Unbox a => U.Unbox (V4 a)
instance U.Unbox a => M.MVector U.MVector (V4 a) where
basicLength (MV_V4 n _) = n
basicUnsafeSlice m n (MV_V4 _ v) = MV_V4 n (M.basicUnsafeSlice (4*m) (4*n) v)
basicOverlaps (MV_V4 _ v) (MV_V4 _ u) = M.basicOverlaps v u
basicUnsafeNew n = liftM (MV_V4 n) (M.basicUnsafeNew (4*n))
basicUnsafeRead (MV_V4 _ v) i =
do let o = 4*i
x <- M.basicUnsafeRead v o
y <- M.basicUnsafeRead v (o+1)
z <- M.basicUnsafeRead v (o+2)
w <- M.basicUnsafeRead v (o+3)
return (V4 x y z w)
basicUnsafeWrite (MV_V4 _ v) i (V4 x y z w) =
do let o = 4*i
M.basicUnsafeWrite v o x
M.basicUnsafeWrite v (o+1) y
M.basicUnsafeWrite v (o+2) z
M.basicUnsafeWrite v (o+3) w
#if MIN_VERSION_vector(0,11,0)
basicInitialize (MV_V4 _ v) = M.basicInitialize v
#endif
instance U.Unbox a => G.Vector U.Vector (V4 a) where
basicUnsafeFreeze (MV_V4 n v) = liftM ( V_V4 n) (G.basicUnsafeFreeze v)
basicUnsafeThaw ( V_V4 n v) = liftM (MV_V4 n) (G.basicUnsafeThaw v)
basicLength ( V_V4 n _) = n
basicUnsafeSlice m n (V_V4 _ v) = V_V4 n (G.basicUnsafeSlice (4*m) (4*n) v)
basicUnsafeIndexM (V_V4 _ v) i =
do let o = 4*i
x <- G.basicUnsafeIndexM v o
y <- G.basicUnsafeIndexM v (o+1)
z <- G.basicUnsafeIndexM v (o+2)
w <- G.basicUnsafeIndexM v (o+3)
return (V4 x y z w)
instance MonadZip V4 where
mzipWith = liftA2
instance MonadFix V4 where
mfix f = V4 (let V4 a _ _ _ = f a in a)
(let V4 _ a _ _ = f a in a)
(let V4 _ _ a _ = f a in a)
(let V4 _ _ _ a = f a in a)
instance Bounded a => Bounded (V4 a) where
minBound = pure minBound
{-# INLINE minBound #-}
maxBound = pure maxBound
{-# INLINE maxBound #-}
instance NFData a => NFData (V4 a) where
rnf (V4 a b c d) = rnf a `seq` rnf b `seq` rnf c `seq` rnf d
instance Serial1 V4 where
serializeWith = traverse_
deserializeWith k = V4 <$> k <*> k <*> k <*> k
instance Serial a => Serial (V4 a) where
serialize = serializeWith serialize
deserialize = deserializeWith deserialize
instance Binary a => Binary (V4 a) where
put = serializeWith Binary.put
get = deserializeWith Binary.get
instance Serialize a => Serialize (V4 a) where
put = serializeWith Cereal.put
get = deserializeWith Cereal.get
#if (MIN_VERSION_transformers(0,5,0)) || !(MIN_VERSION_transformers(0,4,0))
instance Eq1 V4 where
liftEq k (V4 a b c d) (V4 e f g h) = k a e && k b f && k c g && k d h
instance Ord1 V4 where
liftCompare k (V4 a b c d) (V4 e f g h) = k a e `mappend` k b f `mappend` k c g `mappend` k d h
instance Read1 V4 where
liftReadsPrec k _ z = readParen (z > 10) $ \r ->
[ (V4 a b c d, r5)
| ("V4",r1) <- lex r
, (a,r2) <- k 11 r1
, (b,r3) <- k 11 r2
, (c,r4) <- k 11 r3
, (d,r5) <- k 11 r4
]
instance Show1 V4 where
liftShowsPrec f _ z (V4 a b c d) = showParen (z > 10) $
showString "V4 " . f 11 a . showChar ' ' . f 11 b . showChar ' ' . f 11 c . showChar ' ' . f 11 d
#else
instance Eq1 V4 where eq1 = (==)
instance Ord1 V4 where compare1 = compare
instance Show1 V4 where showsPrec1 = showsPrec
instance Read1 V4 where readsPrec1 = readsPrec
#endif