{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE CPP #-}
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE DeriveGeneric #-}
#endif
#ifndef MIN_VERSION_vector
#define MIN_VERSION_vector(x,y,z) 1
#endif
#ifndef MIN_VERSION_transformers
#define MIN_VERSION_transformers(x,y,z) 1
#endif
module Linear.V2
( V2(..)
, R1(..)
, R2(..)
, _yx
, ex, ey
, perp
, angle
, crossZ
) where
import Control.Applicative
import Control.DeepSeq (NFData(rnf))
import Control.Monad (liftM)
import Control.Monad.Fix
import Control.Monad.Zip
import Control.Lens hiding ((<.>))
import Data.Binary as Binary
import Data.Bytes.Serial
import Data.Data
import Data.Distributive
import Data.Foldable
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.Rep
import Data.Hashable
import Data.Semigroup
import Data.Semigroup.Foldable
import Data.Serialize as Cereal
import Foreign.Ptr (castPtr)
import Foreign.Storable (Storable(..))
import GHC.Arr (Ix(..))
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
import GHC.Generics (Generic)
#endif
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706
import GHC.Generics (Generic1)
#endif
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed.Base as U
import Linear.Metric
import Linear.Epsilon
import Linear.Vector
import Linear.V1 (R1(..),ex)
import Prelude hiding (sum)
data V2 a = V2 !a !a deriving
(Eq,Ord,Show,Read,Data,Typeable
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
,Generic
#endif
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706
,Generic1
#endif
)
instance Functor V2 where
fmap f (V2 a b) = V2 (f a) (f b)
{-# INLINE fmap #-}
a <$ _ = V2 a a
{-# INLINE (<$) #-}
instance Foldable V2 where
foldMap f (V2 a b) = f a `mappend` f b
{-# INLINE foldMap #-}
instance Traversable V2 where
traverse f (V2 a b) = V2 <$> f a <*> f b
{-# INLINE traverse #-}
instance Foldable1 V2 where
foldMap1 f (V2 a b) = f a <> f b
{-# INLINE foldMap1 #-}
instance Traversable1 V2 where
traverse1 f (V2 a b) = V2 <$> f a <.> f b
{-# INLINE traverse1 #-}
instance Apply V2 where
V2 a b <.> V2 d e = V2 (a d) (b e)
{-# INLINE (<.>) #-}
instance Applicative V2 where
pure a = V2 a a
{-# INLINE pure #-}
V2 a b <*> V2 d e = V2 (a d) (b e)
{-# INLINE (<*>) #-}
instance Hashable a => Hashable (V2 a) where
hashWithSalt s (V2 a b) = s `hashWithSalt` a `hashWithSalt` b
{-# INLINE hashWithSalt #-}
instance Additive V2 where
zero = pure 0
{-# INLINE zero #-}
liftU2 = liftA2
{-# INLINE liftU2 #-}
liftI2 = liftA2
{-# INLINE liftI2 #-}
instance Bind V2 where
V2 a b >>- f = V2 a' b' where
V2 a' _ = f a
V2 _ b' = f b
{-# INLINE (>>-) #-}
instance Monad V2 where
return a = V2 a a
{-# INLINE return #-}
V2 a b >>= f = V2 a' b' where
V2 a' _ = f a
V2 _ b' = f b
{-# INLINE (>>=) #-}
instance Num a => Num (V2 a) where
(+) = liftA2 (+)
{-# INLINE (+) #-}
(-) = liftA2 (-)
{-# INLINE (-) #-}
(*) = liftA2 (*)
{-# INLINE (*) #-}
negate = fmap negate
{-# INLINE negate #-}
abs = fmap abs
{-# INLINE abs #-}
signum = fmap signum
{-# INLINE signum #-}
fromInteger = pure . fromInteger
{-# INLINE fromInteger #-}
instance Fractional a => Fractional (V2 a) where
recip = fmap recip
{-# INLINE recip #-}
(/) = liftA2 (/)
{-# INLINE (/) #-}
fromRational = pure . fromRational
{-# INLINE fromRational #-}
instance Floating a => Floating (V2 a) where
pi = pure pi
{-# INLINE pi #-}
exp = fmap exp
{-# INLINE exp #-}
sqrt = fmap sqrt
{-# INLINE sqrt #-}
log = fmap log
{-# INLINE log #-}
(**) = liftA2 (**)
{-# INLINE (**) #-}
logBase = liftA2 logBase
{-# INLINE logBase #-}
sin = fmap sin
{-# INLINE sin #-}
tan = fmap tan
{-# INLINE tan #-}
cos = fmap cos
{-# INLINE cos #-}
asin = fmap asin
{-# INLINE asin #-}
atan = fmap atan
{-# INLINE atan #-}
acos = fmap acos
{-# INLINE acos #-}
sinh = fmap sinh
{-# INLINE sinh #-}
tanh = fmap tanh
{-# INLINE tanh #-}
cosh = fmap cosh
{-# INLINE cosh #-}
asinh = fmap asinh
{-# INLINE asinh #-}
atanh = fmap atanh
{-# INLINE atanh #-}
acosh = fmap acosh
{-# INLINE acosh #-}
instance Metric V2 where
dot (V2 a b) (V2 c d) = a * c + b * d
{-# INLINE dot #-}
class R1 t => R2 t where
_y :: Lens' (t a) a
_y = _xy._y
{-# INLINE _y #-}
_xy :: Lens' (t a) (V2 a)
_yx :: R2 t => Lens' (t a) (V2 a)
_yx f = _xy $ \(V2 a b) -> f (V2 b a) <&> \(V2 b' a') -> V2 a' b'
{-# INLINE _yx #-}
ey :: R2 t => E t
ey = E _y
instance R1 V2 where
_x f (V2 a b) = (`V2` b) <$> f a
{-# INLINE _x #-}
instance R2 V2 where
_y f (V2 a b) = V2 a <$> f b
{-# INLINE _y #-}
_xy = id
{-# INLINE _xy #-}
instance Distributive V2 where
distribute f = V2 (fmap (\(V2 x _) -> x) f) (fmap (\(V2 _ y) -> y) f)
{-# INLINE distribute #-}
perp :: Num a => V2 a -> V2 a
perp (V2 a b) = V2 (negate b) a
{-# INLINE perp #-}
instance Epsilon a => Epsilon (V2 a) where
nearZero = nearZero . quadrance
{-# INLINE nearZero #-}
instance Storable a => Storable (V2 a) where
sizeOf _ = 2 * sizeOf (undefined::a)
{-# INLINE sizeOf #-}
alignment _ = alignment (undefined::a)
{-# INLINE alignment #-}
poke ptr (V2 x y) = poke ptr' x >> pokeElemOff ptr' 1 y
where ptr' = castPtr ptr
{-# INLINE poke #-}
peek ptr = V2 <$> peek ptr' <*> peekElemOff ptr' 1
where ptr' = castPtr ptr
{-# INLINE peek #-}
instance Ix a => Ix (V2 a) where
{-# SPECIALISE instance Ix (V2 Int) #-}
range (V2 l1 l2,V2 u1 u2) =
[ V2 i1 i2 | i1 <- range (l1,u1), i2 <- range (l2,u2) ]
{-# INLINE range #-}
unsafeIndex (V2 l1 l2,V2 u1 u2) (V2 i1 i2) =
unsafeIndex (l1,u1) i1 * unsafeRangeSize (l2,u2) + unsafeIndex (l2,u2) i2
{-# INLINE unsafeIndex #-}
inRange (V2 l1 l2,V2 u1 u2) (V2 i1 i2) =
inRange (l1,u1) i1 && inRange (l2,u2) i2
{-# INLINE inRange #-}
instance Representable V2 where
type Rep V2 = E V2
tabulate f = V2 (f ex) (f ey)
{-# INLINE tabulate #-}
index xs (E l) = view l xs
{-# INLINE index #-}
instance FunctorWithIndex (E V2) V2 where
imap f (V2 a b) = V2 (f ex a) (f ey b)
{-# INLINE imap #-}
instance FoldableWithIndex (E V2) V2 where
ifoldMap f (V2 a b) = f ex a `mappend` f ey b
{-# INLINE ifoldMap #-}
instance TraversableWithIndex (E V2) V2 where
itraverse f (V2 a b) = V2 <$> f ex a <*> f ey b
{-# INLINE itraverse #-}
type instance Index (V2 a) = E V2
type instance IxValue (V2 a) = a
instance Ixed (V2 a) where
ix = el
{-# INLINE ix #-}
instance Each (V2 a) (V2 b) a b where
each = traverse
{-# INLINE each #-}
data instance U.Vector (V2 a) = V_V2 {-# UNPACK #-} !Int !(U.Vector a)
data instance U.MVector s (V2 a) = MV_V2 {-# UNPACK #-} !Int !(U.MVector s a)
instance U.Unbox a => U.Unbox (V2 a)
instance U.Unbox a => M.MVector U.MVector (V2 a) where
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicOverlaps #-}
{-# INLINE basicUnsafeNew #-}
{-# INLINE basicUnsafeRead #-}
{-# INLINE basicUnsafeWrite #-}
basicLength (MV_V2 n _) = n
basicUnsafeSlice m n (MV_V2 _ v) = MV_V2 n (M.basicUnsafeSlice (2*m) (2*n) v)
basicOverlaps (MV_V2 _ v) (MV_V2 _ u) = M.basicOverlaps v u
basicUnsafeNew n = liftM (MV_V2 n) (M.basicUnsafeNew (2*n))
basicUnsafeRead (MV_V2 _ v) i =
do let o = 2*i
x <- M.basicUnsafeRead v o
y <- M.basicUnsafeRead v (o+1)
return (V2 x y)
basicUnsafeWrite (MV_V2 _ v) i (V2 x y) =
do let o = 2*i
M.basicUnsafeWrite v o x
M.basicUnsafeWrite v (o+1) y
#if MIN_VERSION_vector(0,11,0)
basicInitialize (MV_V2 _ v) = M.basicInitialize v
{-# INLINE basicInitialize #-}
#endif
instance U.Unbox a => G.Vector U.Vector (V2 a) where
{-# INLINE basicUnsafeFreeze #-}
{-# INLINE basicUnsafeThaw #-}
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicUnsafeIndexM #-}
basicUnsafeFreeze (MV_V2 n v) = liftM ( V_V2 n) (G.basicUnsafeFreeze v)
basicUnsafeThaw ( V_V2 n v) = liftM (MV_V2 n) (G.basicUnsafeThaw v)
basicLength ( V_V2 n _) = n
basicUnsafeSlice m n (V_V2 _ v) = V_V2 n (G.basicUnsafeSlice (2*m) (2*n) v)
basicUnsafeIndexM (V_V2 _ v) i =
do let o = 2*i
x <- G.basicUnsafeIndexM v o
y <- G.basicUnsafeIndexM v (o+1)
return (V2 x y)
instance MonadZip V2 where
mzipWith = liftA2
instance MonadFix V2 where
mfix f = V2 (let V2 a _ = f a in a)
(let V2 _ a = f a in a)
angle :: Floating a => a -> V2 a
angle a = V2 (cos a) (sin a)
crossZ :: Num a => V2 a -> V2 a -> a
crossZ (V2 x1 y1) (V2 x2 y2) = x1*y2 - y1*x2
{-# INLINE crossZ #-}
instance Bounded a => Bounded (V2 a) where
minBound = pure minBound
{-# INLINE minBound #-}
maxBound = pure maxBound
{-# INLINE maxBound #-}
instance NFData a => NFData (V2 a) where
rnf (V2 a b) = rnf a `seq` rnf b
instance Serial1 V2 where
serializeWith = traverse_
deserializeWith k = V2 <$> k <*> k
instance Serial a => Serial (V2 a) where
serialize = serializeWith serialize
deserialize = deserializeWith deserialize
instance Binary a => Binary (V2 a) where
put = serializeWith Binary.put
get = deserializeWith Binary.get
instance Serialize a => Serialize (V2 a) where
put = serializeWith Cereal.put
get = deserializeWith Cereal.get
#if (MIN_VERSION_transformers(0,5,0)) || !(MIN_VERSION_transformers(0,4,0))
instance Eq1 V2 where
liftEq f (V2 a b) (V2 c d) = f a c && f b d
instance Ord1 V2 where
liftCompare f (V2 a b) (V2 c d) = f a c `mappend` f b d
instance Read1 V2 where
liftReadsPrec f _ = readsData $ readsBinaryWith f f "V2" V2
instance Show1 V2 where
liftShowsPrec f _ d (V2 a b) = showsBinaryWith f f "V2" d a b
#else
instance Eq1 V2 where eq1 = (==)
instance Ord1 V2 where compare1 = compare
instance Show1 V2 where showsPrec1 = showsPrec
instance Read1 V2 where readsPrec1 = readsPrec
#endif