| Safe Haskell | Safe |
|---|---|
| Language | Haskell98 |
Lens.Family2
Description
This is the main module for end-users of lens-families. If you are not building your own lenses or traversals, but just using functional references made by others, this is the only module you need.
Synopsis
- to :: (a -> b) -> Getter a a' b b'
- view :: FoldLike b a a' b b' -> a -> b
- (^.) :: a -> FoldLike b a a' b b' -> b
- folding :: Foldable f => (a -> f b) -> Fold a a' b b'
- views :: FoldLike r a a' b b' -> (b -> r) -> a -> r
- (^..) :: a -> Fold a a' b b' -> [b]
- (^?) :: a -> Fold a a' b b' -> Maybe b
- toListOf :: Fold a a' b b' -> a -> [b]
- allOf :: Fold a a' b b' -> (b -> Bool) -> a -> Bool
- anyOf :: Fold a a' b b' -> (b -> Bool) -> a -> Bool
- firstOf :: Fold a a' b b' -> a -> Maybe b
- lastOf :: Fold a a' b b' -> a -> Maybe b
- sumOf :: Num b => Fold a a' b b' -> a -> b
- productOf :: Num b => Fold a a' b b' -> a -> b
- lengthOf :: Num r => Fold a a' b b' -> a -> r
- nullOf :: Fold a a' b b' -> a -> Bool
- backwards :: LensLike (Backwards f) a a' b b' -> LensLike f a a' b b'
- over :: Setter a a' b b' -> (b -> b') -> a -> a'
- (%~) :: Setter a a' b b' -> (b -> b') -> a -> a'
- set :: Setter a a' b b' -> b' -> a -> a'
- (.~) :: Setter a a' b b' -> b' -> a -> a'
- (&) :: a -> (a -> b) -> b
- (+~) :: Num b => Setter' a b -> b -> a -> a
- (*~) :: Num b => Setter' a b -> b -> a -> a
- (-~) :: Num b => Setter' a b -> b -> a -> a
- (//~) :: Fractional b => Setter' a b -> b -> a -> a
- (&&~) :: Setter' a Bool -> Bool -> a -> a
- (||~) :: Setter' a Bool -> Bool -> a -> a
- (<>~) :: Monoid o => Setter' a o -> o -> a -> a
- type Lens a a' b b' = forall f. Functor f => LensLike f a a' b b'
- type Lens' a b = forall f. Functor f => LensLike' f a b
- type Traversal a a' b b' = forall f. Applicative f => LensLike f a a' b b'
- type Traversal' a b = forall f. Applicative f => LensLike' f a b
- type Setter a a' b b' = forall f. Identical f => LensLike f a a' b b'
- type Setter' a b = forall f. Identical f => LensLike' f a b
- type Getter a a' b b' = forall f. Phantom f => LensLike f a a' b b'
- type Getter' a b = forall f. Phantom f => LensLike' f a b
- type Fold a a' b b' = forall f. (Phantom f, Applicative f) => LensLike f a a' b b'
- type Fold' a b = forall f. (Phantom f, Applicative f) => LensLike' f a b
- type LensLike (f :: * -> *) a a' b b' = (b -> f b') -> a -> f a'
- type LensLike' (f :: * -> *) a b = (b -> f b) -> a -> f a
- type FoldLike r a a' b b' = LensLike (Constant r :: * -> *) a a' b b'
- type FoldLike' r a b = LensLike' (Constant r :: * -> *) a b
- data Constant a (b :: k) :: forall k. * -> k -> *
- class Functor f => Phantom (f :: * -> *)
- class Applicative f => Identical (f :: * -> *)
- class Functor f => Applicative (f :: * -> *)
- class Foldable (t :: * -> *)
- class Semigroup a => Monoid a
- data Backwards (f :: k -> *) (a :: k) :: forall k. (k -> *) -> k -> *
Lenses
This module provides ^. for accessing fields and .~ and %~ for setting and modifying fields.
Lenses are composed with . from the Prelude and id is the identity lens.
Lens composition in this library enjoys the following identities.
x^.l1.l2 === x^.l1^.l2
l1.l2 %~ f === l1 %~ l2 %~ f
The identity lens behaves as follows.
x^.id === x
id %~ f === f
The & operator, allows for a convenient way to sequence record updating:
record & l1 .~ value1 & l2 .~ value2
Lenses are implemented in van Laarhoven style.
Lenses have type and lens families have type Functor f => (b -> f b) -> a -> f a.Functor f => (b i -> f (b j)) -> a i -> f (a j)
Keep in mind that lenses and lens families can be used directly for functorial updates.
For example, _2 id gives you strength.
_2 id :: Functor f => (a, f b) -> f (a, b)
Here is an example of code that uses the Maybe functor to preserves sharing during update when possible.
-- | 'sharedUpdate' returns the *identical* object if the update doesn't change anything.
-- This is useful for preserving sharing.
sharedUpdate :: Eq b => LensLike' Maybe a b -> (b -> b) -> a -> a
sharedUpdate l f a = fromMaybe a (l f' a)
where
f' b | fb == b = Nothing
| otherwise = Just fb
where
fb = f bTraversals
^. can be used with traversals to access monoidal fields.
The result will be a mconcat of all the fields referenced.
The various fooOf functions can be used to access different monoidal summaries of some kinds of values.
^? can be used to access the first value of a traversal.
Nothing is returned when the traversal has no references.
^.. can be used with a traversals and will return a list of all fields referenced.
When .~ is used with a traversal, all referenced fields will be set to the same value, and when %~ is used with a traversal, all referenced fields will be modified with the same function.
Like lenses, traversals can be composed with ., and because every lens is automatically a traversal, lenses and traversals can be composed with . yielding a traversal.
Traversals are implemented in van Laarhoven style.
Traversals have type and traversal families have type Applicative f => (b -> f b) -> a -> f a.Applicative f => (b i -> f (b j)) -> a i -> f (a j)
For stock lenses and traversals, see Lens.Family2.Stock.
To build your own lenses and traversals, see Lens.Family2.Unchecked.
References:
Documentation
to :: (a -> b) -> Getter a a' b b' Source #
to promotes a projection function to a read-only lens called a getter.
To demote a lens to a projection function, use the section (^.l) or view l.
>>>(3 :+ 4, "example")^._1.to(abs)5.0 :+ 0.0
view :: FoldLike b a a' b b' -> a -> b #
view :: Getter a a' b b' -> a -> b
Demote a lens or getter to a projection function.
view :: Monoid b => Fold a a' b b' -> a -> b
Returns the monoidal summary of a traversal or a fold.
(^.) :: a -> FoldLike b a a' b b' -> b infixl 8 #
(^.) :: a -> Getter a a' b b' -> b
Access the value referenced by a getter or lens.
(^.) :: Monoid b => a -> Fold a a' b b' -> b
Access the monoidal summary referenced by a getter or lens.
folding :: Foldable f => (a -> f b) -> Fold a a' b b' Source #
folding promotes a "toList" function to a read-only traversal called a fold.
To demote a traversal or fold to a "toList" function use the section (^..l) or toListOf l.
views :: FoldLike r a a' b b' -> (b -> r) -> a -> r #
views :: Monoid r => Fold a a' b b' -> (b -> r) -> a -> r
Given a fold or traversal, return the foldMap of all the values using the given function.
views :: Getter a a' b b' -> (b -> r) -> a -> r
views is not particularly useful for getters or lenses, but given a getter or lens, it returns the referenced value passed through the given function.
views l f a = f (view l a)
(^..) :: a -> Fold a a' b b' -> [b] infixl 8 Source #
Returns a list of all of the referenced values in order.
toListOf :: Fold a a' b b' -> a -> [b] Source #
Returns a list of all of the referenced values in order.
allOf :: Fold a a' b b' -> (b -> Bool) -> a -> Bool Source #
Returns true if all of the referenced values satisfy the given predicate.
anyOf :: Fold a a' b b' -> (b -> Bool) -> a -> Bool Source #
Returns true if any of the referenced values satisfy the given predicate.
productOf :: Num b => Fold a a' b b' -> a -> b Source #
Returns the product of all the referenced values.
lengthOf :: Num r => Fold a a' b b' -> a -> r Source #
Counts the number of references in a traversal or fold for the input.
nullOf :: Fold a a' b b' -> a -> Bool Source #
Returns true if the number of references in the input is zero.
backwards :: LensLike (Backwards f) a a' b b' -> LensLike f a a' b b' #
backwards :: Traversal a a' b b' -> Traversal a a' b b' backwards :: Fold a a' b b' -> Fold a a' b b'
Given a traversal or fold, reverse the order that elements are traversed.
backwards :: Lens a a' b b' -> Lens a a' b b' backwards :: Getter a a' b b' -> Getter a a' b b' backwards :: Setter a a' b b' -> Setter a a' b b'
No effect on lenses, getters or setters.
over :: Setter a a' b b' -> (b -> b') -> a -> a' Source #
Demote a setter to a semantic editor combinator.
(.~) :: Setter a a' b b' -> b' -> a -> a' infixr 4 Source #
Set all referenced fields to the given value.
Pseudo-imperatives
(//~) :: Fractional b => Setter' a b -> b -> a -> a infixr 4 Source #
(<>~) :: Monoid o => Setter' a o -> o -> a -> a infixr 4 Source #
Monoidally append a value to all referenced fields.
Types
type Traversal a a' b b' = forall f. Applicative f => LensLike f a a' b b' Source #
type Traversal' a b = forall f. Applicative f => LensLike' f a b Source #
data Constant a (b :: k) :: forall k. * -> k -> * #
Constant functor.
Instances
class Functor f => Phantom (f :: * -> *) #
Minimal complete definition
coerce
Instances
| Phantom (Const a :: * -> *) | |
Defined in Lens.Family.Phantom | |
| Phantom f => Phantom (AlongsideLeft f a) | |
Defined in Lens.Family.Stock Methods coerce :: AlongsideLeft f a a0 -> AlongsideLeft f a b | |
| Phantom f => Phantom (AlongsideRight f a) | |
Defined in Lens.Family.Stock Methods coerce :: AlongsideRight f a a0 -> AlongsideRight f a b | |
| Phantom f => Phantom (Backwards f) | |
Defined in Lens.Family.Phantom | |
| Phantom (Constant a :: * -> *) | |
Defined in Lens.Family.Phantom | |
| (Phantom f, Functor g) => Phantom (Compose f g) | |
Defined in Lens.Family.Phantom | |
class Applicative f => Identical (f :: * -> *) #
Minimal complete definition
extract
Instances
| Identical Identity | |
Defined in Lens.Family.Identical | |
| Identical f => Identical (Backwards f) | |
Defined in Lens.Family.Identical | |
| (Identical f, Identical g) => Identical (Compose f g) | |
Defined in Lens.Family.Identical | |
Re-exports
class Functor f => Applicative (f :: * -> *) #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*> or liftA2. If it defines both, then they must behave
the same as their default definitions:
(<*>) =liftA2id
liftA2f x y = f<$>x<*>y
Further, any definition must satisfy the following:
- identity
pureid<*>v = v- composition
pure(.)<*>u<*>v<*>w = u<*>(v<*>w)- homomorphism
puref<*>purex =pure(f x)- interchange
u
<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor instance for f will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2p (liftA2q u v) =liftA2f u .liftA2g v
If f is also a Monad, it should satisfy
(which implies that pure and <*> satisfy the applicative functor laws).
Instances
| Applicative [] | Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Applicative IO | Since: base-2.1 |
| Applicative Par1 | Since: base-4.9.0.0 |
| Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN
= 'ZipList' (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Applicative Identity | Since: base-4.8.0.0 |
| Applicative First | |
| Applicative Last | |
| Applicative Dual | Since: base-4.8.0.0 |
| Applicative Sum | Since: base-4.8.0.0 |
| Applicative Product | Since: base-4.8.0.0 |
| Applicative ReadP | Since: base-4.6.0.0 |
| Applicative NonEmpty | Since: base-4.9.0.0 |
| Applicative P | Since: base-4.5.0.0 |
| Applicative (Either e) | Since: base-3.0 |
| Applicative (U1 :: * -> *) | Since: base-4.9.0.0 |
| Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)Since: base-2.1 |
| Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Applicative (Proxy :: * -> *) | Since: base-4.7.0.0 |
| Applicative m => Applicative (ListT m) | |
| (Functor m, Monad m) => Applicative (MaybeT m) | |
| Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Monoid m => Applicative (Const m :: * -> *) | Since: base-2.0.1 |
| Applicative f => Applicative (Alt f) | |
| (Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
| (Monoid c, Monad m) => Applicative (Zooming m c) | |
Defined in Lens.Family.State.Zoom | |
| Applicative f => Applicative (Backwards f) | Apply |
Defined in Control.Applicative.Backwards | |
| (Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
| (Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
| Monoid a => Applicative (Constant a :: * -> *) | |
Defined in Data.Functor.Constant | |
| Applicative m => Applicative (IdentityT m) | |
Defined in Control.Monad.Trans.Identity | |
| (Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
| (Functor m, Monad m) => Applicative (ExceptT e m) | |
Defined in Control.Monad.Trans.Except | |
| (Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
| (Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Strict | |
| Applicative ((->) a :: * -> *) | Since: base-2.1 |
| (Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
| Applicative (ContT r m) | |
Defined in Control.Monad.Trans.Cont | |
| Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
| Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
| (Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
| (Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
| (Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
| (Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Lazy | |
| (Monoid w, Functor m, Monad m) => Applicative (RWST r w s m) | |
Defined in Control.Monad.Trans.RWS.Strict | |
class Foldable (t :: * -> *) #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum, product, maximum, and minimum should all be essentially
equivalent to foldMap forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Instances
| Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Foldable Par1 | |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
| Foldable ZipList | |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
| Foldable IntMap | |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
| Foldable Set | |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Foldable (V1 :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
| Foldable (U1 :: * -> *) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
| Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
| Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
| Foldable (Proxy :: * -> *) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Foldable (Map k) | |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
| Foldable f => Foldable (ListT f) | |
Defined in Control.Monad.Trans.List Methods fold :: Monoid m => ListT f m -> m # foldMap :: Monoid m => (a -> m) -> ListT f a -> m # foldr :: (a -> b -> b) -> b -> ListT f a -> b # foldr' :: (a -> b -> b) -> b -> ListT f a -> b # foldl :: (b -> a -> b) -> b -> ListT f a -> b # foldl' :: (b -> a -> b) -> b -> ListT f a -> b # foldr1 :: (a -> a -> a) -> ListT f a -> a # foldl1 :: (a -> a -> a) -> ListT f a -> a # elem :: Eq a => a -> ListT f a -> Bool # maximum :: Ord a => ListT f a -> a # minimum :: Ord a => ListT f a -> a # | |
| Foldable f => Foldable (MaybeT f) | |
Defined in Control.Monad.Trans.Maybe Methods fold :: Monoid m => MaybeT f m -> m # foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m # foldr :: (a -> b -> b) -> b -> MaybeT f a -> b # foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b # foldl :: (b -> a -> b) -> b -> MaybeT f a -> b # foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b # foldr1 :: (a -> a -> a) -> MaybeT f a -> a # foldl1 :: (a -> a -> a) -> MaybeT f a -> a # elem :: Eq a => a -> MaybeT f a -> Bool # maximum :: Ord a => MaybeT f a -> a # minimum :: Ord a => MaybeT f a -> a # | |
| Foldable f => Foldable (Rec1 f) | |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
| Foldable (URec Char :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
| Foldable (URec Double :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
| Foldable (URec Float :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
| Foldable (URec Int :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
| Foldable (URec Word :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
| Foldable (URec (Ptr ()) :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
| Foldable (Const m :: * -> *) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Foldable f => Foldable (Backwards f) | Derived instance. |
Defined in Control.Applicative.Backwards Methods fold :: Monoid m => Backwards f m -> m # foldMap :: Monoid m => (a -> m) -> Backwards f a -> m # foldr :: (a -> b -> b) -> b -> Backwards f a -> b # foldr' :: (a -> b -> b) -> b -> Backwards f a -> b # foldl :: (b -> a -> b) -> b -> Backwards f a -> b # foldl' :: (b -> a -> b) -> b -> Backwards f a -> b # foldr1 :: (a -> a -> a) -> Backwards f a -> a # foldl1 :: (a -> a -> a) -> Backwards f a -> a # toList :: Backwards f a -> [a] # null :: Backwards f a -> Bool # length :: Backwards f a -> Int # elem :: Eq a => a -> Backwards f a -> Bool # maximum :: Ord a => Backwards f a -> a # minimum :: Ord a => Backwards f a -> a # | |
| Foldable (Constant a :: * -> *) | |
Defined in Data.Functor.Constant Methods fold :: Monoid m => Constant a m -> m # foldMap :: Monoid m => (a0 -> m) -> Constant a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # toList :: Constant a a0 -> [a0] # null :: Constant a a0 -> Bool # length :: Constant a a0 -> Int # elem :: Eq a0 => a0 -> Constant a a0 -> Bool # maximum :: Ord a0 => Constant a a0 -> a0 # minimum :: Ord a0 => Constant a a0 -> a0 # | |
| Foldable f => Foldable (IdentityT f) | |
Defined in Control.Monad.Trans.Identity Methods fold :: Monoid m => IdentityT f m -> m # foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m # foldr :: (a -> b -> b) -> b -> IdentityT f a -> b # foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b # foldl :: (b -> a -> b) -> b -> IdentityT f a -> b # foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b # foldr1 :: (a -> a -> a) -> IdentityT f a -> a # foldl1 :: (a -> a -> a) -> IdentityT f a -> a # toList :: IdentityT f a -> [a] # null :: IdentityT f a -> Bool # length :: IdentityT f a -> Int # elem :: Eq a => a -> IdentityT f a -> Bool # maximum :: Ord a => IdentityT f a -> a # minimum :: Ord a => IdentityT f a -> a # | |
| Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
| Foldable f => Foldable (ExceptT e f) | |
Defined in Control.Monad.Trans.Except Methods fold :: Monoid m => ExceptT e f m -> m # foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m # foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b # foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b # foldr1 :: (a -> a -> a) -> ExceptT e f a -> a # foldl1 :: (a -> a -> a) -> ExceptT e f a -> a # toList :: ExceptT e f a -> [a] # null :: ExceptT e f a -> Bool # length :: ExceptT e f a -> Int # elem :: Eq a => a -> ExceptT e f a -> Bool # maximum :: Ord a => ExceptT e f a -> a # minimum :: Ord a => ExceptT e f a -> a # | |
| Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
| Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Strict Methods fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
| Foldable (K1 i c :: * -> *) | |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :+: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :*: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
| Foldable f => Foldable (M1 i c f) | |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :.: g) | |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
| (Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # | |
class Semigroup a => Monoid a #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>mempty= xmempty<>x = xx(<>(y<>z) = (x<>y)<>zSemigrouplaw)mconcat=foldr'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.
Minimal complete definition
Instances
| Monoid Ordering | Since: base-2.1 |
| Monoid () | Since: base-2.1 |
| Monoid All | Since: base-2.1 |
| Monoid Any | Since: base-2.1 |
| Monoid IntSet | |
| Monoid [a] | Since: base-2.1 |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Monoid a => Monoid (Identity a) | |
| Monoid (First a) | Since: base-2.1 |
| Monoid (Last a) | Since: base-2.1 |
| Monoid a => Monoid (Dual a) | Since: base-2.1 |
| Monoid (Endo a) | Since: base-2.1 |
| Num a => Monoid (Sum a) | Since: base-2.1 |
| Num a => Monoid (Product a) | Since: base-2.1 |
| Monoid (IntMap a) | |
| Ord a => Monoid (Set a) | |
| Monoid (MergeSet a) | |
| Monoid b => Monoid (a -> b) | Since: base-2.1 |
| (Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Ord k => Monoid (Map k v) | |
| (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
| Monoid a => Monoid (Const a b) | |
| Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
| Monoid a => Monoid (Constant a b) | |
| (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
| (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
data Backwards (f :: k -> *) (a :: k) :: forall k. (k -> *) -> k -> * #
The same functor, but with an Applicative instance that performs
actions in the reverse order.