Safe Haskell | Safe |
---|---|
Language | Haskell98 |
This is the main module for end-users of lens-families-core. If you are not building your own lenses or traversals, but just using functional references made by others, this is the only module you need.
Synopsis
- to :: Phantom f => (a -> b) -> LensLike f a a' b b'
- view :: FoldLike b a a' b b' -> a -> b
- (^.) :: a -> FoldLike b a a' b b' -> b
- folding :: (Foldable g, Phantom f, Applicative f) => (a -> g b) -> LensLike f a a' b b'
- views :: FoldLike r a a' b b' -> (b -> r) -> a -> r
- (^..) :: a -> FoldLike [b] a a' b b' -> [b]
- (^?) :: a -> FoldLike (First b) a a' b b' -> Maybe b
- toListOf :: FoldLike [b] a a' b b' -> a -> [b]
- allOf :: FoldLike All a a' b b' -> (b -> Bool) -> a -> Bool
- anyOf :: FoldLike Any a a' b b' -> (b -> Bool) -> a -> Bool
- firstOf :: FoldLike (First b) a a' b b' -> a -> Maybe b
- lastOf :: FoldLike (Last b) a a' b b' -> a -> Maybe b
- sumOf :: Num b => FoldLike (Sum b) a a' b b' -> a -> b
- productOf :: Num b => FoldLike (Product b) a a' b b' -> a -> b
- lengthOf :: Num r => FoldLike (Sum r) a a' b b' -> a -> r
- nullOf :: FoldLike All a a' b b' -> a -> Bool
- backwards :: LensLike (Backwards f) a a' b b' -> LensLike f a a' b b'
- over :: ASetter a a' b b' -> (b -> b') -> a -> a'
- (%~) :: ASetter a a' b b' -> (b -> b') -> a -> a'
- set :: ASetter a a' b b' -> b' -> a -> a'
- (.~) :: ASetter a a' b b' -> b' -> a -> a'
- (&) :: a -> (a -> b) -> b
- (+~) :: Num b => ASetter' a b -> b -> a -> a
- (*~) :: Num b => ASetter' a b -> b -> a -> a
- (-~) :: Num b => ASetter' a b -> b -> a -> a
- (//~) :: Fractional b => ASetter' a b -> b -> a -> a
- (&&~) :: ASetter' a Bool -> Bool -> a -> a
- (||~) :: ASetter' a Bool -> Bool -> a -> a
- (<>~) :: Monoid o => ASetter' a o -> o -> a -> a
- type LensLike f a a' b b' = (b -> f b') -> a -> f a'
- type LensLike' f a b = (b -> f b) -> a -> f a
- type FoldLike r a a' b b' = LensLike (Constant r) a a' b b'
- type FoldLike' r a b = LensLike' (Constant r) a b
- type ASetter a a' b b' = LensLike Identity a a' b b'
- type ASetter' a b = LensLike' Identity a b
- class Functor f => Phantom f
- data Constant a (b :: k) :: forall k. * -> k -> *
- data Identity a
- class Functor f => Applicative (f :: * -> *)
- class Foldable (t :: * -> *)
- class Semigroup a => Monoid a
- data Backwards (f :: k -> *) (a :: k) :: forall k. (k -> *) -> k -> *
- data All
- data Any
- data First a
- data Last a
- data Sum a
- data Product a
Lenses
This module provides ^.
for accessing fields and .~
and %~
for setting and modifying fields.
Lenses are composed with .
from the Prelude
and id
is the identity lens.
Lens composition in this library enjoys the following identities.
x^.l1.l2 === x^.l1^.l2
l1.l2 %~ f === l1 %~ l2 %~ f
The identity lens behaves as follows.
x^.id === x
id %~ f === f
The &
operator, allows for a convenient way to sequence record updating:
record & l1 .~ value1 & l2 .~ value2
Lenses are implemented in van Laarhoven style.
Lenses have type
and lens families have type Functor
f => (b -> f b) -> a -> f a
.Functor
f => (b i -> f (b j)) -> a i -> f (a j)
Keep in mind that lenses and lens families can be used directly for functorial updates.
For example, _2 id
gives you strength.
_2 id :: Functor f => (a, f b) -> f (a, b)
Here is an example of code that uses the Maybe
functor to preserves sharing during update when possible.
-- | 'sharedUpdate' returns the *identical* object if the update doesn't change anything. -- This is useful for preserving sharing. sharedUpdate :: Eq b => LensLike' Maybe a b -> (b -> b) -> a -> a sharedUpdate l f a = fromMaybe a (l f' a) where f' b | fb == b = Nothing | otherwise = Just fb where fb = f b
Traversals
^.
can be used with traversals to access monoidal fields.
The result will be a mconcat
of all the fields referenced.
The various fooOf
functions can be used to access different monoidal summaries of some kinds of values.
^?
can be used to access the first value of a traversal.
Nothing
is returned when the traversal has no references.
^..
can be used with a traversals and will return a list of all fields referenced.
When .~
is used with a traversal, all referenced fields will be set to the same value, and when %~
is used with a traversal, all referenced fields will be modified with the same function.
Like lenses, traversals can be composed with .
, and because every lens is automatically a traversal, lenses and traversals can be composed with .
yielding a traversal.
Traversals are implemented in van Laarhoven style.
Traversals have type
and traversal families have type Applicative
f => (b -> f b) -> a -> f a
.Applicative
f => (b i -> f (b j)) -> a i -> f (a j)
For stock lenses and traversals, see Lens.Family.Stock.
To build your own lenses and traversals, see Lens.Family.Unchecked.
References:
Documentation
to :: Phantom f => (a -> b) -> LensLike f a a' b b' Source #
to :: (a -> b) -> Getter a a' b b'
to
promotes a projection function to a read-only lens called a getter.
To demote a lens to a projection function, use the section (^.l)
or view l
.
>>>
(3 :+ 4, "example")^._1.to(abs)
5.0 :+ 0.0
view :: FoldLike b a a' b b' -> a -> b Source #
view :: Getter a a' b b' -> a -> b
Demote a lens or getter to a projection function.
view :: Monoid b => Fold a a' b b' -> a -> b
Returns the monoidal summary of a traversal or a fold.
(^.) :: a -> FoldLike b a a' b b' -> b infixl 8 Source #
(^.) :: a -> Getter a a' b b' -> b
Access the value referenced by a getter or lens.
(^.) :: Monoid b => a -> Fold a a' b b' -> b
Access the monoidal summary referenced by a getter or lens.
folding :: (Foldable g, Phantom f, Applicative f) => (a -> g b) -> LensLike f a a' b b' Source #
folding :: (a -> [b]) -> Fold a a' b b'
folding
promotes a "toList" function to a read-only traversal called a fold.
To demote a traversal or fold to a "toList" function use the section (^..l)
or toListOf l
.
views :: FoldLike r a a' b b' -> (b -> r) -> a -> r Source #
views :: Monoid r => Fold a a' b b' -> (b -> r) -> a -> r
Given a fold or traversal, return the foldMap
of all the values using the given function.
views :: Getter a a' b b' -> (b -> r) -> a -> r
views
is not particularly useful for getters or lenses, but given a getter or lens, it returns the referenced value passed through the given function.
views l f a = f (view l a)
(^..) :: a -> FoldLike [b] a a' b b' -> [b] infixl 8 Source #
(^..) :: a -> Getter a a' b b' -> [b]
Returns a list of all of the referenced values in order.
toListOf :: FoldLike [b] a a' b b' -> a -> [b] Source #
toListOf :: Fold a a' b b' -> a -> [b]
Returns a list of all of the referenced values in order.
allOf :: FoldLike All a a' b b' -> (b -> Bool) -> a -> Bool Source #
allOf :: Fold a a' b b' -> (b -> Bool) -> a -> Bool
Returns true if all of the referenced values satisfy the given predicate.
anyOf :: FoldLike Any a a' b b' -> (b -> Bool) -> a -> Bool Source #
anyOf :: Fold a a' b b' -> (b -> Bool) -> a -> Bool
Returns true if any of the referenced values satisfy the given predicate.
sumOf :: Num b => FoldLike (Sum b) a a' b b' -> a -> b Source #
sumOf :: Num b => Fold a a' b b' -> a -> b
Returns the sum of all the referenced values.
productOf :: Num b => FoldLike (Product b) a a' b b' -> a -> b Source #
productOf :: Num b => Fold a a' b b' -> a -> b
Returns the product of all the referenced values.
lengthOf :: Num r => FoldLike (Sum r) a a' b b' -> a -> r Source #
lengthOf :: Num r => Fold a a' b b' -> a -> r
Counts the number of references in a traversal or fold for the input.
nullOf :: FoldLike All a a' b b' -> a -> Bool Source #
nullOf :: Fold a a' b b' -> a -> Bool
Returns true if the number of references in the input is zero.
backwards :: LensLike (Backwards f) a a' b b' -> LensLike f a a' b b' Source #
backwards :: Traversal a a' b b' -> Traversal a a' b b' backwards :: Fold a a' b b' -> Fold a a' b b'
Given a traversal or fold, reverse the order that elements are traversed.
backwards :: Lens a a' b b' -> Lens a a' b b' backwards :: Getter a a' b b' -> Getter a a' b b' backwards :: Setter a a' b b' -> Setter a a' b b'
No effect on lenses, getters or setters.
over :: ASetter a a' b b' -> (b -> b') -> a -> a' Source #
Demote a setter to a semantic editor combinator.
(.~) :: ASetter a a' b b' -> b' -> a -> a' infixr 4 Source #
Set all referenced fields to the given value.
Pseudo-imperatives
(//~) :: Fractional b => ASetter' a b -> b -> a -> a infixr 4 Source #
(<>~) :: Monoid o => ASetter' a o -> o -> a -> a infixr 4 Source #
Monoidally append a value to all referenced fields.
Types
class Functor f => Phantom f Source #
coerce
Instances
Phantom (Const a :: * -> *) Source # | |
Defined in Lens.Family.Phantom | |
Phantom (Constant a :: * -> *) Source # | |
Defined in Lens.Family.Phantom | |
Phantom f => Phantom (Backwards f) Source # | |
Defined in Lens.Family.Phantom | |
Phantom f => Phantom (AlongsideRight f a) Source # | |
Defined in Lens.Family.Stock coerce :: AlongsideRight f a a0 -> AlongsideRight f a b | |
Phantom f => Phantom (AlongsideLeft f a) Source # | |
Defined in Lens.Family.Stock coerce :: AlongsideLeft f a a0 -> AlongsideLeft f a b | |
(Phantom f, Functor g) => Phantom (Compose f g) Source # | |
Defined in Lens.Family.Phantom |
data Constant a (b :: k) :: forall k. * -> k -> * #
Constant functor.
Instances
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Instances
Re-exports
class Functor f => Applicative (f :: * -> *) #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- identity
pure
id
<*>
v = v- composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- homomorphism
pure
f<*>
pure
x =pure
(f x)- interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Instances
Applicative [] | Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Applicative IO | Since: base-2.1 |
Applicative Par1 | Since: base-4.9.0.0 |
Applicative Min | Since: base-4.9.0.0 |
Applicative Max | Since: base-4.9.0.0 |
Applicative First | Since: base-4.9.0.0 |
Applicative Last | Since: base-4.9.0.0 |
Applicative Option | Since: base-4.9.0.0 |
Applicative ZipList | f '<$>' 'ZipList' xs1 '<*>' ... '<*>' 'ZipList' xsN = 'ZipList' (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Identity | Since: base-4.8.0.0 |
Applicative First | |
Applicative Last | |
Applicative Dual | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Applicative ReadP | Since: base-4.6.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Applicative P | Since: base-4.5.0.0 |
Applicative (Either e) | Since: base-3.0 |
Applicative (U1 :: * -> *) | Since: base-4.9.0.0 |
Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
Applicative (Proxy :: * -> *) | Since: base-4.7.0.0 |
Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
Monoid m => Applicative (Const m :: * -> *) | Since: base-2.0.1 |
Applicative f => Applicative (Alt f) | |
(Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
Monoid a => Applicative (Constant a :: * -> *) | |
Defined in Data.Functor.Constant | |
(Monoid w, Applicative m) => Applicative (WriterT w m) | |
Defined in Control.Monad.Trans.Writer.Lazy | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Strict | |
(Functor m, Monad m) => Applicative (StateT s m) | |
Defined in Control.Monad.Trans.State.Lazy | |
Applicative f => Applicative (Backwards f) | Apply |
Defined in Control.Applicative.Backwards | |
(Monoid c, Monad m) => Applicative (Zooming m c) # | |
Defined in Lens.Family.State.Zoom | |
Applicative (IKleeneStore b b') # | |
Defined in Lens.Family.Clone pure :: a -> IKleeneStore b b' a # (<*>) :: IKleeneStore b b' (a -> b0) -> IKleeneStore b b' a -> IKleeneStore b b' b0 # liftA2 :: (a -> b0 -> c) -> IKleeneStore b b' a -> IKleeneStore b b' b0 -> IKleeneStore b b' c # (*>) :: IKleeneStore b b' a -> IKleeneStore b b' b0 -> IKleeneStore b b' b0 # (<*) :: IKleeneStore b b' a -> IKleeneStore b b' b0 -> IKleeneStore b b' a # | |
Applicative ((->) a :: * -> *) | Since: base-2.1 |
(Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
(Applicative f, Applicative g) => Applicative (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose | |
(Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # |
class Foldable (t :: * -> *) #
Data structures that can be folded.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where foldMap f Empty = mempty foldMap f (Leaf x) = f x foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr
:
instance Foldable Tree where foldr f z Empty = z foldr f z (Leaf x) = f x z foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Foldable
instances are expected to satisfy the following laws:
foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id
length = getSum . foldMap (Sum . const 1)
sum
, product
, maximum
, and minimum
should all be essentially
equivalent to foldMap
forms, such as
sum = getSum . foldMap Sum
but may be less defined.
If the type is also a Functor
instance, it should satisfy
foldMap f = fold . fmap f
which implies that
foldMap f . fmap g = foldMap (f . g)
Instances
Foldable [] | Since: base-2.1 |
Defined in Data.Foldable fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Foldable Par1 | |
Defined in Data.Foldable fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
Foldable Min | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Min m -> m # foldMap :: Monoid m => (a -> m) -> Min a -> m # foldr :: (a -> b -> b) -> b -> Min a -> b # foldr' :: (a -> b -> b) -> b -> Min a -> b # foldl :: (b -> a -> b) -> b -> Min a -> b # foldl' :: (b -> a -> b) -> b -> Min a -> b # foldr1 :: (a -> a -> a) -> Min a -> a # foldl1 :: (a -> a -> a) -> Min a -> a # elem :: Eq a => a -> Min a -> Bool # maximum :: Ord a => Min a -> a # | |
Foldable Max | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Max m -> m # foldMap :: Monoid m => (a -> m) -> Max a -> m # foldr :: (a -> b -> b) -> b -> Max a -> b # foldr' :: (a -> b -> b) -> b -> Max a -> b # foldl :: (b -> a -> b) -> b -> Max a -> b # foldl' :: (b -> a -> b) -> b -> Max a -> b # foldr1 :: (a -> a -> a) -> Max a -> a # foldl1 :: (a -> a -> a) -> Max a -> a # elem :: Eq a => a -> Max a -> Bool # maximum :: Ord a => Max a -> a # | |
Foldable First | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Option | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Option m -> m # foldMap :: Monoid m => (a -> m) -> Option a -> m # foldr :: (a -> b -> b) -> b -> Option a -> b # foldr' :: (a -> b -> b) -> b -> Option a -> b # foldl :: (b -> a -> b) -> b -> Option a -> b # foldl' :: (b -> a -> b) -> b -> Option a -> b # foldr1 :: (a -> a -> a) -> Option a -> a # foldl1 :: (a -> a -> a) -> Option a -> a # elem :: Eq a => a -> Option a -> Bool # maximum :: Ord a => Option a -> a # minimum :: Ord a => Option a -> a # | |
Foldable ZipList | |
Defined in Control.Applicative fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable IntMap | |
Defined in Data.IntMap.Internal fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
Foldable Set | |
Defined in Data.Set.Internal fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Foldable (V1 :: * -> *) | |
Defined in Data.Foldable fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
Foldable (U1 :: * -> *) | Since: base-4.9.0.0 |
Defined in Data.Foldable fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
Foldable (Arg a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup fold :: Monoid m => Arg a m -> m # foldMap :: Monoid m => (a0 -> m) -> Arg a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Arg a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Arg a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Arg a a0 -> a0 # elem :: Eq a0 => a0 -> Arg a a0 -> Bool # maximum :: Ord a0 => Arg a a0 -> a0 # minimum :: Ord a0 => Arg a a0 -> a0 # | |
Foldable (Proxy :: * -> *) | Since: base-4.7.0.0 |
Defined in Data.Foldable fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
Foldable (Map k) | |
Defined in Data.Map.Internal fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
Foldable f => Foldable (Rec1 f) | |
Defined in Data.Foldable fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
Foldable (URec Char :: * -> *) | |
Defined in Data.Foldable fold :: Monoid m => URec Char m -> m # foldMap :: Monoid m => (a -> m) -> URec Char a -> m # foldr :: (a -> b -> b) -> b -> URec Char a -> b # foldr' :: (a -> b -> b) -> b -> URec Char a -> b # foldl :: (b -> a -> b) -> b -> URec Char a -> b # foldl' :: (b -> a -> b) -> b -> URec Char a -> b # foldr1 :: (a -> a -> a) -> URec Char a -> a # foldl1 :: (a -> a -> a) -> URec Char a -> a # toList :: URec Char a -> [a] # length :: URec Char a -> Int # elem :: Eq a => a -> URec Char a -> Bool # maximum :: Ord a => URec Char a -> a # minimum :: Ord a => URec Char a -> a # | |
Foldable (URec Double :: * -> *) | |
Defined in Data.Foldable fold :: Monoid m => URec Double m -> m # foldMap :: Monoid m => (a -> m) -> URec Double a -> m # foldr :: (a -> b -> b) -> b -> URec Double a -> b # foldr' :: (a -> b -> b) -> b -> URec Double a -> b # foldl :: (b -> a -> b) -> b -> URec Double a -> b # foldl' :: (b -> a -> b) -> b -> URec Double a -> b # foldr1 :: (a -> a -> a) -> URec Double a -> a # foldl1 :: (a -> a -> a) -> URec Double a -> a # toList :: URec Double a -> [a] # null :: URec Double a -> Bool # length :: URec Double a -> Int # elem :: Eq a => a -> URec Double a -> Bool # maximum :: Ord a => URec Double a -> a # minimum :: Ord a => URec Double a -> a # | |
Foldable (URec Float :: * -> *) | |
Defined in Data.Foldable fold :: Monoid m => URec Float m -> m # foldMap :: Monoid m => (a -> m) -> URec Float a -> m # foldr :: (a -> b -> b) -> b -> URec Float a -> b # foldr' :: (a -> b -> b) -> b -> URec Float a -> b # foldl :: (b -> a -> b) -> b -> URec Float a -> b # foldl' :: (b -> a -> b) -> b -> URec Float a -> b # foldr1 :: (a -> a -> a) -> URec Float a -> a # foldl1 :: (a -> a -> a) -> URec Float a -> a # toList :: URec Float a -> [a] # null :: URec Float a -> Bool # length :: URec Float a -> Int # elem :: Eq a => a -> URec Float a -> Bool # maximum :: Ord a => URec Float a -> a # minimum :: Ord a => URec Float a -> a # | |
Foldable (URec Int :: * -> *) | |
Defined in Data.Foldable fold :: Monoid m => URec Int m -> m # foldMap :: Monoid m => (a -> m) -> URec Int a -> m # foldr :: (a -> b -> b) -> b -> URec Int a -> b # foldr' :: (a -> b -> b) -> b -> URec Int a -> b # foldl :: (b -> a -> b) -> b -> URec Int a -> b # foldl' :: (b -> a -> b) -> b -> URec Int a -> b # foldr1 :: (a -> a -> a) -> URec Int a -> a # foldl1 :: (a -> a -> a) -> URec Int a -> a # elem :: Eq a => a -> URec Int a -> Bool # maximum :: Ord a => URec Int a -> a # minimum :: Ord a => URec Int a -> a # | |
Foldable (URec Word :: * -> *) | |
Defined in Data.Foldable fold :: Monoid m => URec Word m -> m # foldMap :: Monoid m => (a -> m) -> URec Word a -> m # foldr :: (a -> b -> b) -> b -> URec Word a -> b # foldr' :: (a -> b -> b) -> b -> URec Word a -> b # foldl :: (b -> a -> b) -> b -> URec Word a -> b # foldl' :: (b -> a -> b) -> b -> URec Word a -> b # foldr1 :: (a -> a -> a) -> URec Word a -> a # foldl1 :: (a -> a -> a) -> URec Word a -> a # toList :: URec Word a -> [a] # length :: URec Word a -> Int # elem :: Eq a => a -> URec Word a -> Bool # maximum :: Ord a => URec Word a -> a # minimum :: Ord a => URec Word a -> a # | |
Foldable (URec (Ptr ()) :: * -> *) | |
Defined in Data.Foldable fold :: Monoid m => URec (Ptr ()) m -> m # foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m # foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b # foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b # foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a # toList :: URec (Ptr ()) a -> [a] # null :: URec (Ptr ()) a -> Bool # length :: URec (Ptr ()) a -> Int # elem :: Eq a => a -> URec (Ptr ()) a -> Bool # maximum :: Ord a => URec (Ptr ()) a -> a # minimum :: Ord a => URec (Ptr ()) a -> a # | |
Foldable (Const m :: * -> *) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
Foldable (Constant a :: * -> *) | |
Defined in Data.Functor.Constant fold :: Monoid m => Constant a m -> m # foldMap :: Monoid m => (a0 -> m) -> Constant a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Constant a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Constant a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Constant a a0 -> a0 # toList :: Constant a a0 -> [a0] # null :: Constant a a0 -> Bool # length :: Constant a a0 -> Int # elem :: Eq a0 => a0 -> Constant a a0 -> Bool # maximum :: Ord a0 => Constant a a0 -> a0 # minimum :: Ord a0 => Constant a a0 -> a0 # | |
Foldable f => Foldable (WriterT w f) | |
Defined in Control.Monad.Trans.Writer.Lazy fold :: Monoid m => WriterT w f m -> m # foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m # foldr :: (a -> b -> b) -> b -> WriterT w f a -> b # foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b # foldl :: (b -> a -> b) -> b -> WriterT w f a -> b # foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b # foldr1 :: (a -> a -> a) -> WriterT w f a -> a # foldl1 :: (a -> a -> a) -> WriterT w f a -> a # toList :: WriterT w f a -> [a] # null :: WriterT w f a -> Bool # length :: WriterT w f a -> Int # elem :: Eq a => a -> WriterT w f a -> Bool # maximum :: Ord a => WriterT w f a -> a # minimum :: Ord a => WriterT w f a -> a # | |
Foldable f => Foldable (Backwards f) | Derived instance. |
Defined in Control.Applicative.Backwards fold :: Monoid m => Backwards f m -> m # foldMap :: Monoid m => (a -> m) -> Backwards f a -> m # foldr :: (a -> b -> b) -> b -> Backwards f a -> b # foldr' :: (a -> b -> b) -> b -> Backwards f a -> b # foldl :: (b -> a -> b) -> b -> Backwards f a -> b # foldl' :: (b -> a -> b) -> b -> Backwards f a -> b # foldr1 :: (a -> a -> a) -> Backwards f a -> a # foldl1 :: (a -> a -> a) -> Backwards f a -> a # toList :: Backwards f a -> [a] # null :: Backwards f a -> Bool # length :: Backwards f a -> Int # elem :: Eq a => a -> Backwards f a -> Bool # maximum :: Ord a => Backwards f a -> a # minimum :: Ord a => Backwards f a -> a # | |
Foldable (K1 i c :: * -> *) | |
Defined in Data.Foldable fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
(Foldable f, Foldable g) => Foldable (f :+: g) | |
Defined in Data.Foldable fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (f :*: g) | |
Defined in Data.Foldable fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
Foldable f => Foldable (M1 i c f) | |
Defined in Data.Foldable fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
(Foldable f, Foldable g) => Foldable (f :.: g) | |
Defined in Data.Foldable fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
(Foldable f, Foldable g) => Foldable (Compose f g) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose fold :: Monoid m => Compose f g m -> m # foldMap :: Monoid m => (a -> m) -> Compose f g a -> m # foldr :: (a -> b -> b) -> b -> Compose f g a -> b # foldr' :: (a -> b -> b) -> b -> Compose f g a -> b # foldl :: (b -> a -> b) -> b -> Compose f g a -> b # foldl' :: (b -> a -> b) -> b -> Compose f g a -> b # foldr1 :: (a -> a -> a) -> Compose f g a -> a # foldl1 :: (a -> a -> a) -> Compose f g a -> a # toList :: Compose f g a -> [a] # null :: Compose f g a -> Bool # length :: Compose f g a -> Int # elem :: Eq a => a -> Compose f g a -> Bool # maximum :: Ord a => Compose f g a -> a # minimum :: Ord a => Compose f g a -> a # |
class Semigroup a => Monoid a #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:
x
<>
mempty
= xmempty
<>
x = xx
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)mconcat
=foldr
'(<>)'mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Instances
Monoid Ordering | Since: base-2.1 |
Monoid () | Since: base-2.1 |
Monoid All | Since: base-2.1 |
Monoid Any | Since: base-2.1 |
Monoid IntSet | |
Monoid [a] | Since: base-2.1 |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
Semigroup a => Monoid (Option a) | Since: base-4.9.0.0 |
Monoid a => Monoid (Identity a) | |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Dual a) | Since: base-2.1 |
Monoid (Endo a) | Since: base-2.1 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Num a => Monoid (Product a) | Since: base-2.1 |
Monoid (IntMap a) | |
Ord a => Monoid (Set a) | |
Monoid (MergeSet a) | |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Ord k => Monoid (Map k v) | |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | |
Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
Monoid a => Monoid (Constant a b) | |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
data Backwards (f :: k -> *) (a :: k) :: forall k. (k -> *) -> k -> * #
The same functor, but with an Applicative
instance that performs
actions in the reverse order.
Instances
Boolean monoid under conjunction (&&
).
>>>
getAll (All True <> mempty <> All False)
False
>>>
getAll (mconcat (map (\x -> All (even x)) [2,4,6,7,8]))
False
Boolean monoid under disjunction (||
).
>>>
getAny (Any True <> mempty <> Any False)
True
>>>
getAny (mconcat (map (\x -> Any (even x)) [2,4,6,7,8]))
True
Maybe monoid returning the leftmost non-Nothing value.
is isomorphic to First
a
, but precedes it
historically.Alt
Maybe
a
>>>
getFirst (First (Just "hello") <> First Nothing <> First (Just "world"))
Just "hello"
Instances
Monad First | |
Functor First | |
Applicative First | |
Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
Traversable First | Since: base-4.8.0.0 |
Eq a => Eq (First a) | |
Ord a => Ord (First a) | |
Read a => Read (First a) | |
Show a => Show (First a) | |
Generic (First a) | |
Semigroup (First a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Generic1 First | |
type Rep (First a) | |
Defined in Data.Monoid | |
type Rep1 First | |
Defined in Data.Monoid |
Maybe monoid returning the rightmost non-Nothing value.
is isomorphic to Last
a
, and thus to
Dual
(First
a)Dual
(Alt
Maybe
a)
>>>
getLast (Last (Just "hello") <> Last Nothing <> Last (Just "world"))
Just "world"
Instances
Monad Last | |
Functor Last | |
Applicative Last | |
Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
Traversable Last | Since: base-4.8.0.0 |
Eq a => Eq (Last a) | |
Ord a => Ord (Last a) | |
Read a => Read (Last a) | |
Show a => Show (Last a) | |
Generic (Last a) | |
Semigroup (Last a) | Since: base-4.9.0.0 |
Monoid (Last a) | Since: base-2.1 |
Generic1 Last | |
type Rep (Last a) | |
Defined in Data.Monoid | |
type Rep1 Last | |
Defined in Data.Monoid |
Monoid under addition.
>>>
getSum (Sum 1 <> Sum 2 <> mempty)
3
Instances
Monad Sum | Since: base-4.8.0.0 |
Functor Sum | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Traversable Sum | Since: base-4.8.0.0 |
Bounded a => Bounded (Sum a) | |
Eq a => Eq (Sum a) | |
Num a => Num (Sum a) | |
Ord a => Ord (Sum a) | |
Read a => Read (Sum a) | |
Show a => Show (Sum a) | |
Generic (Sum a) | |
Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Generic1 Sum | |
type Rep (Sum a) | |
Defined in Data.Semigroup.Internal | |
type Rep1 Sum | |
Defined in Data.Semigroup.Internal |
Monoid under multiplication.
>>>
getProduct (Product 3 <> Product 4 <> mempty)
12
Instances
Monad Product | Since: base-4.8.0.0 |
Functor Product | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Traversable Product | Since: base-4.8.0.0 |
Bounded a => Bounded (Product a) | |
Eq a => Eq (Product a) | |
Num a => Num (Product a) | |
Defined in Data.Semigroup.Internal | |
Ord a => Ord (Product a) | |
Defined in Data.Semigroup.Internal | |
Read a => Read (Product a) | |
Show a => Show (Product a) | |
Generic (Product a) | |
Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
Num a => Monoid (Product a) | Since: base-2.1 |
Generic1 Product | |
type Rep (Product a) | |
Defined in Data.Semigroup.Internal | |
type Rep1 Product | |
Defined in Data.Semigroup.Internal |