module Numeric.LAPACK.Matrix.Square.Basic (
Square,
mapSize,
toFull,
fromGeneral,
fromScalar,
toScalar,
fromList,
autoFromList,
transpose,
adjoint,
identity,
identityFrom,
identityFromWidth,
identityFromHeight,
diagonal,
takeDiagonal,
trace,
square,
power,
congruence,
) where
import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape
import qualified Numeric.LAPACK.Matrix.Extent.Private as ExtentPriv
import qualified Numeric.LAPACK.Matrix.Extent as Extent
import qualified Numeric.LAPACK.Matrix.Basic as Basic
import qualified Numeric.LAPACK.Vector as Vector
import qualified Numeric.LAPACK.Private as Private
import Numeric.LAPACK.Matrix.Shape.Private
(Order(RowMajor, ColumnMajor), swapOnRowMajor)
import Numeric.LAPACK.Matrix.Private
(Full, mapExtent,
General, argGeneral, Square, argSquare, ZeroInt, zeroInt)
import Numeric.LAPACK.Vector (Vector)
import Numeric.LAPACK.Scalar (zero, one)
import Numeric.LAPACK.Private (pokeCInt)
import qualified Numeric.LAPACK.FFI.Generic as LapackGen
import qualified Numeric.BLAS.FFI.Generic as BlasGen
import qualified Numeric.Netlib.Utility as Call
import qualified Numeric.Netlib.Class as Class
import qualified Data.Array.Comfort.Storable.Unchecked as Array
import qualified Data.Array.Comfort.Storable as CheckedArray
import qualified Data.Array.Comfort.Shape as Shape
import Data.Array.Comfort.Storable.Unchecked (Array(Array))
import Foreign.ForeignPtr (withForeignPtr)
import Foreign.Storable (Storable, peek, poke)
import System.IO.Unsafe (unsafePerformIO)
import Control.Monad.Trans.Cont (ContT(ContT), evalContT)
import Control.Monad.IO.Class (liftIO)
import Data.Function.HT (powerAssociative)
mapSize :: (sh0 -> sh1) -> Square sh0 a -> Square sh1 a
mapSize f =
Array.mapShape
(\(MatrixShape.Full order extent) ->
MatrixShape.Full order $ ExtentPriv.mapSquareSize f extent)
toFull ::
(Extent.C vert, Extent.C horiz) => Square sh a -> Full vert horiz sh sh a
toFull = mapExtent Extent.fromSquare
fromGeneral :: (Eq sh) => General sh sh a -> Square sh a
fromGeneral = mapExtent (ExtentPriv.Map ExtentPriv.squareFromGeneral)
fromScalar :: (Storable a) => a -> Square () a
fromScalar a =
Array.unsafeCreate (MatrixShape.square RowMajor ()) $ flip poke a
toScalar :: (Storable a) => Square () a -> a
toScalar = argSquare $ \_ () a ->
unsafePerformIO $ withForeignPtr a peek
fromList :: (Shape.C sh, Storable a) => sh -> [a] -> Square sh a
fromList sh =
CheckedArray.fromList (MatrixShape.square RowMajor sh)
autoFromList :: (Storable a) => [a] -> Square ZeroInt a
autoFromList xs =
let n = length xs
m = round $ sqrt (fromIntegral n :: Double)
in if n == m*m
then fromList (zeroInt m) xs
else error "Square.autoFromList: no quadratic number of elements"
transpose :: Square sh a -> Square sh a
transpose = Array.mapShape MatrixShape.transpose
adjoint :: (Shape.C sh, Class.Floating a) => Square sh a -> Square sh a
adjoint = transpose . Vector.conjugate
identity :: (Shape.C sh, Class.Floating a) => sh -> Square sh a
identity = identityOrder ColumnMajor
identityFrom :: (Shape.C sh, Class.Floating a) => Square sh a -> Square sh a
identityFrom = argSquare $ \order sh _ -> identityOrder order sh
identityFromWidth ::
(Shape.C height, Shape.C width, Class.Floating a) =>
General height width a -> Square width a
identityFromWidth =
argGeneral $ \order _ width _ -> identityOrder order width
identityFromHeight ::
(Shape.C height, Shape.C width, Class.Floating a) =>
General height width a -> Square height a
identityFromHeight =
argGeneral $ \order height _ _ -> identityOrder order height
identityOrder, _identityOrder ::
(Shape.C sh, Class.Floating a) => Order -> sh -> Square sh a
identityOrder order sh =
Array.unsafeCreate (MatrixShape.square order sh) $ \aPtr ->
evalContT $ do
uploPtr <- Call.char 'A'
nPtr <- Call.cint $ Shape.size sh
alphaPtr <- Call.number zero
betaPtr <- Call.number one
liftIO $ LapackGen.laset uploPtr nPtr nPtr alphaPtr betaPtr aPtr nPtr
_identityOrder order sh =
Array.unsafeCreateWithSize (MatrixShape.square order sh) $ \blockSize yPtr ->
evalContT $ do
nPtr <- Call.alloca
xPtr <- Call.number zero
incxPtr <- Call.cint 0
incyPtr <- Call.cint 1
liftIO $ do
pokeCInt nPtr blockSize
BlasGen.copy nPtr xPtr incxPtr yPtr incyPtr
let n = fromIntegral $ Shape.size sh
poke nPtr n
poke xPtr one
poke incyPtr (n+1)
BlasGen.copy nPtr xPtr incxPtr yPtr incyPtr
diagonal :: (Shape.C sh, Class.Floating a) => Vector sh a -> Square sh a
diagonal (Array sh x) =
Array.unsafeCreateWithSize (MatrixShape.square ColumnMajor sh) $
\blockSize yPtr ->
evalContT $ do
nPtr <- Call.alloca
xPtr <- ContT $ withForeignPtr x
zPtr <- Call.number zero
incxPtr <- Call.cint 1
incyPtr <- Call.cint 1
inczPtr <- Call.cint 0
liftIO $ do
pokeCInt nPtr blockSize
BlasGen.copy nPtr zPtr inczPtr yPtr incyPtr
let n = fromIntegral $ Shape.size sh
poke nPtr n
poke incyPtr (n+1)
BlasGen.copy nPtr xPtr incxPtr yPtr incyPtr
takeDiagonal :: (Shape.C sh, Class.Floating a) => Square sh a -> Vector sh a
takeDiagonal = argSquare $ \_ sh x ->
Array.unsafeCreateWithSize sh $ \n yPtr -> evalContT $ do
nPtr <- Call.cint n
xPtr <- ContT $ withForeignPtr x
incxPtr <- Call.cint (n+1)
incyPtr <- Call.cint 1
liftIO $ BlasGen.copy nPtr xPtr incxPtr yPtr incyPtr
trace :: (Shape.C sh, Class.Floating a) => Square sh a -> a
trace = argSquare $ \_ sh x -> unsafePerformIO $ do
let n = Shape.size sh
withForeignPtr x $ \xPtr -> Private.sum n xPtr (n+1)
square :: (Shape.C sh, Class.Floating a) => Square sh a -> Square sh a
square a = multiplyCommutativeUnchecked a a
power ::
(Shape.C sh, Class.Floating a) =>
Integer -> Square sh a -> Square sh a
power n a =
powerAssociative multiplyCommutativeUnchecked (identityFrom a) a n
congruence ::
(Shape.C height, Eq height, Shape.C width, Eq width, Class.Floating a) =>
Square height a -> General height width a -> Square width a
congruence b a =
fromGeneral $ Basic.multiply (Basic.adjoint a) $ Basic.multiply (toFull b) a
multiplyCommutativeUnchecked ::
(Shape.C sh, Class.Floating a) =>
Square sh a -> Square sh a -> Square sh a
multiplyCommutativeUnchecked
(Array shape@(MatrixShape.Full order extent) a)
(Array _ b) =
Array.unsafeCreate shape $ \cPtr ->
let n = Shape.size $ Extent.height extent
(at,bt) = swapOnRowMajor order (a,b)
in Private.multiplyMatrix ColumnMajor ColumnMajor n n n at bt cPtr