{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
module Numeric.LAPACK.Matrix.Basic where
import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape
import qualified Numeric.LAPACK.Matrix.Extent.Private as Extent
import qualified Numeric.LAPACK.Matrix.RowMajor as RowMajor
import qualified Numeric.LAPACK.Vector as Vector
import qualified Numeric.LAPACK.Private as Private
import Numeric.LAPACK.Matrix.Shape.Private
(Order(RowMajor, ColumnMajor), transposeFromOrder, flipOrder)
import Numeric.LAPACK.Matrix.Modifier (Conjugation(NonConjugated))
import Numeric.LAPACK.Matrix.Private
(Full, Tall, Wide, General, ZeroInt, revealOrder)
import Numeric.LAPACK.Vector (Vector)
import Numeric.LAPACK.Scalar (RealOf, zero, one)
import Numeric.LAPACK.Private (copySubMatrix, copyBlock)
import qualified Numeric.Netlib.Utility as Call
import qualified Numeric.Netlib.Class as Class
import qualified Data.Array.Comfort.Storable.Unchecked as Array
import qualified Data.Array.Comfort.Shape as Shape
import Data.Array.Comfort.Storable.Unchecked (Array(Array))
import Data.Array.Comfort.Shape ((:+:)((:+:)))
import Foreign.Marshal.Array (advancePtr)
import Foreign.ForeignPtr (withForeignPtr)
import Control.Monad.Trans.Cont (ContT(ContT), evalContT)
import Control.Monad.IO.Class (liftIO)
import Data.Complex (Complex)
caseTallWide ::
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width) =>
Full vert horiz height width a ->
Either (Tall height width a) (Wide height width a)
caseTallWide (Array shape a) =
either (Left . flip Array a) (Right . flip Array a) $
MatrixShape.caseTallWide shape
transpose ::
(Extent.C vert, Extent.C horiz) =>
Full vert horiz height width a -> Full horiz vert width height a
transpose = Array.mapShape MatrixShape.transpose
adjoint ::
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width,
Class.Floating a) =>
Full vert horiz height width a -> Full horiz vert width height a
adjoint = transpose . Vector.conjugate
swapMultiply ::
(Extent.C vertA, Extent.C vertB, Extent.C horizA, Extent.C horizB) =>
(matrix ->
Full horizA vertA widthA heightA a ->
Full horizB vertB widthB heightB a) ->
Full vertA horizA heightA widthA a ->
matrix ->
Full vertB horizB heightB widthB a
swapMultiply multiplyTrans a b = transpose $ multiplyTrans b $ transpose a
mapHeight ::
(Extent.GeneralTallWide vert horiz,
Extent.GeneralTallWide horiz vert) =>
(heightA -> heightB) ->
Full vert horiz heightA width a ->
Full vert horiz heightB width a
mapHeight f =
Array.mapShape
(\(MatrixShape.Full order extent) ->
MatrixShape.Full order $ Extent.mapHeight f extent)
mapWidth ::
(Extent.GeneralTallWide vert horiz,
Extent.GeneralTallWide horiz vert) =>
(widthA -> widthB) ->
Full vert horiz height widthA a ->
Full vert horiz height widthB a
mapWidth f =
Array.mapShape
(\(MatrixShape.Full order extent) ->
MatrixShape.Full order $ Extent.mapWidth f extent)
singleRow :: Order -> Vector width a -> General () width a
singleRow order = Array.mapShape (MatrixShape.general order ())
singleColumn :: Order -> Vector height a -> General height () a
singleColumn order = Array.mapShape (flip (MatrixShape.general order) ())
flattenRow :: General () width a -> Vector width a
flattenRow = Array.mapShape MatrixShape.fullWidth
flattenColumn :: General height () a -> Vector height a
flattenColumn = Array.mapShape MatrixShape.fullHeight
liftRow ::
Order ->
(Vector height0 a -> Vector height1 b) ->
General () height0 a -> General () height1 b
liftRow order f = singleRow order . f . flattenRow
liftColumn ::
Order ->
(Vector height0 a -> Vector height1 b) ->
General height0 () a -> General height1 () b
liftColumn order f = singleColumn order . f . flattenColumn
unliftRow ::
Order ->
(General () height0 a -> General () height1 b) ->
Vector height0 a -> Vector height1 b
unliftRow order f = flattenRow . f . singleRow order
unliftColumn ::
Order ->
(General height0 () a -> General height1 () b) ->
Vector height0 a -> Vector height1 b
unliftColumn order f = flattenColumn . f . singleColumn order
forceRowMajor ::
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width,
Class.Floating a) =>
Full vert horiz height width a ->
Full vert horiz height width a
forceRowMajor (Array shape@(MatrixShape.Full order extent) x) =
case order of
RowMajor -> Array shape x
ColumnMajor ->
Array.unsafeCreate (MatrixShape.Full RowMajor extent) $ \yPtr ->
withForeignPtr x $ \xPtr -> do
let (height, width) = Extent.dimensions extent
let n = Shape.size width
let m = Shape.size height
Private.copyTransposed n m xPtr n yPtr
forceOrder ::
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width,
Class.Floating a) =>
Order ->
Full vert horiz height width a ->
Full vert horiz height width a
forceOrder order =
case order of
RowMajor -> forceRowMajor
ColumnMajor -> transpose . forceRowMajor . transpose
takeTop ::
(Extent.C vert, Shape.C height0, Shape.C height1, Shape.C width,
Class.Floating a) =>
Full vert Extent.Big (height0:+:height1) width a ->
Full vert Extent.Big height0 width a
takeTop (Array (MatrixShape.Full order extentA) a) =
let (heightA@(heightB:+:_), width) = Extent.dimensions extentA
extentB = Extent.reduceWideHeight heightB extentA
ma = Shape.size heightA
mb = Shape.size heightB
n = Shape.size width
in Array.unsafeCreateWithSize (MatrixShape.Full order extentB) $
\blockSize bPtr ->
withForeignPtr a $ \aPtr ->
case order of
RowMajor -> copyBlock blockSize aPtr bPtr
ColumnMajor -> copySubMatrix mb n ma aPtr mb bPtr
takeBottom ::
(Extent.C vert, Shape.C height0, Shape.C height1, Shape.C width,
Class.Floating a) =>
Full vert Extent.Big (height0:+:height1) width a ->
Full vert Extent.Big height1 width a
takeBottom (Array (MatrixShape.Full order extentA) a) =
let (heightA@(height0:+:heightB), width) = Extent.dimensions extentA
extentB = Extent.reduceWideHeight heightB extentA
k = Shape.size height0
ma = Shape.size heightA
mb = Shape.size heightB
n = Shape.size width
in Array.unsafeCreateWithSize (MatrixShape.Full order extentB) $
\blockSize bPtr ->
withForeignPtr a $ \aPtr ->
case order of
RowMajor -> copyBlock blockSize (advancePtr aPtr (k*n)) bPtr
ColumnMajor -> copySubMatrix mb n ma (advancePtr aPtr k) mb bPtr
takeLeft ::
(Extent.C vert, Shape.C height, Shape.C width0, Shape.C width1,
Class.Floating a) =>
Full Extent.Big vert height (width0:+:width1) a ->
Full Extent.Big vert height width0 a
takeLeft = transpose . takeTop . transpose
takeRight ::
(Extent.C vert, Shape.C height, Shape.C width0, Shape.C width1,
Class.Floating a) =>
Full Extent.Big vert height (width0:+:width1) a ->
Full Extent.Big vert height width1 a
takeRight = transpose . takeBottom . transpose
splitRows ::
(Extent.C vert, Shape.C width, Class.Floating a) =>
Int ->
Full vert Extent.Big ZeroInt width a ->
Full vert Extent.Big (ZeroInt:+:ZeroInt) width a
splitRows k =
Array.mapShape
(\(MatrixShape.Full order extent) ->
MatrixShape.Full order $
Extent.reduceWideHeight
(Shape.zeroBasedSplit k $ Extent.height extent)
extent)
takeRows, dropRows ::
(Extent.C vert, Shape.C width, Class.Floating a) =>
Int ->
Full vert Extent.Big ZeroInt width a ->
Full vert Extent.Big ZeroInt width a
takeRows k = takeTop . splitRows k
dropRows k = takeBottom . splitRows k
takeColumns, dropColumns ::
(Extent.C horiz, Shape.C height, Class.Floating a) =>
Int ->
Full Extent.Big horiz height ZeroInt a ->
Full Extent.Big horiz height ZeroInt a
takeColumns k = transpose . takeRows k . transpose
dropColumns k = transpose . dropRows k . transpose
liftRowMajor ::
(Extent.C vert, Extent.C horiz) =>
(Array (height, width) a -> Array (height, width) b) ->
(Array (width, height) a -> Array (width, height) b) ->
Full vert horiz height width a ->
Full vert horiz height width b
liftRowMajor fr fc a =
either
(Array.reshape (Array.shape a) . fr)
(Array.reshape (Array.shape a) . fc) $
revealOrder a
scaleRows ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Eq height, Shape.C width, Class.Floating a) =>
Vector height a ->
Full vert horiz height width a ->
Full vert horiz height width a
scaleRows x = liftRowMajor (RowMajor.scaleRows x) (RowMajor.scaleColumns x)
scaleColumns ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Eq width, Class.Floating a) =>
Vector width a ->
Full vert horiz height width a ->
Full vert horiz height width a
scaleColumns x = transpose . scaleRows x . transpose
scaleRowsComplex ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Eq height, Shape.C width, Class.Real a) =>
Vector height a ->
Full vert horiz height width (Complex a) ->
Full vert horiz height width (Complex a)
scaleRowsComplex x =
liftRowMajor
(RowMajor.recomplex . RowMajor.scaleRows x . RowMajor.decomplex)
(RowMajor.recomplex .
RowMajor.scaleColumns
(RowMajor.tensorProduct (Left NonConjugated) x
(Vector.one Shape.Enumeration)) .
RowMajor.decomplex)
scaleColumnsComplex ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Eq width, Class.Real a) =>
Vector width a ->
Full vert horiz height width (Complex a) ->
Full vert horiz height width (Complex a)
scaleColumnsComplex x = transpose . scaleRowsComplex x . transpose
scaleRowsReal ::
(Extent.C vert, Extent.C horiz, Shape.C height, Eq height, Shape.C width,
Class.Floating a) =>
Vector height (RealOf a) ->
Full vert horiz height width a ->
Full vert horiz height width a
scaleRowsReal =
getScaleRowsReal $
Class.switchFloating
(ScaleRowsReal scaleRows)
(ScaleRowsReal scaleRows)
(ScaleRowsReal scaleRowsComplex)
(ScaleRowsReal scaleRowsComplex)
newtype ScaleRowsReal f g a =
ScaleRowsReal {getScaleRowsReal :: f (RealOf a) -> g a -> g a}
scaleColumnsReal ::
(Extent.C vert, Extent.C horiz,
Shape.C height, Shape.C width, Eq width, Class.Floating a) =>
Vector width (RealOf a) ->
Full vert horiz height width a ->
Full vert horiz height width a
scaleColumnsReal x = transpose . scaleRowsReal x . transpose
multiplyVector ::
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Eq width,
Class.Floating a) =>
Full vert horiz height width a -> Vector width a -> Vector height a
multiplyVector a x =
let width = MatrixShape.fullWidth $ Array.shape a
in if width == Array.shape x
then multiplyVectorUnchecked a x
else error "multiplyVector: width shapes mismatch"
multiplyVectorUnchecked ::
(Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width,
Class.Floating a) =>
Full vert horiz height width a -> Vector width a -> Vector height a
multiplyVectorUnchecked
(Array shape@(MatrixShape.Full order extent) a) (Array _ x) =
Array.unsafeCreate (Extent.height extent) $ \yPtr -> do
let (m,n) = MatrixShape.dimensions shape
let lda = m
evalContT $ do
transPtr <- Call.char $ transposeFromOrder order
mPtr <- Call.cint m
nPtr <- Call.cint n
alphaPtr <- Call.number one
aPtr <- ContT $ withForeignPtr a
ldaPtr <- Call.leadingDim lda
xPtr <- ContT $ withForeignPtr x
incxPtr <- Call.cint 1
betaPtr <- Call.number zero
incyPtr <- Call.cint 1
liftIO $
Private.gemv
transPtr mPtr nPtr alphaPtr aPtr ldaPtr
xPtr incxPtr betaPtr yPtr incyPtr
multiply, multiplyColumnMajor ::
(Extent.C vert, Extent.C horiz,
Shape.C height,
Shape.C fuse, Eq fuse,
Shape.C width,
Class.Floating a) =>
Full vert horiz height fuse a ->
Full vert horiz fuse width a ->
Full vert horiz height width a
multiply
(Array (MatrixShape.Full orderA extentA) a)
(Array (MatrixShape.Full orderB extentB) b) =
case Extent.fuse extentA extentB of
Nothing -> error "multiply: fuse shapes mismatch"
Just extent ->
Array.unsafeCreate (MatrixShape.Full orderB extent) $ \cPtr -> do
let (height,fuse) = Extent.dimensions extentA
let width = Extent.width extentB
let m = Shape.size height
let n = Shape.size width
let k = Shape.size fuse
case orderB of
RowMajor ->
Private.multiplyMatrix (flipOrder orderB) (flipOrder orderA)
n k m b a cPtr
ColumnMajor -> Private.multiplyMatrix orderA orderB m k n a b cPtr
multiplyColumnMajor
(Array (MatrixShape.Full orderA extentA) a)
(Array (MatrixShape.Full orderB extentB) b) =
case Extent.fuse extentA extentB of
Nothing -> error "multiply: fuse shapes mismatch"
Just extent ->
Array.unsafeCreate (MatrixShape.Full ColumnMajor extent) $ \cPtr -> do
let (height,fuse) = Extent.dimensions extentA
let width = Extent.width extentB
let m = Shape.size height
let n = Shape.size width
let k = Shape.size fuse
Private.multiplyMatrix orderA orderB m k n a b cPtr