{-# LANGUAGE TypeFamilies #-} module Numeric.LAPACK.Matrix.RowMajor where import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape import qualified Numeric.LAPACK.Matrix.Extent.Private as Extent import qualified Numeric.LAPACK.Matrix.Private as Matrix import qualified Numeric.LAPACK.Private as Private import Numeric.LAPACK.Matrix.Shape.Private (Order(RowMajor, ColumnMajor)) import Numeric.LAPACK.Matrix.Modifier (Conjugation(NonConjugated,Conjugated)) import Numeric.LAPACK.Scalar (zero, one) import Numeric.LAPACK.Private (ComplexPart, pointerSeq) import qualified Numeric.BLAS.FFI.Generic as BlasGen import qualified Numeric.Netlib.Utility as Call import qualified Numeric.Netlib.Class as Class import Foreign.Marshal.Array (copyArray, advancePtr) import Foreign.ForeignPtr (withForeignPtr, castForeignPtr) import Foreign.Storable (Storable) import Control.Monad.Trans.Cont (ContT(ContT), evalContT) import Control.Monad.IO.Class (liftIO) import Control.Applicative (liftA2) import qualified Data.Array.Comfort.Storable.Unchecked as Array import qualified Data.Array.Comfort.Shape as Shape import Data.Array.Comfort.Storable.Unchecked (Array(Array)) import Data.Complex (Complex) import Data.Foldable (forM_) type Matrix height width = Array (height,width) type Vector = Array takeRow :: (Shape.Indexed height, Shape.C width, Shape.Index height ~ ix, Storable a) => ix -> Matrix height width a -> Vector width a takeRow ix (Array (height,width) x) = Array.unsafeCreateWithSize width $ \n yPtr -> withForeignPtr x $ \xPtr -> copyArray yPtr (advancePtr xPtr (n * Shape.offset height ix)) n takeColumn :: (Shape.C height, Shape.Indexed width, Shape.Index width ~ ix, Class.Floating a) => ix -> Matrix height width a -> Vector height a takeColumn ix (Array (height,width) x) = Array.unsafeCreateWithSize height $ \n yPtr -> evalContT $ do let offset = Shape.offset width ix nPtr <- Call.cint n xPtr <- ContT $ withForeignPtr x incxPtr <- Call.cint $ Shape.size width incyPtr <- Call.cint 1 liftIO $ BlasGen.copy nPtr (advancePtr xPtr offset) incxPtr yPtr incyPtr fromRows :: (Shape.C width, Eq width, Storable a) => width -> [Vector width a] -> Matrix Matrix.ZeroInt width a fromRows width rows = Array.unsafeCreate (Matrix.zeroInt $ length rows, width) $ \dstPtr -> let widthSize = Shape.size width in forM_ (zip (pointerSeq widthSize dstPtr) rows) $ \(dstRowPtr, Array.Array rowWidth srcFPtr) -> withForeignPtr srcFPtr $ \srcPtr -> do Call.assert "Matrix.fromRows: non-matching vector size" (width == rowWidth) copyArray dstRowPtr srcPtr widthSize tensorProduct :: (Shape.C height, Shape.C width, Class.Floating a) => Either Conjugation Conjugation -> Vector height a -> Vector width a -> Matrix height width a tensorProduct side (Array height x) (Array width y) = Array.unsafeCreate (height,width) $ \cPtr -> do let m = Shape.size width let n = Shape.size height let trans conjugated = case conjugated of NonConjugated -> 'T'; Conjugated -> 'C' let ((transa,transb),(lda,ldb)) = case side of Left c -> ((trans c, 'N'),(1,1)) Right c -> (('N', trans c),(m,n)) evalContT $ do transaPtr <- Call.char transa transbPtr <- Call.char transb mPtr <- Call.cint m nPtr <- Call.cint n kPtr <- Call.cint 1 alphaPtr <- Call.number one aPtr <- ContT $ withForeignPtr y ldaPtr <- Call.leadingDim lda bPtr <- ContT $ withForeignPtr x ldbPtr <- Call.leadingDim ldb betaPtr <- Call.number zero ldcPtr <- Call.leadingDim m liftIO $ BlasGen.gemm transaPtr transbPtr mPtr nPtr kPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr decomplex :: (Class.Real a) => Matrix height width (Complex a) -> Matrix height (width, Shape.Enumeration ComplexPart) a decomplex (Array (height,width) a) = Array (height, (width, Shape.Enumeration)) (castForeignPtr a) recomplex :: (Class.Real a) => Matrix height (width, Shape.Enumeration ComplexPart) a -> Matrix height width (Complex a) recomplex (Array (height, (width, Shape.Enumeration)) a) = Array (height,width) (castForeignPtr a) scaleRows :: (Shape.C height, Eq height, Shape.C width, Class.Floating a) => Vector height a -> Matrix height width a -> Matrix height width a scaleRows (Array heightX x) (Array shape@(height,width) a) = Array.unsafeCreate shape $ \bPtr -> do Call.assert "scaleRows: sizes mismatch" (heightX == height) evalContT $ do let m = Shape.size height let n = Shape.size width nPtr <- Call.cint n xPtr <- ContT $ withForeignPtr x aPtr <- ContT $ withForeignPtr a incaPtr <- Call.cint 1 incbPtr <- Call.cint 1 liftIO $ sequence_ $ take m $ zipWith3 (\xkPtr akPtr bkPtr -> do BlasGen.copy nPtr akPtr incaPtr bkPtr incbPtr BlasGen.scal nPtr xkPtr bkPtr incbPtr) (pointerSeq 1 xPtr) (pointerSeq n aPtr) (pointerSeq n bPtr) scaleColumns :: (Shape.C height, Shape.C width, Eq width, Class.Floating a) => Vector width a -> Matrix height width a -> Matrix height width a scaleColumns (Array widthX x) (Array shape@(height,width) a) = Array.unsafeCreate shape $ \bPtr -> do Call.assert "scaleColumns: sizes mismatch" (widthX == width) evalContT $ do let m = Shape.size height let n = Shape.size width transPtr <- Call.char 'N' nPtr <- Call.cint n klPtr <- Call.cint 0 kuPtr <- Call.cint 0 alphaPtr <- Call.number one xPtr <- ContT $ withForeignPtr x ldxPtr <- Call.leadingDim 1 aPtr <- ContT $ withForeignPtr a incaPtr <- Call.cint 1 betaPtr <- Call.number zero incbPtr <- Call.cint 1 liftIO $ sequence_ $ take m $ zipWith (\akPtr bkPtr -> Private.gbmv transPtr nPtr nPtr klPtr kuPtr alphaPtr xPtr ldxPtr akPtr incaPtr betaPtr bkPtr incbPtr) (pointerSeq n aPtr) (pointerSeq n bPtr) kronecker :: (Extent.C vert, Extent.C horiz, Shape.C heightA, Shape.C widthA, Shape.C heightB, Shape.C widthB, Class.Floating a) => Matrix.Full vert horiz heightA widthA a -> Matrix heightB widthB a -> Matrix (heightA,heightB) (widthA,widthB) a kronecker (Array (MatrixShape.Full orderA extentA) a) (Array (heightB,widthB) b) = let (heightA,widthA) = Extent.dimensions extentA in Array.unsafeCreate ((heightA,heightB), (widthA,widthB)) $ \cPtr -> evalContT $ do let (ma,na) = (Shape.size heightA, Shape.size widthA) let (mb,nb) = (Shape.size heightB, Shape.size widthB) let (lda,istep) = case orderA of RowMajor -> (1,na) ColumnMajor -> (ma,1) transaPtr <- Call.char 'N' transbPtr <- Call.char 'T' mPtr <- Call.cint na nPtr <- Call.cint nb kPtr <- Call.cint 1 alphaPtr <- Call.number one aPtr <- ContT $ withForeignPtr a ldaPtr <- Call.leadingDim lda bPtr <- ContT $ withForeignPtr b ldbPtr <- Call.leadingDim 1 betaPtr <- Call.number zero ldcPtr <- Call.leadingDim nb liftIO $ forM_ (liftA2 (,) (take ma [0..]) (take mb [0..])) $ \(i,j) -> do let aiPtr = advancePtr aPtr (istep*i) let bjPtr = advancePtr bPtr (nb*j) let cijPtr = advancePtr cPtr (na*nb*(j+mb*i)) BlasGen.gemm transbPtr transaPtr nPtr mPtr kPtr alphaPtr bjPtr ldbPtr aiPtr ldaPtr betaPtr cijPtr ldcPtr