Safe Haskell | None |
---|
- data LowerUpper vert horiz height width a
- type Square sh = LowerUpper Small Small sh sh
- data Transposition
- data Conjugation
- data Inversion
- = NonInverted
- | Inverted
- mapExtent :: (C vertA, C horizA) => (C vertB, C horizB) => Map vertA horizA vertB horizB height width -> LowerUpper vertA horizA height width a -> LowerUpper vertB horizB height width a
- fromMatrix :: (C vert, C horiz, C height, C width, Floating a) => Full vert horiz height width a -> LowerUpper vert horiz height width a
- toMatrix :: (C vert, C horiz, C height, Eq height, C width, Eq width, Floating a) => LowerUpper vert horiz height width a -> Full vert horiz height width a
- solve :: (C vert, C horiz, Eq height, C height, C width, Floating a) => Square height a -> Full vert horiz height width a -> Full vert horiz height width a
- multiplyFullRight :: (C vert, C horiz, C height, Eq height, C width, C fuse, Eq fuse, Floating a) => LowerUpper vert horiz height fuse a -> Full vert horiz fuse width a -> Full vert horiz height width a
- determinant :: (C sh, Floating a, Eq a) => Square sh a -> a
- extractP :: (C vert, C horiz, C height) => Inversion -> LowerUpper vert horiz height width a -> Permutation height
- multiplyP :: (C vertA, C horizA, C vertB, C horizB, Eq height, C height, C widthA, C widthB, Floating a) => Inversion -> LowerUpper vertA horizA height widthA a -> Full vertB horizB height widthB a -> Full vertB horizB height widthB a
- extractL :: (C vert, C horiz, C height, C width, Floating a) => LowerUpper vert horiz height width a -> Full vert horiz height width a
- wideExtractL :: (C horiz, C height, C width, Floating a) => LowerUpper Small horiz height width a -> UnitLower height a
- wideMultiplyL :: (C horizA, C vert, C horiz, C height, Eq height, C widthA, C widthB, Floating a) => Transposition -> LowerUpper Small horizA height widthA a -> Full vert horiz height widthB a -> Full vert horiz height widthB a
- wideSolveL :: (C horizA, C vert, C horiz, C height, Eq height, C width, C nrhs, Floating a) => Transposition -> Conjugation -> LowerUpper Small horizA height width a -> Full vert horiz height nrhs a -> Full vert horiz height nrhs a
- extractU :: (C vert, C horiz, C height, C width, Floating a) => LowerUpper vert horiz height width a -> Full vert horiz height width a
- tallExtractU :: (C vert, C height, C width, Floating a) => LowerUpper vert Small height width a -> Upper width a
- tallMultiplyU :: (C vertA, C vert, C horiz, C height, Eq height, C heightA, C widthB, Floating a) => Transposition -> LowerUpper vertA Small heightA height a -> Full vert horiz height widthB a -> Full vert horiz height widthB a
- tallSolveU :: (C vertA, C vert, C horiz, C height, C width, Eq width, C nrhs, Floating a) => Transposition -> Conjugation -> LowerUpper vertA Small height width a -> Full vert horiz width nrhs a -> Full vert horiz width nrhs a
- caseTallWide :: (C vert, C horiz, C height, C width) => LowerUpper vert horiz height width a -> Either (Tall height width a) (Wide height width a)
Documentation
data LowerUpper vert horiz height width a Source
type Square sh = LowerUpper Small Small sh shSource
data Transposition Source
data Conjugation Source
mapExtent :: (C vertA, C horizA) => (C vertB, C horizB) => Map vertA horizA vertB horizB height width -> LowerUpper vertA horizA height width a -> LowerUpper vertB horizB height width aSource
fromMatrix :: (C vert, C horiz, C height, C width, Floating a) => Full vert horiz height width a -> LowerUpper vert horiz height width aSource
LowerUpper.fromMatrix a
computes the LU decomposition of matrix a
with row pivotisation.
You can reconstruct a
from lu
depending on wether a
is tall or wide.
LU.multiplyP False lu $ LU.extractL lu <#> LU.tallExtractU lu LU.multiplyP False lu $ LU.wideExtractL lu <#> LU.extractU lu
toMatrix :: (C vert, C horiz, C height, Eq height, C width, Eq width, Floating a) => LowerUpper vert horiz height width a -> Full vert horiz height width aSource
solve :: (C vert, C horiz, Eq height, C height, C width, Floating a) => Square height a -> Full vert horiz height width a -> Full vert horiz height width aSource
multiplyFullRight :: (C vert, C horiz, C height, Eq height, C width, C fuse, Eq fuse, Floating a) => LowerUpper vert horiz height fuse a -> Full vert horiz fuse width a -> Full vert horiz height width aSource
determinant :: (C sh, Floating a, Eq a) => Square sh a -> aSource
Caution:
LU.determinant . LU.fromMatrix
will fail for singular matrices.
extractP :: (C vert, C horiz, C height) => Inversion -> LowerUpper vert horiz height width a -> Permutation heightSource
multiplyP :: (C vertA, C horizA, C vertB, C horizB, Eq height, C height, C widthA, C widthB, Floating a) => Inversion -> LowerUpper vertA horizA height widthA a -> Full vertB horizB height widthB a -> Full vertB horizB height widthB aSource
extractL :: (C vert, C horiz, C height, C width, Floating a) => LowerUpper vert horiz height width a -> Full vert horiz height width aSource
wideExtractL :: (C horiz, C height, C width, Floating a) => LowerUpper Small horiz height width a -> UnitLower height aSource
wideMultiplyL :: (C horizA, C vert, C horiz, C height, Eq height, C widthA, C widthB, Floating a) => Transposition -> LowerUpper Small horizA height widthA a -> Full vert horiz height widthB a -> Full vert horiz height widthB aSource
wideMultiplyL transposed lu a
multiplies the square part of lu
containing the lower triangular matrix with a
.
wideMultiplyL False lu a == wideExtractL lu <#> a wideMultiplyL True lu a == wideExtractL (Tri.transposeUp lu) <#> a
wideSolveL :: (C horizA, C vert, C horiz, C height, Eq height, C width, C nrhs, Floating a) => Transposition -> Conjugation -> LowerUpper Small horizA height width a -> Full vert horiz height nrhs a -> Full vert horiz height nrhs aSource
extractU :: (C vert, C horiz, C height, C width, Floating a) => LowerUpper vert horiz height width a -> Full vert horiz height width aSource
tallExtractU :: (C vert, C height, C width, Floating a) => LowerUpper vert Small height width a -> Upper width aSource
tallMultiplyU :: (C vertA, C vert, C horiz, C height, Eq height, C heightA, C widthB, Floating a) => Transposition -> LowerUpper vertA Small heightA height a -> Full vert horiz height widthB a -> Full vert horiz height widthB aSource
tallMultiplyU transposed lu a
multiplies the square part of lu
containing the upper triangular matrix with a
.
tallMultiplyU False lu a == tallExtractU lu <#> a tallMultiplyU True lu a == tallExtractU (Tri.transposeDown lu) <#> a
tallSolveU :: (C vertA, C vert, C horiz, C height, C width, Eq width, C nrhs, Floating a) => Transposition -> Conjugation -> LowerUpper vertA Small height width a -> Full vert horiz width nrhs a -> Full vert horiz width nrhs aSource
caseTallWide :: (C vert, C horiz, C height, C width) => LowerUpper vert horiz height width a -> Either (Tall height width a) (Wide height width a)Source