Safe Haskell | None |
---|---|
Language | Haskell98 |
Data.GI.Base.ShortPrelude
Description
The Haskell Prelude exports a number of symbols that can easily collide with functions appearing in bindings. The generated code requires just a small subset of the functions in the Prelude, together with some of the functionality in Data.GI.Base, we reexport this explicitly here.
- module Data.Char
- module Data.Int
- module Data.Word
- module Data.ByteString.Char8
- module Foreign.C
- module Foreign.Ptr
- module Foreign.ForeignPtr
- module Foreign.ForeignPtr.Unsafe
- module Foreign.Storable
- module Control.Applicative
- module Control.Exception
- module Control.Monad.IO.Class
- module Data.GI.Base.Attributes
- module Data.GI.Base.BasicTypes
- module Data.GI.Base.BasicConversions
- module Data.GI.Base.Closure
- module Data.GI.Base.Constructible
- module Data.GI.Base.GError
- module Data.GI.Base.GHashTable
- module Data.GI.Base.GParamSpec
- module Data.GI.Base.GObject
- module Data.GI.Base.GVariant
- module Data.GI.Base.GValue
- module Data.GI.Base.ManagedPtr
- module Data.GI.Base.Overloading
- module Data.GI.Base.Properties
- module Data.GI.Base.Signals
- module Data.GI.Base.Utils
- module GHC.TypeLits
- class Enum a where
- class Show a where
- class Eq a where
- data IO a :: * -> *
- class Monad m where
- data Maybe a :: * -> *
- (.) :: (b -> c) -> (a -> b) -> a -> c
- ($) :: (a -> b) -> a -> b
- (++) :: [a] -> [a] -> [a]
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- data Bool :: *
- data Float :: *
- data Double :: *
- undefined :: a
- error :: [Char] -> a
- map :: (a -> b) -> [a] -> [b]
- length :: [a] -> Int
- mapM :: Monad m => (a -> m b) -> [a] -> m [b]
- mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
- when :: Monad m => Bool -> m () -> m ()
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
Documentation
module Data.Char
module Data.Int
module Data.Word
module Data.ByteString.Char8
module Foreign.C
module Foreign.Ptr
module Foreign.ForeignPtr
module Foreign.ForeignPtr.Unsafe
module Foreign.Storable
module Control.Applicative
module Control.Exception
module Control.Monad.IO.Class
module Data.GI.Base.Attributes
module Data.GI.Base.BasicTypes
module Data.GI.Base.Closure
module Data.GI.Base.Constructible
module Data.GI.Base.GError
module Data.GI.Base.GHashTable
module Data.GI.Base.GParamSpec
module Data.GI.Base.GObject
module Data.GI.Base.GVariant
module Data.GI.Base.GValue
module Data.GI.Base.ManagedPtr
module Data.GI.Base.Overloading
module Data.GI.Base.Properties
module Data.GI.Base.Signals
module Data.GI.Base.Utils
module GHC.TypeLits
class Enum a where
Class Enum
defines operations on sequentially ordered types.
The enumFrom
... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum
may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum
from 0
through n-1
.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded
as well as Enum
,
the following should hold:
- The calls
andsucc
maxBound
should result in a runtime error.pred
minBound
fromEnum
andtoEnum
should give a runtime error if the result value is not representable in the result type. For example,
is an error.toEnum
7 ::Bool
enumFrom
andenumFromThen
should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
Convert from an Int
.
Instances
Enum Bool | |
Enum Char | |
Enum Double | |
Enum Float | |
Enum Int | |
Enum Int8 | |
Enum Int16 | |
Enum Int32 | |
Enum Int64 | |
Enum Integer | |
Enum Ordering | |
Enum Word | |
Enum Word8 | |
Enum Word16 | |
Enum Word32 | |
Enum Word64 | |
Enum () | |
Enum WordPtr | |
Enum IntPtr | |
Enum GeneralCategory | |
Enum CChar | |
Enum CSChar | |
Enum CUChar | |
Enum CShort | |
Enum CUShort | |
Enum CInt | |
Enum CUInt | |
Enum CLong | |
Enum CULong | |
Enum CLLong | |
Enum CULLong | |
Enum CFloat | |
Enum CDouble | |
Enum CPtrdiff | |
Enum CSize | |
Enum CWchar | |
Enum CSigAtomic | |
Enum CClock | |
Enum CTime | |
Enum CUSeconds | |
Enum CSUSeconds | |
Enum CIntPtr | |
Enum CUIntPtr | |
Enum CIntMax | |
Enum CUIntMax | |
Enum I16 | |
Integral a => Enum (Ratio a) | |
Enum (Proxy k s) | |
(~) k a b => Enum ((:~:) k a b) |
class Show a where
Conversion of values to readable String
s.
Minimal complete definition: showsPrec
or show
.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Methods
Arguments
:: Int | the operator precedence of the enclosing
context (a number from |
-> a | the value to be converted to a |
-> ShowS |
Convert a value to a readable String
.
showsPrec
should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read
and Show
satisfy the following:
That is, readsPrec
parses the string produced by
showsPrec
, and delivers the value that showsPrec
started with.
Instances
class Eq a where
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
Instances
Eq Bool | |
Eq Char | |
Eq Double | |
Eq Float | |
Eq Int | |
Eq Int8 | |
Eq Int16 | |
Eq Int32 | |
Eq Int64 | |
Eq Integer | |
Eq Ordering | |
Eq Word | |
Eq Word8 | |
Eq Word16 | |
Eq Word32 | |
Eq Word64 | |
Eq () | |
Eq SpecConstrAnnotation | |
Eq SomeNat | |
Eq SomeSymbol | |
Eq WordPtr | |
Eq IntPtr | |
Eq GeneralCategory | |
Eq CChar | |
Eq CSChar | |
Eq CUChar | |
Eq CShort | |
Eq CUShort | |
Eq CInt | |
Eq CUInt | |
Eq CLong | |
Eq CULong | |
Eq CLLong | |
Eq CULLong | |
Eq CFloat | |
Eq CDouble | |
Eq CPtrdiff | |
Eq CSize | |
Eq CWchar | |
Eq CSigAtomic | |
Eq CClock | |
Eq CTime | |
Eq CUSeconds | |
Eq CSUSeconds | |
Eq CIntPtr | |
Eq CUIntPtr | |
Eq CIntMax | |
Eq CUIntMax | |
Eq MaskingState | |
Eq ErrorCall | |
Eq ArithException | |
Eq All | |
Eq Any | |
Eq Arity | |
Eq Fixity | |
Eq Associativity | |
Eq TypeRep | |
Eq TyCon | |
Eq Fingerprint | |
Eq ByteString | |
Eq I16 | |
Eq Text | |
Eq GVariantSignature | |
Eq GVariantObjectPath | |
Eq GVariantHandle | |
Eq a => Eq [a] | |
Eq a => Eq (Ratio a) | |
Eq (StablePtr a) | |
Eq (Ptr a) | |
Eq (FunPtr a) | |
Eq (U1 p) | |
Eq p => Eq (Par1 p) | |
Eq (ForeignPtr a) | |
Eq a => Eq (ZipList a) | |
Eq a => Eq (Dual a) | |
Eq a => Eq (Sum a) | |
Eq a => Eq (Product a) | |
Eq a => Eq (First a) | |
Eq a => Eq (Last a) | |
Eq a => Eq (Maybe a) | |
Eq a => Eq (GVariantSinglet a) | |
(Eq a, Eq b) => Eq (Either a b) | |
Eq (f p) => Eq (Rec1 f p) | |
(Eq a, Eq b) => Eq (a, b) | |
Eq (Proxy k s) | |
(Eq k, Eq a) => Eq (Map k a) | |
(Eq key, Eq value) => Eq (GVariantDictEntry key value) | |
Eq c => Eq (K1 i c p) | |
(Eq (f p), Eq (g p)) => Eq ((:+:) f g p) | |
(Eq (f p), Eq (g p)) => Eq ((:*:) f g p) | |
Eq (f (g p)) => Eq ((:.:) f g p) | |
(Eq a, Eq b, Eq c) => Eq (a, b, c) | |
Eq ((:~:) k a b) | |
Eq (f p) => Eq (M1 i c f p) | |
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
data IO a :: * -> *
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
class Monad m where
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Minimal complete definition: >>=
and return
.
Instances of Monad
should satisfy the following laws:
return a >>= k == k a m >>= return == m m >>= (\x -> k x >>= h) == (m >>= k) >>= h
Instances of both Monad
and Functor
should additionally satisfy the law:
fmap f xs == xs >>= return . f
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: m a -> m b -> m b infixl 1
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
return :: a -> m a
Inject a value into the monadic type.
Fail with a message. This operation is not part of the
mathematical definition of a monad, but is invoked on pattern-match
failure in a do
expression.
data Maybe a :: * -> *
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
Alternative Maybe | |
Monad Maybe | |
Functor Maybe | |
MonadPlus Maybe | |
Applicative Maybe | |
Generic1 Maybe | |
Eq a => Eq (Maybe a) | |
Ord a => Ord (Maybe a) | |
Show a => Show (Maybe a) | |
Generic (Maybe a) | |
Monoid a => Monoid (Maybe a) | Lift a semigroup into |
NullToNothing (Maybe a) | |
IsGValue (Maybe String) | |
IsGValue (Maybe Text) | |
IsGVariant a => IsGVariant (Maybe a) | |
Typeable (* -> *) Maybe | |
type Rep1 Maybe = D1 D1Maybe ((:+:) (C1 C1_0Maybe U1) (C1 C1_1Maybe (S1 NoSelector Par1))) | |
type Rep (Maybe a) = D1 D1Maybe ((:+:) (C1 C1_0Maybe U1) (C1 C1_1Maybe (S1 NoSelector (Rec0 a)))) | |
type (==) (Maybe k) a b = EqMaybe k a b |
(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9
Function composition.
($) :: (a -> b) -> a -> b infixr 0
Application operator. This operator is redundant, since ordinary
application (f x)
means the same as (f
. However, $
x)$
has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as
,
or map
($
0) xs
.zipWith
($
) fs xs
(++) :: [a] -> [a] -> [a] infixr 5
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1
Same as >>=
, but with the arguments interchanged.
data Bool :: *
data Float :: *
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
data Double :: *
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Enum Double | |
Eq Double | |
Floating Double | |
Fractional Double | |
Num Double | |
Ord Double | |
Real Double | |
RealFloat Double | |
RealFrac Double | |
Show Double | |
Generic Double | |
Storable Double | |
IsGValue Double | |
IsGVariantBasicType Double | |
IsGVariant Double | |
Typeable * Double | |
type Rep Double = D1 D_Double (C1 C_Double (S1 NoSelector (Rec0 Double))) |
undefined :: a
map :: (a -> b) -> [a] -> [b]
map
f xs
is the list obtained by applying f
to each element
of xs
, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
O(n). length
returns the length of a finite list as an Int
.
It is an instance of the more general genericLength
,
the result type of which may be any kind of number.
when :: Monad m => Bool -> m () -> m ()
Conditional execution of monadic expressions. For example,
when debug (putStr "Debugging\n")
will output the string Debugging\n
if the Boolean value debug
is True
,
and otherwise do nothing.
fromIntegral :: (Integral a, Num b) => a -> b
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b
general coercion to fractional types