module Data.Semigroup.Abelian
    ( AbelianSemigroup
    , FreeAbelianSemigroup
    , toNonEmpty
    , fromNonEmpty
    ) where

import           Data.Constraint (Dict (..))
import           Data.IntSet (IntSet)
import           Data.List.NonEmpty (NonEmpty)
import qualified Data.List.NonEmpty as NE
import           Data.Map (Map)
import qualified Data.Map as Map
import           Data.Set (Set)
import           Data.Semigroup
    ( Semigroup
    , All
    , Any
    , Dual
    , Max
    , Min
    , Option
    , Product
    , Sum
    )
import           Data.Void (Void)

import           Data.Algebra.Free
    ( AlgebraType
    , AlgebraType0
    , FreeAlgebra (..)
    , Proof (..)
    )

-- |
-- Class of commutative monoids, e.g. with additional law:
-- @
--  a <> b = b <> a
-- @
class Semigroup m => AbelianSemigroup m

instance AbelianSemigroup Void

instance AbelianSemigroup ()

instance AbelianSemigroup All

instance AbelianSemigroup Any

instance AbelianSemigroup a => AbelianSemigroup (Dual a)

instance Ord a => AbelianSemigroup (Max a)

instance Ord a => AbelianSemigroup (Min a)

instance AbelianSemigroup a => AbelianSemigroup (Option a)

instance Num a => AbelianSemigroup (Product a)

instance Num a => AbelianSemigroup (Sum a)

instance Ord a => AbelianSemigroup (Set a)

instance AbelianSemigroup IntSet

-- |
-- Free abelian semigroup is isomorphic to a non empty map with keys @a@ and
-- values positive natural numbers.
newtype FreeAbelianSemigroup a = FreeAbelianSemigroup { runFreeAbelianSemigroup :: Map a Integer }
    deriving (Ord, Eq, Show)

toNonEmpty :: FreeAbelianSemigroup a -> NonEmpty (a, Integer)
toNonEmpty (FreeAbelianSemigroup as) = NE.fromList . Map.toList $ as

-- |
-- Smart constructor which creates `FreeAbelianSemigroup` from a non empty list
-- of pairs @(a, n) :: (a, Integer)@ where @n > 0@.
fromNonEmpty :: Ord a => NonEmpty (a, Integer) -> Maybe (FreeAbelianSemigroup a)
fromNonEmpty = fmap (FreeAbelianSemigroup . Map.fromList) . go . NE.toList
    where
    go [] = Just []
    go ((a, n) : as) | n < 0     = Nothing
                     | otherwise = ((a, n) :) <$> go as

instance Ord a => Semigroup (FreeAbelianSemigroup a) where
    (FreeAbelianSemigroup a) <> (FreeAbelianSemigroup b) = FreeAbelianSemigroup $ Map.unionWith (+) a b

instance Ord a => AbelianSemigroup (FreeAbelianSemigroup a)

type instance AlgebraType0 FreeAbelianSemigroup a = Ord a
type instance AlgebraType  FreeAbelianSemigroup a = (Ord a, AbelianSemigroup a)
instance FreeAlgebra FreeAbelianSemigroup where
    returnFree a = FreeAbelianSemigroup $ Map.singleton a 1
    foldMapFree f (FreeAbelianSemigroup as) = foldMapFree f (toNonEmpty_ as)
        where
        replicate_ :: a -> Integer -> [a]
        replicate_ _ n | n <= 0 = error "foldMapFree @FreeAbelianSemigroup: impossible"
        replicate_ a 1 = [a]
        replicate_ a n = a : replicate_ a (n - 1)

        toNonEmpty_ :: Map a Integer -> NonEmpty a
        toNonEmpty_ = NE.fromList . concat . map (uncurry replicate_) . Map.toList

    proof  = Proof Dict
    forget = Proof Dict