Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Given an applicative, the free monad transformer.
Synopsis
- data FreeF f a b
- newtype FreeT f m a = FreeT {}
- type Free f = FreeT f Identity
- free :: FreeF f a (Free f a) -> Free f a
- runFree :: Free f a -> FreeF f a (Free f a)
- liftF :: (Functor f, MonadFree f m) => f a -> m a
- iterT :: (Applicative f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a
- iterTM :: (Applicative f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a
- hoistFreeT :: (Functor m, Applicative f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b
- transFreeT :: (Monad m, Applicative g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b
- joinFreeT :: (Monad m, Traversable f, Applicative f) => FreeT f m a -> m (Free f a)
- cutoff :: (Applicative f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a)
- partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b
- intersperseT :: (Monad m, Applicative f) => f a -> FreeT f m b -> FreeT f m b
- intercalateT :: (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b
- retractT :: (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a
- retract :: Monad f => Free f a -> f a
- iter :: Applicative f => (f a -> a) -> Free f a -> a
- iterM :: (Applicative f, Monad m) => (f (m a) -> m a) -> Free f a -> m a
- class Monad m => MonadFree f m | m -> f where
- wrap :: f (m a) -> m a
The base functor
The base functor for a free monad.
Instances
Generic1 (FreeF f a :: Type -> Type) Source # | |
Foldable f => Bifoldable (FreeF f) Source # | |
Functor f => Bifunctor (FreeF f) Source # | |
Traversable f => Bitraversable (FreeF f) Source # | |
Defined in Control.Monad.Trans.Free.Ap bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> FreeF f a b -> f0 (FreeF f c d) # | |
Eq1 f => Eq2 (FreeF f) Source # | |
Ord1 f => Ord2 (FreeF f) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
Read1 f => Read2 (FreeF f) Source # | |
Defined in Control.Monad.Trans.Free.Ap liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (FreeF f a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [FreeF f a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (FreeF f a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [FreeF f a b] # | |
Show1 f => Show2 (FreeF f) Source # | |
Foldable f => Foldable (FreeF f a) Source # | |
Defined in Control.Monad.Trans.Free.Ap fold :: Monoid m => FreeF f a m -> m # foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m # foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b # foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 # toList :: FreeF f a a0 -> [a0] # null :: FreeF f a a0 -> Bool # length :: FreeF f a a0 -> Int # elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool # maximum :: Ord a0 => FreeF f a a0 -> a0 # minimum :: Ord a0 => FreeF f a a0 -> a0 # | |
(Eq1 f, Eq a) => Eq1 (FreeF f a) Source # | |
(Ord1 f, Ord a) => Ord1 (FreeF f a) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
(Read1 f, Read a) => Read1 (FreeF f a) Source # | |
Defined in Control.Monad.Trans.Free.Ap liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (FreeF f a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [FreeF f a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (FreeF f a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [FreeF f a a0] # | |
(Show1 f, Show a) => Show1 (FreeF f a) Source # | |
Traversable f => Traversable (FreeF f a) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
Functor f => Functor (FreeF f a) Source # | |
(Typeable f, Typeable b, Data a, Data (f b)) => Data (FreeF f a b) Source # | |
Defined in Control.Monad.Trans.Free.Ap gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> FreeF f a b -> c (FreeF f a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (FreeF f a b) # toConstr :: FreeF f a b -> Constr # dataTypeOf :: FreeF f a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (FreeF f a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (FreeF f a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> FreeF f a b -> FreeF f a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FreeF f a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FreeF f a b -> r # gmapQ :: (forall d. Data d => d -> u) -> FreeF f a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FreeF f a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # | |
Generic (FreeF f a b) Source # | |
(Read a, Read (f b)) => Read (FreeF f a b) Source # | |
(Show a, Show (f b)) => Show (FreeF f a b) Source # | |
(Eq a, Eq (f b)) => Eq (FreeF f a b) Source # | |
(Ord a, Ord (f b)) => Ord (FreeF f a b) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
type Rep1 (FreeF f a :: Type -> Type) Source # | |
Defined in Control.Monad.Trans.Free.Ap type Rep1 (FreeF f a :: Type -> Type) = D1 ('MetaData "FreeF" "Control.Monad.Trans.Free.Ap" "free-5.2-8yEobwXBbzsEnejCWouYBv" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f))) | |
type Rep (FreeF f a b) Source # | |
Defined in Control.Monad.Trans.Free.Ap type Rep (FreeF f a b) = D1 ('MetaData "FreeF" "Control.Monad.Trans.Free.Ap" "free-5.2-8yEobwXBbzsEnejCWouYBv" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f b)))) |
The free monad transformer
The "free monad transformer" for an applicative f
Instances
(Applicative f, Monad m) => MonadFree f (FreeT f m) Source # | |
(Applicative f, MonadError e m) => MonadError e (FreeT f m) Source # | |
Defined in Control.Monad.Trans.Free.Ap throwError :: e -> FreeT f m a # catchError :: FreeT f m a -> (e -> FreeT f m a) -> FreeT f m a # | |
(Applicative f, MonadReader r m) => MonadReader r (FreeT f m) Source # | |
(Applicative f, MonadState s m) => MonadState s (FreeT f m) Source # | |
(Applicative f, MonadWriter w m) => MonadWriter w (FreeT f m) Source # | |
Applicative f => MonadTrans (FreeT f) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
(Applicative f, MonadFail m) => MonadFail (FreeT f m) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
(Applicative f, MonadIO m) => MonadIO (FreeT f m) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
(Foldable m, Foldable f) => Foldable (FreeT f m) Source # | |
Defined in Control.Monad.Trans.Free.Ap fold :: Monoid m0 => FreeT f m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 # foldr :: (a -> b -> b) -> b -> FreeT f m a -> b # foldr' :: (a -> b -> b) -> b -> FreeT f m a -> b # foldl :: (b -> a -> b) -> b -> FreeT f m a -> b # foldl' :: (b -> a -> b) -> b -> FreeT f m a -> b # foldr1 :: (a -> a -> a) -> FreeT f m a -> a # foldl1 :: (a -> a -> a) -> FreeT f m a -> a # toList :: FreeT f m a -> [a] # length :: FreeT f m a -> Int # elem :: Eq a => a -> FreeT f m a -> Bool # maximum :: Ord a => FreeT f m a -> a # minimum :: Ord a => FreeT f m a -> a # | |
(Eq1 f, Eq1 m) => Eq1 (FreeT f m) Source # | |
(Ord1 f, Ord1 m) => Ord1 (FreeT f m) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
(Read1 f, Read1 m) => Read1 (FreeT f m) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
(Show1 f, Show1 m) => Show1 (FreeT f m) Source # | |
(Monad m, Traversable m, Traversable f) => Traversable (FreeT f m) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
(Applicative f, MonadPlus m) => Alternative (FreeT f m) Source # | |
(Applicative f, Applicative m) => Applicative (FreeT f m) Source # | |
(Functor f, Functor m) => Functor (FreeT f m) Source # | |
(Applicative f, Monad m) => Monad (FreeT f m) Source # | |
(Applicative f, MonadPlus m) => MonadPlus (FreeT f m) Source # | |
(Applicative f, MonadCatch m) => MonadCatch (FreeT f m) Source # | |
(Applicative f, MonadThrow m) => MonadThrow (FreeT f m) Source # | |
Defined in Control.Monad.Trans.Free.Ap | |
(Applicative f, MonadCont m) => MonadCont (FreeT f m) Source # | |
(Apply f, Apply m) => Apply (FreeT f m) Source # | |
(Apply f, Apply m, Monad m) => Bind (FreeT f m) Source # | |
(Typeable f, Typeable m, Data (m (FreeF f a (FreeT f m a))), Data a) => Data (FreeT f m a) Source # | |
Defined in Control.Monad.Trans.Free.Ap gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FreeT f m a -> c (FreeT f m a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (FreeT f m a) # toConstr :: FreeT f m a -> Constr # dataTypeOf :: FreeT f m a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (FreeT f m a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (FreeT f m a)) # gmapT :: (forall b. Data b => b -> b) -> FreeT f m a -> FreeT f m a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FreeT f m a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FreeT f m a -> r # gmapQ :: (forall d. Data d => d -> u) -> FreeT f m a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FreeT f m a -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> FreeT f m a -> m0 (FreeT f m a) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> FreeT f m a -> m0 (FreeT f m a) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> FreeT f m a -> m0 (FreeT f m a) # | |
(Read1 f, Read1 m, Read a) => Read (FreeT f m a) Source # | |
(Show1 f, Show1 m, Show a) => Show (FreeT f m a) Source # | |
(Eq1 f, Eq1 m, Eq a) => Eq (FreeT f m a) Source # | |
(Ord1 f, Ord1 m, Ord a) => Ord (FreeT f m a) Source # | |
Defined in Control.Monad.Trans.Free.Ap |
The free monad
runFree :: Free f a -> FreeF f a (Free f a) Source #
Evaluates the first layer out of a free monad value.
Operations
liftF :: (Functor f, MonadFree f m) => f a -> m a Source #
A version of lift that can be used with just a Functor for f.
iterT :: (Applicative f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a Source #
Given an applicative homomorphism from f (m a)
to m a
,
tear down a free monad transformer using iteration.
iterTM :: (Applicative f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a Source #
Given an applicative homomorphism from f (t m a)
to t m a
,
tear down a free monad transformer using iteration over a transformer.
hoistFreeT :: (Functor m, Applicative f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b Source #
Lift a monad homomorphism from m
to n
into a monad homomorphism from
to FreeT
f mFreeT
f n
hoistFreeT
:: (Functor
m,Applicative
f) => (m ~> n) ->FreeT
f m ~>FreeT
f n
transFreeT :: (Monad m, Applicative g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b Source #
joinFreeT :: (Monad m, Traversable f, Applicative f) => FreeT f m a -> m (Free f a) Source #
Pull out and join m
layers of
.FreeT
f m a
cutoff :: (Applicative f, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a) Source #
Cuts off a tree of computations at a given depth.
If the depth is 0
or less, no computation nor
monadic effects will take place.
Some examples (n ≥ 0
):
cutoff
0 _ ≡return
Nothing
cutoff
(n+1).
return
≡return
.
Just
cutoff
(n+1).
lift
≡lift
.
liftM
Just
cutoff
(n+1).
wrap
≡wrap
.
fmap
(cutoff
n)
Calling
is always terminating, provided each of the
steps in the iteration is terminating.retract
.
cutoff
n
partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b Source #
partialIterT n phi m
interprets first n
layers of m
using phi
.
This is sort of the opposite for
.cutoff
Some examples (n ≥ 0
):
partialIterT
0 _ m ≡ mpartialIterT
(n+1) phi.
return
≡return
partialIterT
(n+1) phi.
lift
≡lift
partialIterT
(n+1) phi.
wrap
≡join
.lift
. phi
intersperseT :: (Monad m, Applicative f) => f a -> FreeT f m b -> FreeT f m b Source #
intercalateT :: (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b Source #
intercalateT f m
inserts a layer f
between every two layers in
m
and then retracts the result.
intercalateT
f ≡retractT
.intersperseT
f
retractT :: (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a Source #
Tear down a free monad transformer using Monad instance for t m
.
Operations of free monad
iter :: Applicative f => (f a -> a) -> Free f a -> a Source #
iterM :: (Applicative f, Monad m) => (f (m a) -> m a) -> Free f a -> m a Source #
Like iter
for monadic values.
Free Monads With Class
class Monad m => MonadFree f m | m -> f where Source #
Monads provide substitution (fmap
) and renormalization (join
):
m>>=
f =join
(fmap
f m)
A free Monad
is one that does no work during the normalization step beyond simply grafting the two monadic values together.
[]
is not a free Monad
(in this sense) because
smashes the lists flat.join
[[a]]
On the other hand, consider:
data Tree a = Bin (Tree a) (Tree a) | Tip a
instanceMonad
Tree wherereturn
= Tip Tip a>>=
f = f a Bin l r>>=
f = Bin (l>>=
f) (r>>=
f)
This Monad
is the free Monad
of Pair:
data Pair a = Pair a a
And we could make an instance of MonadFree
for it directly:
instanceMonadFree
Pair Tree wherewrap
(Pair l r) = Bin l r
Or we could choose to program with
instead of Free
PairTree
and thereby avoid having to define our own Monad
instance.
Moreover, Control.Monad.Free.Church provides a MonadFree
instance that can improve the asymptotic complexity of code that
constructs free monads by effectively reassociating the use of
(>>=
). You may also want to take a look at the kan-extensions
package (http://hackage.haskell.org/package/kan-extensions).
See Free
for a more formal definition of the free Monad
for a Functor
.
Nothing