{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE Safe #-}
{-# LANGUAGE StandaloneDeriving #-}

--------------------------------------------------------------------------------
-- |
-- \"Applicative Effects in Free Monads\"
--
-- Often times, the '(\<*\>)' operator can be more efficient than 'ap'.
-- Conventional free monads don't provide any means of modeling this.
-- The free monad can be modified to make use of an underlying applicative.
-- But it does require some laws, or else the '(\<*\>)' = 'ap' law is broken.
-- When interpreting this free monad with 'foldFree',
-- the natural transformation must be an applicative homomorphism.
-- An applicative homomorphism @hm :: (Applicative f, Applicative g) => f x -> g x@
-- will satisfy these laws.
--
-- * @hm (pure a) = pure a@
-- * @hm (f \<*\> a) = hm f \<*\> hm a@
--
-- This is based on the \"Applicative Effects in Free Monads\" series of articles by Will Fancher
--
-- * <http://elvishjerricco.github.io/2016/04/08/applicative-effects-in-free-monads.html Applicative Effects in Free Monads>
--
-- * <http://elvishjerricco.github.io/2016/04/13/more-on-applicative-effects-in-free-monads.html More on Applicative Effects in Free Monads>
--------------------------------------------------------------------------------
module Control.Monad.Free.Ap
  ( MonadFree(..)
  , Free(..)
  , retract
  , liftF
  , iter
  , iterA
  , iterM
  , hoistFree
  , foldFree
  , toFreeT
  , cutoff
  , unfold
  , unfoldM
  , _Pure, _Free
  ) where

import Control.Applicative
import Control.Arrow ((>>>))
import Control.Monad (liftM, MonadPlus(..), (>=>))
import Control.Monad.Fix
import Control.Monad.Trans.Class
import qualified Control.Monad.Trans.Free.Ap as FreeT
import Control.Monad.Free.Class
import Control.Monad.Reader.Class
import Control.Monad.Writer.Class
import Control.Monad.State.Class
import Control.Monad.Error.Class
import Control.Monad.Cont.Class
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Foldable
import Data.Profunctor
import Data.Traversable
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Data.Data
import GHC.Generics
import Prelude hiding (foldr)

-- $setup
-- >>> import Control.Applicative (Const (..))
-- >>> import Data.Functor.Identity (Identity (..))
-- >>> import Data.Monoid (First (..))
-- >>> import Data.Tagged (Tagged (..))
-- >>> let preview l x = getFirst (getConst (l (Const . First . Just) x))
-- >>> let review l x = runIdentity (unTagged (l (Tagged (Identity x))))

-- | A free monad given an applicative
data Free f a = Pure a | Free (f (Free f a))
  deriving (forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (f :: * -> *) a x. Rep (Free f a) x -> Free f a
forall (f :: * -> *) a x. Free f a -> Rep (Free f a) x
$cto :: forall (f :: * -> *) a x. Rep (Free f a) x -> Free f a
$cfrom :: forall (f :: * -> *) a x. Free f a -> Rep (Free f a) x
Generic, forall k (f :: k -> *).
(forall (a :: k). f a -> Rep1 f a)
-> (forall (a :: k). Rep1 f a -> f a) -> Generic1 f
forall (f :: * -> *) a. Functor f => Rep1 (Free f) a -> Free f a
forall (f :: * -> *) a. Functor f => Free f a -> Rep1 (Free f) a
$cto1 :: forall (f :: * -> *) a. Functor f => Rep1 (Free f) a -> Free f a
$cfrom1 :: forall (f :: * -> *) a. Functor f => Free f a -> Rep1 (Free f) a
Generic1)

deriving instance
  ( Typeable f
  , Data a, Data (f (Free f a))
  ) => Data (Free f a)

instance Eq1 f => Eq1 (Free f) where
  liftEq :: forall a b. (a -> b -> Bool) -> Free f a -> Free f b -> Bool
liftEq a -> b -> Bool
eq = forall {f :: * -> *}. Eq1 f => Free f a -> Free f b -> Bool
go
    where
      go :: Free f a -> Free f b -> Bool
go (Pure a
a)  (Pure b
b)  = a -> b -> Bool
eq a
a b
b
      go (Free f (Free f a)
fa) (Free f (Free f b)
fb) = forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq Free f a -> Free f b -> Bool
go f (Free f a)
fa f (Free f b)
fb
      go Free f a
_ Free f b
_                 = Bool
False

instance (Eq1 f, Eq a) => Eq (Free f a) where
  == :: Free f a -> Free f a -> Bool
(==) = forall (f :: * -> *) a. (Eq1 f, Eq a) => f a -> f a -> Bool
eq1

instance Ord1 f => Ord1 (Free f) where
  liftCompare :: forall a b.
(a -> b -> Ordering) -> Free f a -> Free f b -> Ordering
liftCompare a -> b -> Ordering
cmp = forall {f :: * -> *}. Ord1 f => Free f a -> Free f b -> Ordering
go
    where
      go :: Free f a -> Free f b -> Ordering
go (Pure a
a)  (Pure b
b)  = a -> b -> Ordering
cmp a
a b
b
      go (Pure a
_)  (Free f (Free f b)
_)  = Ordering
LT
      go (Free f (Free f a)
_)  (Pure b
_)  = Ordering
GT
      go (Free f (Free f a)
fa) (Free f (Free f b)
fb) = forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare Free f a -> Free f b -> Ordering
go f (Free f a)
fa f (Free f b)
fb

instance (Ord1 f, Ord a) => Ord (Free f a) where
  compare :: Free f a -> Free f a -> Ordering
compare = forall (f :: * -> *) a. (Ord1 f, Ord a) => f a -> f a -> Ordering
compare1

instance Show1 f => Show1 (Free f) where
  liftShowsPrec :: forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Free f a -> ShowS
liftShowsPrec Int -> a -> ShowS
sp [a] -> ShowS
sl = forall {f :: * -> *}. Show1 f => Int -> Free f a -> ShowS
go
    where
      go :: Int -> Free f a -> ShowS
go Int
d (Pure a
a) = forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
showsUnaryWith Int -> a -> ShowS
sp String
"Pure" Int
d a
a
      go Int
d (Free f (Free f a)
fa) = forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
showsUnaryWith (forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
liftShowsPrec Int -> Free f a -> ShowS
go (forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [f a] -> ShowS
liftShowList Int -> a -> ShowS
sp [a] -> ShowS
sl)) String
"Free" Int
d f (Free f a)
fa

instance (Show1 f, Show a) => Show (Free f a) where
  showsPrec :: Int -> Free f a -> ShowS
showsPrec = forall (f :: * -> *) a. (Show1 f, Show a) => Int -> f a -> ShowS
showsPrec1

instance Read1 f => Read1 (Free f) where
  liftReadsPrec :: forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Free f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = Int -> ReadS (Free f a)
go
    where
      go :: Int -> ReadS (Free f a)
go = forall a. (String -> ReadS a) -> Int -> ReadS a
readsData forall a b. (a -> b) -> a -> b
$
        forall a t.
(Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
readsUnaryWith Int -> ReadS a
rp String
"Pure" forall (f :: * -> *) a. a -> Free f a
Pure forall a. Monoid a => a -> a -> a
`mappend`
        forall a t.
(Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
readsUnaryWith (forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS (Free f a)
go (forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Int -> ReadS a
rp ReadS [a]
rl)) String
"Free" forall (f :: * -> *) a. f (Free f a) -> Free f a
Free

instance (Read1 f, Read a) => Read (Free f a) where
  readsPrec :: Int -> ReadS (Free f a)
readsPrec = forall (f :: * -> *) a. (Read1 f, Read a) => Int -> ReadS (f a)
readsPrec1

instance Functor f => Functor (Free f) where
  fmap :: forall a b. (a -> b) -> Free f a -> Free f b
fmap a -> b
f = forall {f :: * -> *}. Functor f => Free f a -> Free f b
go where
    go :: Free f a -> Free f b
go (Pure a
a)  = forall (f :: * -> *) a. a -> Free f a
Pure (a -> b
f a
a)
    go (Free f (Free f a)
fa) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (Free f a -> Free f b
go forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
fa)
  {-# INLINE fmap #-}

instance Apply f => Apply (Free f) where
  Pure a -> b
a  <.> :: forall a b. Free f (a -> b) -> Free f a -> Free f b
<.> Pure a
b = forall (f :: * -> *) a. a -> Free f a
Pure (a -> b
a a
b)
  Pure a -> b
a  <.> Free f (Free f a)
fb = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
fb
  Free f (Free f (a -> b))
fa <.> Pure a
b = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a b. (a -> b) -> a -> b
$ a
b) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f (a -> b))
fa
  Free f (Free f (a -> b))
fa <.> Free f (Free f a)
fb = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>) f (Free f (a -> b))
fa forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f (Free f a)
fb

instance Applicative f => Applicative (Free f) where
  pure :: forall a. a -> Free f a
pure = forall (f :: * -> *) a. a -> Free f a
Pure
  {-# INLINE pure #-}
  Pure a -> b
a <*> :: forall a b. Free f (a -> b) -> Free f a -> Free f b
<*> Pure a
b = forall (f :: * -> *) a. a -> Free f a
Pure forall a b. (a -> b) -> a -> b
$ a -> b
a a
b
  Pure a -> b
a <*> Free f (Free f a)
mb = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
mb
  Free f (Free f (a -> b))
ma <*> Pure a
b = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a b. (a -> b) -> a -> b
$ a
b) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f (a -> b))
ma
  Free f (Free f (a -> b))
ma <*> Free f (Free f a)
mb = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>) f (Free f (a -> b))
ma forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f (Free f a)
mb

instance Apply f => Bind (Free f) where
  Pure a
a >>- :: forall a b. Free f a -> (a -> Free f b) -> Free f b
>>- a -> Free f b
f = a -> Free f b
f a
a
  Free f (Free f a)
m >>- a -> Free f b
f = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free ((forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- a -> Free f b
f) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)

instance Applicative f => Monad (Free f) where
  return :: forall a. a -> Free f a
return = forall (f :: * -> *) a. Applicative f => a -> f a
pure
  {-# INLINE return #-}
  Pure a
a >>= :: forall a b. Free f a -> (a -> Free f b) -> Free f b
>>= a -> Free f b
f = a -> Free f b
f a
a
  Free f (Free f a)
m >>= a -> Free f b
f = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free ((forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> Free f b
f) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)

instance Applicative f => MonadFix (Free f) where
  mfix :: forall a. (a -> Free f a) -> Free f a
mfix a -> Free f a
f = Free f a
a where a :: Free f a
a = a -> Free f a
f (forall {f :: * -> *} {a}. Free f a -> a
impure Free f a
a); impure :: Free f a -> a
impure (Pure a
x) = a
x; impure (Free f (Free f a)
_) = forall a. HasCallStack => String -> a
error String
"mfix (Free f): Free"

-- | This violates the Alternative laws, handle with care.
instance Alternative v => Alternative (Free v) where
  empty :: forall a. Free v a
empty = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (f :: * -> *) a. Alternative f => f a
empty
  {-# INLINE empty #-}
  Free v a
a <|> :: forall a. Free v a -> Free v a -> Free v a
<|> Free v a
b = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (forall (f :: * -> *) a. Applicative f => a -> f a
pure Free v a
a forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall (f :: * -> *) a. Applicative f => a -> f a
pure Free v a
b)
  {-# INLINE (<|>) #-}

-- | This violates the MonadPlus laws, handle with care.
instance MonadPlus v => MonadPlus (Free v) where
  mzero :: forall a. Free v a
mzero = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (m :: * -> *) a. MonadPlus m => m a
mzero
  {-# INLINE mzero #-}
  Free v a
a mplus :: forall a. Free v a -> Free v a -> Free v a
`mplus` Free v a
b = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (forall (m :: * -> *) a. Monad m => a -> m a
return Free v a
a forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` forall (m :: * -> *) a. Monad m => a -> m a
return Free v a
b)
  {-# INLINE mplus #-}

-- | This is not a true monad transformer. It is only a monad transformer \"up to 'retract'\".
instance MonadTrans Free where
  lift :: forall (m :: * -> *) a. Monad m => m a -> Free m a
lift = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM forall (f :: * -> *) a. a -> Free f a
Pure
  {-# INLINE lift #-}

instance Foldable f => Foldable (Free f) where
  foldMap :: forall m a. Monoid m => (a -> m) -> Free f a -> m
foldMap a -> m
f = forall {t :: * -> *}. Foldable t => Free t a -> m
go where
    go :: Free t a -> m
go (Pure a
a) = a -> m
f a
a
    go (Free t (Free t a)
fa) = forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Free t a -> m
go t (Free t a)
fa
  {-# INLINE foldMap #-}

  foldr :: forall a b. (a -> b -> b) -> b -> Free f a -> b
foldr a -> b -> b
f = forall {t :: * -> *}. Foldable t => b -> Free t a -> b
go where
    go :: b -> Free t a -> b
go b
r Free t a
free =
      case Free t a
free of
        Pure a
a -> a -> b -> b
f a
a b
r
        Free t (Free t a)
fa -> forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (forall a b c. (a -> b -> c) -> b -> a -> c
flip b -> Free t a -> b
go) b
r t (Free t a)
fa
  {-# INLINE foldr #-}

  foldl' :: forall b a. (b -> a -> b) -> b -> Free f a -> b
foldl' b -> a -> b
f = forall {t :: * -> *}. Foldable t => b -> Free t a -> b
go where
    go :: b -> Free t a -> b
go b
r Free t a
free =
      case Free t a
free of
        Pure a
a -> b -> a -> b
f b
r a
a
        Free t (Free t a)
fa -> forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' b -> Free t a -> b
go b
r t (Free t a)
fa
  {-# INLINE foldl' #-}

instance Foldable1 f => Foldable1 (Free f) where
  foldMap1 :: forall m a. Semigroup m => (a -> m) -> Free f a -> m
foldMap1 a -> m
f = forall {t :: * -> *}. Foldable1 t => Free t a -> m
go where
    go :: Free t a -> m
go (Pure a
a) = a -> m
f a
a
    go (Free t (Free t a)
fa) = forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
foldMap1 Free t a -> m
go t (Free t a)
fa
  {-# INLINE foldMap1 #-}

instance Traversable f => Traversable (Free f) where
  traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Free f a -> f (Free f b)
traverse a -> f b
f = forall {f :: * -> *}. Traversable f => Free f a -> f (Free f b)
go where
    go :: Free f a -> f (Free f b)
go (Pure a
a) = forall (f :: * -> *) a. a -> Free f a
Pure forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
    go (Free f (Free f a)
fa) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Free f a -> f (Free f b)
go f (Free f a)
fa
  {-# INLINE traverse #-}

instance Traversable1 f => Traversable1 (Free f) where
  traverse1 :: forall (f :: * -> *) a b.
Apply f =>
(a -> f b) -> Free f a -> f (Free f b)
traverse1 a -> f b
f = forall {f :: * -> *}. Traversable1 f => Free f a -> f (Free f b)
go where
    go :: Free f a -> f (Free f b)
go (Pure a
a) = forall (f :: * -> *) a. a -> Free f a
Pure forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
    go (Free f (Free f a)
fa) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
traverse1 Free f a -> f (Free f b)
go f (Free f a)
fa
  {-# INLINE traverse1 #-}

instance MonadWriter e m => MonadWriter e (Free m) where
  tell :: e -> Free m ()
tell = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell
  {-# INLINE tell #-}
  listen :: forall a. Free m a -> Free m (a, e)
listen = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall w (m :: * -> *) a. MonadWriter w m => m a -> m (a, w)
listen forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
  {-# INLINE listen #-}
  pass :: forall a. Free m (a, e -> e) -> Free m a
pass = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall w (m :: * -> *) a. MonadWriter w m => m (a, w -> w) -> m a
pass forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
  {-# INLINE pass #-}

instance MonadReader e m => MonadReader e (Free m) where
  ask :: Free m e
ask = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall r (m :: * -> *). MonadReader r m => m r
ask
  {-# INLINE ask #-}
  local :: forall a. (e -> e) -> Free m a -> Free m a
local e -> e
f = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall r (m :: * -> *) a. MonadReader r m => (r -> r) -> m a -> m a
local e -> e
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
  {-# INLINE local #-}

instance MonadState s m => MonadState s (Free m) where
  get :: Free m s
get = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall s (m :: * -> *). MonadState s m => m s
get
  {-# INLINE get #-}
  put :: s -> Free m ()
put s
s = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (forall s (m :: * -> *). MonadState s m => s -> m ()
put s
s)
  {-# INLINE put #-}

instance MonadError e m => MonadError e (Free m) where
  throwError :: forall a. e -> Free m a
throwError = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError
  {-# INLINE throwError #-}
  catchError :: forall a. Free m a -> (e -> Free m a) -> Free m a
catchError Free m a
as e -> Free m a
f = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
catchError (forall (f :: * -> *) a. Monad f => Free f a -> f a
retract Free m a
as) (forall (f :: * -> *) a. Monad f => Free f a -> f a
retract forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> Free m a
f))
  {-# INLINE catchError #-}

instance MonadCont m => MonadCont (Free m) where
  callCC :: forall a b. ((a -> Free m b) -> Free m a) -> Free m a
callCC (a -> Free m b) -> Free m a
f = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (forall (m :: * -> *) a b. MonadCont m => ((a -> m b) -> m a) -> m a
callCC (forall (f :: * -> *) a. Monad f => Free f a -> f a
retract forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Free m b) -> Free m a
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift))
  {-# INLINE callCC #-}

instance Applicative f => MonadFree f (Free f) where
  wrap :: forall a. f (Free f a) -> Free f a
wrap = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free
  {-# INLINE wrap #-}

-- |
-- 'retract' is the left inverse of 'lift' and 'liftF'
--
-- @
-- 'retract' . 'lift' = 'id'
-- 'retract' . 'liftF' = 'id'
-- @
retract :: Monad f => Free f a -> f a
retract :: forall (f :: * -> *) a. Monad f => Free f a -> f a
retract = forall (f :: * -> *) (m :: * -> *) a.
(Applicative f, Monad m) =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree forall a. a -> a
id

-- | Given an applicative homomorphism from @f@ to 'Identity', tear down a 'Free' 'Monad' using iteration.
iter :: Applicative f => (f a -> a) -> Free f a -> a
iter :: forall (f :: * -> *) a.
Applicative f =>
(f a -> a) -> Free f a -> a
iter f a -> a
_ (Pure a
a) = a
a
iter f a -> a
phi (Free f (Free f a)
m) = f a -> a
phi (forall (f :: * -> *) a.
Applicative f =>
(f a -> a) -> Free f a -> a
iter f a -> a
phi forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)

-- | Like 'iter' for applicative values.
iterA :: (Applicative p, Applicative f) => (f (p a) -> p a) -> Free f a -> p a
iterA :: forall (p :: * -> *) (f :: * -> *) a.
(Applicative p, Applicative f) =>
(f (p a) -> p a) -> Free f a -> p a
iterA f (p a) -> p a
_   (Pure a
x) = forall (f :: * -> *) a. Applicative f => a -> f a
pure a
x
iterA f (p a) -> p a
phi (Free f (Free f a)
f) = f (p a) -> p a
phi (forall (p :: * -> *) (f :: * -> *) a.
(Applicative p, Applicative f) =>
(f (p a) -> p a) -> Free f a -> p a
iterA f (p a) -> p a
phi forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
f)

-- | Like 'iter' for monadic values.
iterM :: (Monad m, Applicative f) => (f (m a) -> m a) -> Free f a -> m a
iterM :: forall (m :: * -> *) (f :: * -> *) a.
(Monad m, Applicative f) =>
(f (m a) -> m a) -> Free f a -> m a
iterM f (m a) -> m a
_   (Pure a
x) = forall (m :: * -> *) a. Monad m => a -> m a
return a
x
iterM f (m a) -> m a
phi (Free f (Free f a)
f) = f (m a) -> m a
phi (forall (m :: * -> *) (f :: * -> *) a.
(Monad m, Applicative f) =>
(f (m a) -> m a) -> Free f a -> m a
iterM f (m a) -> m a
phi forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
f)

-- | Lift an applicative homomorphism from @f@ to @g@ into a monad homomorphism from @'Free' f@ to @'Free' g@.
hoistFree :: (Applicative f, Applicative g) => (forall a. f a -> g a) -> Free f b -> Free g b
hoistFree :: forall (f :: * -> *) (g :: * -> *) b.
(Applicative f, Applicative g) =>
(forall a. f a -> g a) -> Free f b -> Free g b
hoistFree forall a. f a -> g a
f = forall (f :: * -> *) (m :: * -> *) a.
(Applicative f, Monad m) =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree (forall (f :: * -> *) (m :: * -> *) a.
(Functor f, MonadFree f m) =>
f a -> m a
liftF forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. f a -> g a
f)

-- | Given an applicative homomorphism, you get a monad homomorphism.
foldFree :: (Applicative f, Monad m) => (forall x . f x -> m x) -> Free f a -> m a
foldFree :: forall (f :: * -> *) (m :: * -> *) a.
(Applicative f, Monad m) =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree forall x. f x -> m x
_ (Pure a
a)  = forall (m :: * -> *) a. Monad m => a -> m a
return a
a
foldFree forall x. f x -> m x
f (Free f (Free f a)
as) = forall x. f x -> m x
f f (Free f a)
as forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (f :: * -> *) (m :: * -> *) a.
(Applicative f, Monad m) =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree forall x. f x -> m x
f

-- | Convert a 'Free' monad from "Control.Monad.Free.Ap" to a 'FreeT.FreeT' monad
-- from "Control.Monad.Trans.Free.Ap".
-- WARNING: This assumes that 'liftF' is an applicative homomorphism.
toFreeT :: (Applicative f, Monad m) => Free f a -> FreeT.FreeT f m a
toFreeT :: forall (f :: * -> *) (m :: * -> *) a.
(Applicative f, Monad m) =>
Free f a -> FreeT f m a
toFreeT = forall (f :: * -> *) (m :: * -> *) a.
(Applicative f, Monad m) =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree forall (f :: * -> *) (m :: * -> *) a.
(Functor f, MonadFree f m) =>
f a -> m a
liftF

-- | Cuts off a tree of computations at a given depth.
-- If the depth is 0 or less, no computation nor
-- monadic effects will take place.
--
-- Some examples (n ≥ 0):
--
-- prop> cutoff 0     _        == return Nothing
-- prop> cutoff (n+1) . return == return . Just
-- prop> cutoff (n+1) . lift   ==   lift . liftM Just
-- prop> cutoff (n+1) . wrap   ==  wrap . fmap (cutoff n)
--
-- Calling 'retract . cutoff n' is always terminating, provided each of the
-- steps in the iteration is terminating.
cutoff :: (Applicative f) => Integer -> Free f a -> Free f (Maybe a)
cutoff :: forall (f :: * -> *) a.
Applicative f =>
Integer -> Free f a -> Free f (Maybe a)
cutoff Integer
n Free f a
_ | Integer
n forall a. Ord a => a -> a -> Bool
<= Integer
0 = forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
cutoff Integer
n (Free f (Free f a)
f) = forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a.
Applicative f =>
Integer -> Free f a -> Free f (Maybe a)
cutoff (Integer
n forall a. Num a => a -> a -> a
- Integer
1)) f (Free f a)
f
cutoff Integer
_ Free f a
m = forall a. a -> Maybe a
Just forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Free f a
m

-- | Unfold a free monad from a seed.
unfold :: Applicative f => (b -> Either a (f b)) -> b -> Free f a
unfold :: forall (f :: * -> *) b a.
Applicative f =>
(b -> Either a (f b)) -> b -> Free f a
unfold b -> Either a (f b)
f = b -> Either a (f b)
f forall {k} (cat :: k -> k -> *) (a :: k) (b :: k) (c :: k).
Category cat =>
cat a b -> cat b c -> cat a c
>>> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either forall (f :: * -> *) a. a -> Free f a
Pure (forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) b a.
Applicative f =>
(b -> Either a (f b)) -> b -> Free f a
unfold b -> Either a (f b)
f))

-- | Unfold a free monad from a seed, monadically.
unfoldM :: (Applicative f, Traversable f, Monad m) => (b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM :: forall (f :: * -> *) (m :: * -> *) b a.
(Applicative f, Traversable f, Monad m) =>
(b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM b -> m (Either a (f b))
f = b -> m (Either a (f b))
f forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Applicative f => a -> f a
pure) (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) a. f (Free f a) -> Free f a
Free forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (f :: * -> *) (m :: * -> *) b a.
(Applicative f, Traversable f, Monad m) =>
(b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM b -> m (Either a (f b))
f))

-- | This is @Prism' (Free f a) a@ in disguise
--
-- >>> preview _Pure (Pure 3)
-- Just 3
--
-- >>> review _Pure 3 :: Free Maybe Int
-- Pure 3
_Pure :: forall f m a p. (Choice p, Applicative m)
      => p a (m a) -> p (Free f a) (m (Free f a))
_Pure :: forall (f :: * -> *) (m :: * -> *) a (p :: * -> * -> *).
(Choice p, Applicative m) =>
p a (m a) -> p (Free f a) (m (Free f a))
_Pure = forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap forall {f :: * -> *} {b}. Free f b -> Either (Free f b) b
impure (forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) a. a -> Free f a
Pure)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right'
 where
  impure :: Free f b -> Either (Free f b) b
impure (Pure b
x) = forall a b. b -> Either a b
Right b
x
  impure Free f b
x        = forall a b. a -> Either a b
Left Free f b
x
  {-# INLINE impure #-}
{-# INLINE _Pure #-}

-- | This is @Prism' (Free f a) (f (Free f a))@ in disguise
--
-- >>> preview _Free (review _Free (Just (Pure 3)))
-- Just (Just (Pure 3))
--
-- >>> review _Free (Just (Pure 3))
-- Free (Just (Pure 3))
_Free :: forall f m a p. (Choice p, Applicative m)
      => p (f (Free f a)) (m (f (Free f a))) -> p (Free f a) (m (Free f a))
_Free :: forall (f :: * -> *) (m :: * -> *) a (p :: * -> * -> *).
(Choice p, Applicative m) =>
p (f (Free f a)) (m (f (Free f a))) -> p (Free f a) (m (Free f a))
_Free = forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap forall {f :: * -> *} {a}.
Free f a -> Either (Free f a) (f (Free f a))
unfree (forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (f :: * -> *) a. f (Free f a) -> Free f a
Free)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right'
 where
  unfree :: Free f a -> Either (Free f a) (f (Free f a))
unfree (Free f (Free f a)
x) = forall a b. b -> Either a b
Right f (Free f a)
x
  unfree Free f a
x        = forall a b. a -> Either a b
Left Free f a
x
  {-# INLINE unfree #-}
{-# INLINE _Free #-}