-- | Dataflow analysis to be applied once basic block analysis is complete.

{-# LANGUAGE FlexibleContexts, PatternGuards, ScopedTypeVariables, TupleSections, DeriveGeneric, DeriveDataTypeable #-}
module Language.Fortran.Analysis.DataFlow
  ( dominators, iDominators, DomMap, IDomMap
  , postOrder, revPostOrder, preOrder, revPreOrder, OrderF
  , dataFlowSolver, InOut, InOutMap, InF, OutF
  , liveVariableAnalysis, reachingDefinitions
  , genUDMap, genDUMap, duMapToUdMap, UDMap, DUMap
  , genFlowsToGraph, FlowsGraph
  , genVarFlowsToMap, VarFlowsMap
  , Constant(..), ParameterVarMap, ConstExpMap, genConstExpMap, analyseConstExps, analyseParameterVars
  , genBlockMap, genDefMap, BlockMap, DefMap
  , genCallMap, CallMap
  , loopNodes, genBackEdgeMap, sccWith, BackEdgeMap
  , genLoopNodeMap, LoopNodeMap
  , genInductionVarMap, InductionVarMap
  , genInductionVarMapByASTBlock, InductionVarMapByASTBlock
  , genDerivedInductionMap, DerivedInductionMap, InductionExpr(..)
  , showDataFlow, showFlowsDOT
  , BBNodeMap, BBNodeSet, ASTBlockNodeMap, ASTBlockNodeSet, ASTExprNodeMap, ASTExprNodeSet
) where

import Prelude hiding (init)
import Data.Generics.Uniplate.Data
import GHC.Generics
import Data.Data
import Control.Monad.State.Lazy
import Control.Arrow ((&&&))
import Text.PrettyPrint.GenericPretty (Out)
import Language.Fortran.Parser.Utils
import Language.Fortran.Analysis
import Language.Fortran.Analysis.BBlocks (showBlock, ASTBlockNode, ASTExprNode)
import Language.Fortran.AST
import qualified Data.Map as M
import qualified Data.IntMap.Lazy as IM
import qualified Data.Set as S
import qualified Data.IntSet as IS
import Data.Graph.Inductive hiding (trc, dom, order, inn, out, rc)
import Data.Graph.Inductive.PatriciaTree (Gr)
import Data.Maybe
import Data.List (foldl', foldl1', (\\), union, intersect)
import Control.Monad.Writer hiding (fix)

--------------------------------------------------
-- Better names for commonly used types
type BBNodeMap = IM.IntMap
type BBNodeSet = IS.IntSet
type ASTBlockNodeMap = IM.IntMap
type ASTBlockNodeSet = IS.IntSet
type ASTExprNodeMap = IM.IntMap
type ASTExprNodeSet = IS.IntSet

-- | DomMap : node -> dominators of node
type DomMap = BBNodeMap BBNodeSet

-- | Compute dominators of each bblock in the graph. Node A dominates
-- node B when all paths from the start node of that program unit must
-- pass through node A in order to reach node B. That will be
-- represented as the relation (B, [A, ...]) in the DomMap.
dominators :: BBGr a -> DomMap
dominators bbgr = IM.map snd $ dataFlowSolver bbgr init revPostOrder inn out
  where
    gr        = bbgrGr bbgr
    nodeSet   = IS.fromList $ nodes gr
    init _    = (nodeSet, nodeSet)

    inn outF n
      | preNodes@(_:_) <- pre gr n = foldl1' IS.intersection . map outF $ preNodes
      | otherwise                  = IS.empty

    out inF n                      = IS.insert n $ inF n

-- | IDomMap : node -> immediate dominator of node
type IDomMap = BBNodeMap BBNode

-- | Compute the immediate dominator of each bblock in the graph. The
-- immediate dominator is, in a sense, the 'closest' dominator of a
-- node. Given nodes A and B, you can say that node A is immediately
-- dominated by node B if there does not exist any node C such that:
-- node A dominates node C and node C dominates node B.
iDominators :: BBGr a -> IDomMap
iDominators gr = IM.unions [ IM.fromList . flip iDom n $ bbgrGr gr | n <- bbgrEntries gr ]

-- | An OrderF is a function from graph to a specific ordering of nodes.
type OrderF a = BBGr a -> [Node]

-- | The postordering of a graph outputs the label after traversal of children.
postOrder :: OrderF a
postOrder gr = concatMap postorder . dff (bbgrEntries gr) $ bbgrGr gr

-- | Reversed postordering.
revPostOrder :: OrderF a
revPostOrder = reverse . postOrder

-- | The preordering of a graph outputs the label before traversal of children.
preOrder :: OrderF a
preOrder gr = concatMap preorder . dff (bbgrEntries gr) $ bbgrGr gr

-- | Reversed preordering.
revPreOrder :: OrderF a
revPreOrder = reverse . preOrder

--------------------------------------------------

-- | InOut : (dataflow into the bblock, dataflow out of the bblock)
type InOut t    = (t, t)

-- | InOutMap : node -> (dataflow into node, dataflow out of node)
type InOutMap t = BBNodeMap (InOut t)

-- | InF, a function that returns the in-dataflow for a given node
type InF t      = Node -> t

-- | OutF, a function that returns the out-dataflow for a given node
type OutF t     = Node -> t

-- | Apply the iterative dataflow analysis method.
dataFlowSolver :: Ord t => BBGr a            -- ^ basic block graph
                        -> (Node -> InOut t) -- ^ initialisation for in and out dataflows
                        -> OrderF a          -- ^ ordering function
                        -> (OutF t -> InF t) -- ^ compute the in-flow given an out-flow function
                        -> (InF t -> OutF t) -- ^ compute the out-flow given an in-flow function
                        -> InOutMap t        -- ^ final dataflow for each node
dataFlowSolver gr initF order inF outF = converge (==) $ iterate step initM
  where
    ordNodes = order gr
    initM    = IM.fromList [ (n, initF n) | n <- ordNodes ]
    step m   = IM.fromList [ (n, (inF (snd . get' m) n, outF (fst . get' m) n)) | n <- ordNodes ]
    get' m n  = fromJustMsg ("dataFlowSolver: get " ++ show n) $ IM.lookup n m

-- Similar to above but return a list of states instead of just the final one.
--dataFlowSolver' :: Ord t => BBGr a            -- ^ basic block graph
--                        -> (Node -> InOut t) -- ^ initialisation for in and out dataflows
--                        -> OrderF a          -- ^ ordering function
--                        -> (OutF t -> InF t) -- ^ compute the in-flow given an out-flow function
--                        -> (InF t -> OutF t) -- ^ compute the out-flow given an in-flow function
--                        -> [InOutMap t]        -- ^ dataflow steps
--dataFlowSolver' gr initF order inF outF = iterate step initM
--  where
--    ordNodes = order gr
--    initM    = IM.fromList [ (n, initF n) | n <- ordNodes ]
--    step m   = IM.fromList [ (n, (inF (snd . get m) n, outF (fst . get m) n)) | n <- ordNodes ]
--    get m n  = fromJustMsg ("dataFlowSolver': get " ++ show (n)) $ IM.lookup n m

--------------------------------------------------

-- | BlockMap : AST-block label -> AST-block
-- Each AST-block has been given a unique number label during analysis
-- of basic blocks. The purpose of this map is to provide the ability
-- to lookup AST-blocks by label.
type BlockMap a = ASTBlockNodeMap (Block (Analysis a))

-- | Build a BlockMap from the AST. This can only be performed after
-- analyseBasicBlocks has operated, created basic blocks, and labeled
-- all of the AST-blocks with unique numbers.
genBlockMap :: Data a => ProgramFile (Analysis a) -> BlockMap a
genBlockMap pf = IM.fromList [ (i, b) | gr         <- uni pf
                                      , (_, bs)    <- labNodes $ bbgrGr gr
                                      , b          <- bs
                                      , let Just i = insLabel (getAnnotation b) ]
  where
    uni :: Data a => ProgramFile (Analysis a) -> [BBGr (Analysis a)]
    uni = universeBi

-- | DefMap : variable name -> { AST-block label }
type DefMap = M.Map Name ASTBlockNodeSet

-- | Build a DefMap from the BlockMap. This allows us to quickly look
-- up the AST-block labels that wrote into the given variable.
genDefMap :: Data a => BlockMap a -> DefMap
genDefMap bm = M.fromListWith IS.union [
                 (y, IS.singleton i) | (i, b) <- IM.toList bm, y <- allLhsVars b
               ]

--------------------------------------------------

-- | Dataflow analysis for live variables given basic block graph.
-- Muchnick, p. 445: A variable is "live" at a particular program
-- point if there is a path to the exit along which its value may be
-- used before it is redefined. It is "dead" if there is no such path.
liveVariableAnalysis :: Data a => BBGr (Analysis a) -> InOutMap (S.Set Name)
liveVariableAnalysis gr = dataFlowSolver gr (const (S.empty, S.empty)) revPreOrder inn out
  where
    inn outF b = (outF b S.\\ kill b) `S.union` gen b
    out innF b = S.unions [ innF s | s <- suc (bbgrGr gr) b ]
    kill b     = bblockKill (fromJustMsg "liveVariableAnalysis kill" $ lab (bbgrGr gr) b)
    gen b      = bblockGen (fromJustMsg "liveVariableAnalysis gen" $ lab (bbgrGr gr) b)

-- | Iterate "KILL" set through a single basic block.
bblockKill :: Data a => [Block (Analysis a)] -> S.Set Name
bblockKill = S.fromList . concatMap blockKill

-- | Iterate "GEN" set through a single basic block.
bblockGen :: Data a => [Block (Analysis a)] -> S.Set Name
bblockGen bs = S.fromList . fst . foldl' f ([], []) $ map (blockGen &&& blockKill) bs
  where
    f (bbgen, bbkill) (gen, kill) = ((gen \\ bbkill) `union` bbgen, kill `union` bbkill)

-- | "KILL" set for a single AST-block.
blockKill :: Data a => Block (Analysis a) -> [Name]
blockKill = blockVarDefs

-- | "GEN" set for a single AST-block.
blockGen :: Data a => Block (Analysis a) -> [Name]
blockGen = blockVarUses

--------------------------------------------------

-- Reaching Definitions
-- forward flow analysis (revPostOrder)

-- GEN b@( definition of anything ) = {b}
-- KILL b@( definition of y ) = DEFS y    -- technically, except b, but it won't matter
-- DEFS y = { all definitions of y }

-- Within a basic block
-- GEN [] = KILL [] = {}
-- GEN [b_1 .. b_{n+1}] = GEN b_{n+1} `union` (GEN [b_1 .. b_n] `difference` KILL b_{n+1})
-- KILL [b_1 .. b_{n+1}] = KILL b_{n+1} `union` (KILL [b_1 .. b_n] `difference` GEN b_{n+1})

-- Between basic blocks
-- REACHin bb = unions [ REACHout bb | bb <- pred bb ]
-- REACHout bb = GEN bb `union` (REACHin bb `difference` KILL bb)

-- | Reaching definitions dataflow analysis. Reaching definitions are
-- the set of variable-defining AST-block labels that may reach a
-- program point. Suppose AST-block with label A defines a variable
-- named v. Label A may reach another program point labeled P if there
-- is at least one program path from label A to label P that does not
-- redefine variable v.
reachingDefinitions :: Data a => DefMap -> BBGr (Analysis a) -> InOutMap ASTBlockNodeSet
reachingDefinitions dm gr = dataFlowSolver gr (const (IS.empty, IS.empty)) revPostOrder inn out
  where
    inn outF b = IS.unions [ outF s | s <- pre (bbgrGr gr) b ]
    out innF b = gen `IS.union` (innF b IS.\\ kill)
      where (gen, kill) = rdBblockGenKill dm (fromJustMsg "reachingDefinitions" $ lab (bbgrGr gr) b)

-- Compute the "GEN" and "KILL" sets for a given basic block.
rdBblockGenKill :: Data a => DefMap -> [Block (Analysis a)] -> (ASTBlockNodeSet, ASTBlockNodeSet)
rdBblockGenKill dm bs = foldl' f (IS.empty, IS.empty) $ map (gen &&& kill) bs
  where
    gen b | null (allLhsVars b) = IS.empty
          | otherwise           = IS.singleton . fromJustMsg "rdBblockGenKill" . insLabel . getAnnotation $ b
    kill = rdDefs dm
    f (bbgen, bbkill) (gen', kill') =
      ((bbgen IS.\\ kill') `IS.union` gen', (bbkill IS.\\ gen') `IS.union` kill')

-- Set of all AST-block labels that also define variables defined by AST-block b
rdDefs :: Data a => DefMap -> Block (Analysis a) -> ASTBlockNodeSet
rdDefs dm b = IS.unions [ IS.empty `fromMaybe` M.lookup y dm | y <- allLhsVars b ]

--------------------------------------------------

-- | DUMap : definition -> { use }
type DUMap = ASTBlockNodeMap ASTBlockNodeSet

-- | def-use map: map AST-block labels of defining AST-blocks to the
-- AST-blocks that may use the definition.
genDUMap :: Data a => BlockMap a -> DefMap -> BBGr (Analysis a) -> InOutMap ASTBlockNodeSet -> DUMap
genDUMap bm dm gr rdefs = IM.unionsWith IS.union duMaps
  where
    -- duMaps for each bblock
    duMaps = [ fst (foldl' inBBlock (IM.empty, is) bs) |
               (n, (is, _)) <- IM.toList rdefs,
               let Just bs = lab (bbgrGr gr) n ]
    -- internal analysis within bblock; fold over list of AST-blocks
    inBBlock (duMap, inSet) b = (duMap', inSet')
      where
        Just i = insLabel (getAnnotation b)
        bduMap = IM.fromListWith IS.union [ (i', IS.singleton i) | i' <- IS.toList inSet, overlap i' ]
        -- asks: does AST-block at label i' define anything used by AST-block b?
        overlap i' = not . null . intersect uses $ blockVarDefs b'
          where Just b' = IM.lookup i' bm
        uses   = blockVarUses b
        duMap' = IM.unionWith IS.union duMap bduMap
        gen b' | null (allLhsVars b') = IS.empty
               | otherwise           = IS.singleton . fromJustMsg "genDUMap" . insLabel . getAnnotation $ b'
        kill   = rdDefs dm
        inSet' = (inSet IS.\\ kill b) `IS.union` gen b

-- | UDMap : use -> { definition }
type UDMap = ASTBlockNodeMap ASTBlockNodeSet

-- | Invert the DUMap into a UDMap
duMapToUdMap :: DUMap -> UDMap
duMapToUdMap duMap = IM.fromListWith IS.union [
    (use, IS.singleton def) | (def, uses) <- IM.toList duMap, use <- IS.toList uses
  ]

-- | use-def map: map AST-block labels of variable-using AST-blocks to
-- the AST-blocks that define those variables.
genUDMap :: Data a => BlockMap a -> DefMap -> BBGr (Analysis a) -> InOutMap ASTBlockNodeSet -> UDMap
genUDMap bm dm gr = duMapToUdMap . genDUMap bm dm gr

--------------------------------------------------

-- | Convert a UD or DU Map into a graph.
mapToGraph :: DynGraph gr => BlockMap a -> ASTBlockNodeMap ASTBlockNodeSet -> gr (Block (Analysis a)) ()
mapToGraph bm m = mkGraph nodes' edges'
  where
    nodes' = [ (i, iLabel) | i <- IM.keys m ++ concatMap IS.toList (IM.elems m)
                          , let iLabel = fromJustMsg "mapToGraph" (IM.lookup i bm) ]
    edges' = [ (i, j, ()) | (i, js) <- IM.toList m
                         , j       <- IS.toList js ]

-- | FlowsGraph : nodes as AST-block (numbered by label), edges
-- showing which definitions contribute to which uses.
type FlowsGraph a = Gr (Block (Analysis a)) ()

-- | "Flows-To" analysis. Represent def-use map as a graph.
genFlowsToGraph :: Data a => BlockMap a
                          -> DefMap
                          -> BBGr (Analysis a)
                          -> InOutMap ASTBlockNodeSet -- ^ result of reaching definitions
                          -> FlowsGraph a
genFlowsToGraph bm dm gr = mapToGraph bm . genDUMap bm dm gr

-- | Represent "flows" between variables
type VarFlowsMap = M.Map Name (S.Set Name)

-- | Create a map (A -> Bs) where A "flows" or contributes towards the variables Bs.
genVarFlowsToMap :: Data a => DefMap -> FlowsGraph a -> VarFlowsMap
genVarFlowsToMap dm fg = M.fromListWith S.union [ (conv u, sconv v) | (u, v) <- edges fg ]
  where
    sconv i | Just v  <- IM.lookup i revDM = S.singleton v
            | otherwise                    = S.empty
    conv i | Just v  <- IM.lookup i revDM = v
           | otherwise                    = error $ "genVarFlowsToMap: convert failed, i=" ++ show i
    -- planning to make revDM a surjection, after I flatten-out Fortran functions
    revDM = IM.fromListWith (curry fst) [ (i, v) | (v, is) <- M.toList dm, i <- IS.toList is ]

--------------------------------------------------

-- Integer arithmetic can be compile-time evaluated if we guard
-- against overflow, divide-by-zero. We must interpret the various
-- lexical forms of integers.
--
-- Floating point arithmetic requires knowing the target machine and
-- being very careful with all the possible effects of IEEE FP. Will
-- leave it alone for now.

-- conservative assumption: stay within bounds of signed 32-bit integer
minConst :: Integer
minConst = (-2::Integer) ^ (31::Integer)

maxConst :: Integer
maxConst = (2::Integer) ^ (31::Integer) - (1::Integer)

inBounds :: Integer -> Bool
inBounds x = minConst <= x && x <= maxConst

-- | Evaluate possible constant expressions within tree.
constantFolding :: Constant -> Constant
constantFolding c = case c of
  ConstBinary binOp a b | ConstInt x <- constantFolding a
                        , ConstInt y <- constantFolding b -> case binOp of
    Addition       | inBounds (x + y) -> ConstInt (x + y)
    Subtraction    | inBounds (x - y) -> ConstInt (x - y)
    Multiplication | inBounds (x * y) -> ConstInt (x * y)
    Division       | y /= 0           -> ConstInt (x `div` y)
    _                                 -> ConstBinary binOp (ConstInt x) (ConstInt y)
  ConstUnary Minus a | ConstInt x <- constantFolding a -> ConstInt (-x)
  ConstUnary Plus  a                                   -> constantFolding a
  _ -> c

-- | The map of all parameter variables and their corresponding values
type ParameterVarMap = M.Map Name Constant
-- | The map of all expressions and whether they are undecided (not
-- present in map), a constant value (Just Constant), or probably not
-- constant (Nothing).
type ConstExpMap = ASTExprNodeMap (Maybe Constant)

-- | Generate a constant-expression map with information about the
-- expressions (identified by insLabel numbering) in the ProgramFile
-- pf (must have analysis initiated & basic blocks generated) .
genConstExpMap :: forall a. Data a => ProgramFile (Analysis a) -> ConstExpMap
genConstExpMap pf = ceMap
  where
    -- Generate map of 'parameter' variables, obtaining their value from ceMap below, lazily.
    pvMap = M.fromList $
      [ (varName v, getE e)
      | st@(StDeclaration _ _ (TypeSpec _ _ _ _) _ _) <- universeBi pf :: [Statement (Analysis a)]
      , AttrParameter _ _ <- universeBi st :: [Attribute (Analysis a)]
      , (DeclVariable _ _ v _ (Just e)) <- universeBi st ] ++
      [ (varName v, getE e)
      | st@StParameter{} <- universeBi pf :: [Statement (Analysis a)]
      , (DeclVariable _ _ v _ (Just e)) <- universeBi st ]
    getV :: Expression (Analysis a) -> Maybe Constant
    getV e = constExp (getAnnotation e) `mplus` (join . flip M.lookup pvMap . varName $ e)

    -- Generate map of information about 'constant expressions'.
    ceMap = IM.fromList [ (label, doExpr e) | e <- universeBi pf, Just label <- [labelOf e] ]
    getE :: Expression (Analysis a) -> Maybe Constant
    getE = join . (flip IM.lookup ceMap <=< labelOf)
    labelOf = insLabel . getAnnotation
    doExpr :: Expression (Analysis a) -> Maybe Constant
    doExpr e = case e of
      ExpValue _ _ (ValInteger str)
        | Just i <- readInteger str -> Just . ConstInt $ fromIntegral i
      ExpValue _ _ (ValInteger str) -> Just $ ConstUninterpInt str
      ExpValue _ _ (ValReal str)    -> Just $ ConstUninterpReal str
      ExpValue _ _ (ValVariable _)  -> getV e
      -- Recursively seek information about sub-expressions, relying on laziness.
      ExpBinary _ _ binOp e1 e2     -> constantFolding <$> liftM2 (ConstBinary binOp) (getE e1) (getE e2)
      ExpUnary _ _ unOp e'           -> constantFolding <$> ConstUnary unOp <$> getE e'
      _ -> Nothing

-- | Get constant-expression information and put it into the AST
-- analysis annotation. Must occur after analyseBBlocks.
analyseConstExps :: forall a. Data a => ProgramFile (Analysis a) -> ProgramFile (Analysis a)
analyseConstExps pf = pf'
  where
    ceMap = genConstExpMap pf
    -- transform both the AST and the basic block graph
    pf'   = transformBB (bbgrMap (nmap (transformExpr insertConstExp))) $ transformBi insertConstExp pf
    -- insert info about constExp into Expression annotation
    insertConstExp :: Expression (Analysis a) -> Expression (Analysis a)
    insertConstExp e = flip modifyAnnotation e $ \ a ->
      a { constExp = constExp a `mplus` join (flip IM.lookup ceMap =<< insLabel (getAnnotation e)) }
    -- utility functions for transforming expressions tucked away inside of the basic block graph
    transformBB :: (BBGr (Analysis a) -> BBGr (Analysis a)) -> ProgramFile (Analysis a) -> ProgramFile (Analysis a)
    transformBB = transformBi
    transformExpr :: (Expression (Analysis a) -> Expression (Analysis a)) ->
                     [Block (Analysis a)] -> [Block (Analysis a)]
    transformExpr = transformBi

-- | Annotate AST with constant-expression information based on given
-- ParameterVarMap.
analyseParameterVars :: forall a. Data a => ParameterVarMap -> ProgramFile (Analysis a) -> ProgramFile (Analysis a)
analyseParameterVars pvm = transformBi expr
  where
    expr :: Expression (Analysis a) -> Expression (Analysis a)
    expr e@(ExpValue _ _ ValVariable{})
      | Just con <- M.lookup (varName e) pvm = flip modifyAnnotation e $ \ a -> a { constExp = Just con }
    expr e = e

--------------------------------------------------

-- | BackEdgeMap : bblock node -> bblock node
type BackEdgeMap = BBNodeMap BBNode

-- | Find the edges that 'loop back' in the graph; ones where the
-- target node dominates the source node. If the backedges are viewed
-- as (m -> n) then n is considered the 'loop-header'
genBackEdgeMap :: Graph gr => DomMap -> gr a b -> BackEdgeMap
genBackEdgeMap domMap = IM.fromList . filter isBackEdge . edges
  where
    isBackEdge (s, t) = t `IS.member` fromJustMsg "genBackEdgeMap" (s `IM.lookup` domMap)

-- | For each loop in the program, find out which bblock nodes are
-- part of the loop by looking through the backedges (m, n) where n is
-- considered the 'loop-header', delete n from the map, and then do a
-- reverse-depth-first traversal starting from m to find all the nodes
-- of interest. Intersect this with the strongly-connected component
-- containing m, in case of 'improper' graphs with weird control
-- transfers.
loopNodes :: Graph gr => BackEdgeMap -> gr a b -> [BBNodeSet]
loopNodes bedges gr = [
    IS.fromList (n:intersect (sccWith n gr) (rdfs [m] (delNode n gr))) | (m, n) <- IM.toList bedges
  ]

-- | LoopNodeMap : bblock node -> { bblock node }
type LoopNodeMap = BBNodeMap BBNodeSet

-- | Similar to loopNodes except it creates a map from loop-header to
-- the set of loop nodes, for each loop-header.
genLoopNodeMap :: Graph gr => BackEdgeMap -> gr a b -> LoopNodeMap
genLoopNodeMap bedges gr = IM.fromList [
    (n, IS.fromList (n:intersect (sccWith n gr) (rdfs [m] (delNode n gr)))) | (m, n) <- IM.toList bedges
  ]

-- | The strongly connected component containing a given node.
sccWith :: (Graph gr) => Node -> gr a b -> [Node]
sccWith n g = case filter (n `elem`) $ scc g of
  []  -> []
  c:_ -> c

-- | Map of loop header nodes to the induction variables within that loop.
type InductionVarMap = BBNodeMap (S.Set Name)

-- | Basic induction variables are induction variables that are the
-- most easily derived from the syntactic structure of the program:
-- for example, directly appearing in a Do-statement.
basicInductionVars :: Data a => BackEdgeMap -> BBGr (Analysis a) -> InductionVarMap
basicInductionVars bedges gr = IM.fromListWith S.union [
    (n, S.singleton v) | (_, n)      <- IM.toList bedges
                       , let Just bs = lab (bbgrGr gr) n
                       , b@BlDo{}    <- bs
                       , v           <- blockVarDefs b
  ]

-- | For each loop in the program, figure out the names of the
-- induction variables: the variables that are used to represent the
-- current iteration of the loop.
genInductionVarMap :: Data a => BackEdgeMap -> BBGr (Analysis a) -> InductionVarMap
genInductionVarMap = basicInductionVars

-- | InductionVarMapByASTBlock : AST-block label -> { name }
type InductionVarMapByASTBlock = ASTBlockNodeMap (S.Set Name)

-- | Generate an induction variable map that is indexed by the labels
-- on AST-blocks within those loops.
genInductionVarMapByASTBlock :: forall a. Data a => BackEdgeMap -> BBGr (Analysis a) -> InductionVarMapByASTBlock
genInductionVarMapByASTBlock bedges gr = loopsToLabs . genInductionVarMap bedges $ gr
  where
    lnMap       = genLoopNodeMap bedges $ bbgrGr gr
    get'        = fromMaybe (error "missing loop-header node") . flip IM.lookup lnMap
    astLabels n = [ i | b <- (universeBi :: Maybe [Block (Analysis a)] -> [Block (Analysis a)]) (lab (bbgrGr gr) n)
                      , let Just i = insLabel (getAnnotation b) ]
    loopsToLabs         = IM.fromListWith S.union . concatMap loopToLabs . IM.toList
    loopToLabs (n, ivs) = (map (,ivs) . astLabels) =<< IS.toList (get' n)

-- It's a 'lattice' but will leave it ungeneralised for the moment.
data InductionExpr
  = IETop                 -- not enough info
  | IELinear Name Int Int -- Basic induction var 'Name' * coefficient + offset
  | IEBottom              -- too difficult
  deriving (Show, Eq, Ord, Typeable, Generic, Data)

type DerivedInductionMap = ASTExprNodeMap InductionExpr

data IEFlow = IEFlow { ieFlowVars :: M.Map Name InductionExpr, ieFlowExprs :: DerivedInductionMap }
  deriving (Show, Eq, Ord, Typeable, Generic, Data)

ieFlowInsertVar :: Name -> InductionExpr -> IEFlow -> IEFlow
ieFlowInsertVar v ie flow = flow { ieFlowVars = M.insert v ie (ieFlowVars flow) }

ieFlowInsertExpr :: ASTExprNode -> InductionExpr -> IEFlow -> IEFlow
ieFlowInsertExpr i ie flow = flow { ieFlowExprs = IM.insert i ie (ieFlowExprs flow) }

emptyIEFlow :: IEFlow
emptyIEFlow = IEFlow M.empty IM.empty

joinIEFlows :: [IEFlow] -> IEFlow
joinIEFlows flows = IEFlow flowV flowE
  where
    flowV = M.unionsWith joinInductionExprs (map ieFlowVars flows)
    flowE = IM.unionsWith joinInductionExprs (map ieFlowExprs flows)

-- | For every expression in a loop, try to derive its relationship to
-- a basic induction variable.
genDerivedInductionMap :: forall a. Data a => BackEdgeMap -> BBGr (Analysis a) -> DerivedInductionMap
genDerivedInductionMap bedges gr = ieFlowExprs . joinIEFlows . map snd . IM.elems . IM.filterWithKey inLoop $ inOutMaps
  where
    bivMap = basicInductionVars bedges gr -- basic indvars indexed by loop header node
    loopNodeSet = IS.unions (loopNodes bedges $ bbgrGr gr) -- set of nodes within a loop
    inLoop i _ = i `IS.member` loopNodeSet

    step :: IEFlow -> Block (Analysis a) -> IEFlow
    step flow b = case b of
      BlStatement _ _ _ (StExpressionAssign _ _ lv@(ExpValue _ _ (ValVariable _)) rhs)
        | _ <- insLabel (getAnnotation rhs)
        , flow''   <- ieFlowInsertVar (varName lv) (derivedInductionExpr flow' rhs) flow' -> stepExpr flow'' lv
      _ -> flow'
      where
        flow' = foldl' stepExpr flow (universeBi b)

    stepExpr :: IEFlow -> Expression (Analysis a) -> IEFlow
    stepExpr flow e = ieFlowInsertExpr label ie flow
      where
        ie = derivedInductionExpr flow e
        label = fromJustMsg "stepExpr" $ insLabel (getAnnotation e)

    out :: InF IEFlow -> OutF IEFlow
    out inF node = foldl' step flow (fromJustMsg ("analyseDerivedIE out(" ++ show node ++ ")") $ lab (bbgrGr gr) node)
      where
        flow = joinIEFlows [fst (initF node), inF node]

    inn :: OutF IEFlow -> InF IEFlow
    inn outF node = joinIEFlows [ outF p | p <- pre (bbgrGr gr) node ]

    initF :: Node -> InOut IEFlow
    initF node = case IM.lookup node bivMap of
                   Just set -> (IEFlow (M.fromList [ (n, IELinear n 1 0) | n <- S.toList set ]) IM.empty, emptyIEFlow)
                   Nothing  -> (emptyIEFlow, emptyIEFlow)

    inOutMaps = dataFlowSolver gr initF revPostOrder inn out

-- Compute the relationship between the given expression and a basic
-- induction variable, if possible.
derivedInductionExpr :: Data a => IEFlow -> Expression (Analysis a) -> InductionExpr
derivedInductionExpr flow e = case e of
  v@(ExpValue _ _ (ValVariable _))   -> fromMaybe IETop $ M.lookup (varName v) (ieFlowVars flow)
  ExpValue _ _ (ValInteger str)
    | Just i <- readInteger str      -> IELinear "" 0 (fromIntegral i)
  ExpBinary _ _ Addition e1 e2       -> derive e1 `addInductionExprs` derive e2
  ExpBinary _ _ Subtraction e1 e2    -> derive e1 `addInductionExprs` negInductionExpr (derive e2)
  ExpBinary _ _ Multiplication e1 e2 -> derive e1 `mulInductionExprs` derive e2
  _                                  -> IETop -- unsure
  where
    derive = derivedInductionExpr flow

-- Combine two induction variable relationships through addition.
addInductionExprs :: InductionExpr -> InductionExpr -> InductionExpr
addInductionExprs (IELinear ln lc lo) (IELinear rn rc ro)
  | ln == rn                = IELinear ln (lc + rc) (lo + ro)
  | lc == 0                 = IELinear rn rc (lo + ro)
  | rc == 0                 = IELinear ln lc (lo + ro)
  | otherwise               = IEBottom -- maybe for future...
addInductionExprs _ IETop = IETop
addInductionExprs IETop _ = IETop
addInductionExprs _ _       = IEBottom

-- Negate an induction variable relationship.
negInductionExpr :: InductionExpr -> InductionExpr
negInductionExpr (IELinear n c o) = IELinear n (-c) (-o)
negInductionExpr IETop            = IETop
negInductionExpr _                = IEBottom

-- Combine two induction variable relationships through multiplication.
mulInductionExprs :: InductionExpr -> InductionExpr -> InductionExpr
mulInductionExprs (IELinear "" _ lo) (IELinear rn rc ro) = IELinear rn (rc * lo) (ro * lo)
mulInductionExprs (IELinear ln lc lo) (IELinear "" _ ro) = IELinear ln (lc * ro) (lo * ro)
mulInductionExprs _ IETop                                 = IETop
mulInductionExprs IETop _                                 = IETop
mulInductionExprs _ _                                     = IEBottom

-- Combine two induction variable relationships using lattice 'join'.
joinInductionExprs :: InductionExpr -> InductionExpr -> InductionExpr
joinInductionExprs ie1 IETop = ie1
joinInductionExprs IETop ie2 = ie2
joinInductionExprs ie1 ie2
  | ie1 == ie2               = ie1
  | otherwise                = IEBottom -- too difficult to combine

--------------------------------------------------

-- | Show some information about dataflow analyses.
showDataFlow :: (Data a, Out a, Show a) => ProgramFile (Analysis a) -> String
showDataFlow pf = perPU =<< uni pf
  where
    uni = universeBi :: Data a => ProgramFile (Analysis a) -> [ProgramUnit (Analysis a)]
    perPU pu | Analysis { bBlocks = Just gr } <- getAnnotation pu =
      dashes ++ "\n" ++ p ++ "\n" ++ dashes ++ "\n" ++ dfStr gr ++ "\n\n"
      where p = "| Program Unit " ++ show (puName pu) ++ " |"
            dashes = replicate (length p) '-'
            dfStr gr = (\ (l, x) -> '\n':l ++ ": " ++ x) =<< [
                         ("callMap",      show cm)
                       , ("postOrder",    show (postOrder gr))
                       , ("revPostOrder", show (revPostOrder gr))
                       , ("revPreOrder",  show (revPreOrder gr))
                       , ("dominators",   show (dominators gr))
                       , ("iDominators",  show (iDominators gr))
                       , ("defMap",       show dm)
                       , ("lva",          show (IM.toList $ lva gr))
                       , ("rd",           show (IM.toList $ rd gr))
                       , ("backEdges",    show bedges)
                       , ("topsort",      show (topsort $ bbgrGr gr))
                       , ("scc ",         show (scc $ bbgrGr gr))
                       , ("loopNodes",    show (loopNodes bedges $ bbgrGr gr))
                       , ("duMap",        show (genDUMap bm dm gr (rd gr)))
                       , ("udMap",        show (genUDMap bm dm gr (rd gr)))
                       , ("flowsTo",      show (edges flTo))
                       , ("varFlowsTo",   show (genVarFlowsToMap dm (genFlowsToGraph bm dm gr (rd gr))))
                       , ("ivMap",        show (genInductionVarMap bedges gr))
                       , ("ivMapByAST",   show (genInductionVarMapByASTBlock bedges gr))
                       , ("constExpMap",  show (genConstExpMap pf))
                       , ("entries",      show (bbgrEntries gr))
                       , ("exits",        show (bbgrExits gr))
                       ] where
                           bedges = genBackEdgeMap (dominators gr) $ bbgrGr gr
                           flTo = genFlowsToGraph bm dm gr (rd gr)

    perPU pu = dashes ++ "\n" ++ p ++ "\n" ++ dashes ++ "\n" ++ dfStr ++ "\n\n"
      where p = "| Program Unit " ++ show (puName pu) ++ " |"
            dashes = replicate (length p) '-'
            dfStr = (\ (l, x) -> '\n':l ++ ": " ++ x) =<< [
                      ("constExpMap",  show (genConstExpMap pf))
                    ]

    lva = liveVariableAnalysis
    bm = genBlockMap pf
    dm = genDefMap bm
    rd = reachingDefinitions dm
    cm = genCallMap pf

-- | Outputs a DOT-formatted graph showing flow-to data starting at
-- the given AST-Block node in the given Basic Block graph.
showFlowsDOT :: (Data a, Out a, Show a) => ProgramFile (Analysis a) -> BBGr (Analysis a) -> ASTBlockNode -> Bool -> String
showFlowsDOT pf bbgr astBlockId isFrom = execWriter $ do
  let bm = genBlockMap pf
      dm = genDefMap bm
      flowsTo = genFlowsToGraph bm dm bbgr (reachingDefinitions dm bbgr)
      flows | isFrom    = grev flowsTo
            | otherwise = flowsTo
  tell "strict digraph {\n"
  forM_ (bfsn [astBlockId] flows) $ \ n -> do
    let pseudocode = maybe "<N/A>" showBlock $ IM.lookup n bm
    tell "node [shape=box,fontname=\"Courier New\"]\n"
    tell $ "Bl" ++ show n ++ "[label=\"B" ++ show n ++ "\\l" ++ pseudocode ++ "\"]\n"
    tell $ "Bl" ++ show n ++ " -> {"
    forM_ (suc flows n) $ \ m -> tell (" Bl" ++ show m)
    tell "}\n"
  tell "}\n"

--------------------------------------------------

-- | CallMap : program unit name -> { name of function or subroutine }
type CallMap = M.Map ProgramUnitName (S.Set Name)

-- | Create a call map showing the structure of the program.
genCallMap :: Data a => ProgramFile (Analysis a) -> CallMap
genCallMap pf = flip execState M.empty $ do
  let uP = universeBi :: Data a => ProgramFile a -> [ProgramUnit a]
  forM_ (uP pf) $ \ pu -> do
    let n = puName pu
    let uS :: Data a => ProgramUnit a -> [Statement a]
        uS = universeBi
    let uE :: Data a => ProgramUnit a -> [Expression a]
        uE = universeBi
    m <- get
    let ns = [ varName v | StCall _ _ v@ExpValue{} _          <- uS pu ] ++
             [ varName v | ExpFunctionCall _ _ v@ExpValue{} _ <- uE pu ]
    put $ M.insert n (S.fromList ns) m

--------------------------------------------------

-- | Finds the transitive closure of a directed graph.
-- Given a graph G=(V,E), its transitive closure is the graph:
-- G* = (V,E*) where E*={(i,j): i,j in V and there is a path from i to j in G}
--tc :: (DynGraph gr) => gr a b -> gr a ()
--tc g = newEdges `insEdges` insNodes ln empty
--  where
--    ln       = labNodes g
--    newEdges = [ toLEdge (u, v) () | (u, _) <- ln, (_, v) <- bfen (outU g u) g ]
--    outU gr  = map toEdge . out gr

-- helper: iterate until predicate is satisfied; expects infinite list.
converge :: (a -> a -> Bool) -> [a] -> a
converge p (x:ys@(y:_))
  | p x y     = y
  | otherwise = converge p ys
converge _ [] = error "converge: empty list"
converge _ [_] = error "converge: finite list"

fromJustMsg :: String -> Maybe a -> a
fromJustMsg _ (Just x) = x
fromJustMsg msg _      = error msg

-- Local variables:
-- mode: haskell
-- haskell-program-name: "cabal repl"
-- End: