{-# Language DeriveDataTypeable, FlexibleInstances, KindSignatures, MultiParamTypeClasses, RankNTypes,
StandaloneDeriving, TypeFamilies, UndecidableInstances #-}
module Transformation.Deep where
import Control.Applicative (Applicative, (<*>), liftA2)
import Data.Data (Data, Typeable)
import Data.Functor.Compose (Compose)
import Data.Functor.Const (Const)
import Data.Kind (Type)
import qualified Rank2
import qualified Data.Functor
import Transformation (Transformation, Domain, Codomain)
import qualified Transformation.Full as Full
import Prelude hiding (Foldable(..), Traversable(..), Functor(..), Applicative(..), (<$>), fst, snd)
class (Transformation t, Rank2.Functor (g (Domain t))) => Functor t g where
(<$>) :: t -> g (Domain t) (Domain t) -> g (Codomain t) (Codomain t)
class (Transformation t, Rank2.Foldable (g (Domain t))) => Foldable t g where
foldMap :: (Codomain t ~ Const m, Monoid m) => t -> g (Domain t) (Domain t) -> m
class (Transformation t, Rank2.Traversable (g (Domain t))) => Traversable t g where
traverse :: Codomain t ~ Compose m f => t -> g (Domain t) (Domain t) -> m (g f f)
data Product g1 g2 (p :: * -> *) (q :: * -> *) = Pair{Product g1 g2 p q -> q (g1 p p)
fst :: q (g1 p p),
Product g1 g2 p q -> q (g2 p p)
snd :: q (g2 p p)}
instance Rank2.Functor (Product g1 g2 p) where
forall a. p a -> q a
f <$> :: (forall a. p a -> q a) -> Product g1 g2 p p -> Product g1 g2 p q
<$> ~(Pair p (g1 p p)
left p (g2 p p)
right) = q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
Pair (p (g1 p p) -> q (g1 p p)
forall a. p a -> q a
f p (g1 p p)
left) (p (g2 p p) -> q (g2 p p)
forall a. p a -> q a
f p (g2 p p)
right)
instance Rank2.Apply (Product g h p) where
~(Pair (~>) p q (g p p)
g1 (~>) p q (h p p)
h1) <*> :: Product g h p (p ~> q) -> Product g h p p -> Product g h p q
<*> ~(Pair p (g p p)
g2 p (h p p)
h2) = q (g p p) -> q (h p p) -> Product g h p q
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
Pair ((~>) p q (g p p) -> p (g p p) -> q (g p p)
forall k (p :: k -> *) (q :: k -> *) (a :: k).
Arrow p q a -> p a -> q a
Rank2.apply (~>) p q (g p p)
g1 p (g p p)
g2) ((~>) p q (h p p) -> p (h p p) -> q (h p p)
forall k (p :: k -> *) (q :: k -> *) (a :: k).
Arrow p q a -> p a -> q a
Rank2.apply (~>) p q (h p p)
h1 p (h p p)
h2)
liftA2 :: (forall a. p a -> q a -> r a)
-> Product g h p p -> Product g h p q -> Product g h p r
liftA2 forall a. p a -> q a -> r a
f ~(Pair p (g p p)
g1 p (h p p)
h1) ~(Pair q (g p p)
g2 q (h p p)
h2) = r (g p p) -> r (h p p) -> Product g h p r
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
Pair (p (g p p) -> q (g p p) -> r (g p p)
forall a. p a -> q a -> r a
f p (g p p)
g1 q (g p p)
g2) (p (h p p) -> q (h p p) -> r (h p p)
forall a. p a -> q a -> r a
f p (h p p)
h1 q (h p p)
h2)
instance Rank2.Applicative (Product g h p) where
pure :: (forall a. f a) -> Product g h p f
pure forall a. f a
f = f (g p p) -> f (h p p) -> Product g h p f
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
Pair f (g p p)
forall a. f a
f f (h p p)
forall a. f a
f
instance Rank2.Foldable (Product g h p) where
foldMap :: (forall a. p a -> m) -> Product g h p p -> m
foldMap forall a. p a -> m
f ~(Pair p (g p p)
g p (h p p)
h) = p (g p p) -> m
forall a. p a -> m
f p (g p p)
g m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` p (h p p) -> m
forall a. p a -> m
f p (h p p)
h
instance Rank2.Traversable (Product g h p) where
traverse :: (forall a. p a -> m (q a))
-> Product g h p p -> m (Product g h p q)
traverse forall a. p a -> m (q a)
f ~(Pair p (g p p)
g p (h p p)
h) = (q (g p p) -> q (h p p) -> Product g h p q)
-> m (q (g p p)) -> m (q (h p p)) -> m (Product g h p q)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 q (g p p) -> q (h p p) -> Product g h p q
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
Pair (p (g p p) -> m (q (g p p))
forall a. p a -> m (q a)
f p (g p p)
g) (p (h p p) -> m (q (h p p))
forall a. p a -> m (q a)
f p (h p p)
h)
instance Rank2.DistributiveTraversable (Product g h p)
instance Rank2.Distributive (Product g h p) where
cotraverse :: (forall a. m (p a) -> q a)
-> m (Product g h p p) -> Product g h p q
cotraverse forall a. m (p a) -> q a
w m (Product g h p p)
f = Pair :: forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
Pair{fst :: q (g p p)
fst= m (p (g p p)) -> q (g p p)
forall a. m (p a) -> q a
w (Product g h p p -> p (g p p)
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
Product g1 g2 p q -> q (g1 p p)
fst (Product g h p p -> p (g p p))
-> m (Product g h p p) -> m (p (g p p))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Data.Functor.<$> m (Product g h p p)
f),
snd :: q (h p p)
snd= m (p (h p p)) -> q (h p p)
forall a. m (p a) -> q a
w (Product g h p p -> p (h p p)
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
Product g1 g2 p q -> q (g2 p p)
snd (Product g h p p -> p (h p p))
-> m (Product g h p p) -> m (p (h p p))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
Data.Functor.<$> m (Product g h p p)
f)}
instance (Full.Functor t g, Full.Functor t h) => Functor t (Product g h) where
t
t <$> :: t
-> Product g h (Domain t) (Domain t)
-> Product g h (Codomain t) (Codomain t)
<$> Pair Domain t (g (Domain t) (Domain t))
left Domain t (h (Domain t) (Domain t))
right = Codomain t (g (Codomain t) (Codomain t))
-> Codomain t (h (Codomain t) (Codomain t))
-> Product g h (Codomain t) (Codomain t)
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
Pair (t
t t
-> Domain t (g (Domain t) (Domain t))
-> Codomain t (g (Codomain t) (Codomain t))
forall t (g :: (* -> *) -> (* -> *) -> *).
Functor t g =>
t
-> Domain t (g (Domain t) (Domain t))
-> Codomain t (g (Codomain t) (Codomain t))
Full.<$> Domain t (g (Domain t) (Domain t))
left) (t
t t
-> Domain t (h (Domain t) (Domain t))
-> Codomain t (h (Codomain t) (Codomain t))
forall t (g :: (* -> *) -> (* -> *) -> *).
Functor t g =>
t
-> Domain t (g (Domain t) (Domain t))
-> Codomain t (g (Codomain t) (Codomain t))
Full.<$> Domain t (h (Domain t) (Domain t))
right)
instance (Full.Traversable t g, Full.Traversable t h, Codomain t ~ Compose m f, Applicative m) =>
Traversable t (Product g h) where
traverse :: t -> Product g h (Domain t) (Domain t) -> m (Product g h f f)
traverse t
t (Pair Domain t (g (Domain t) (Domain t))
left Domain t (h (Domain t) (Domain t))
right) = (f (g f f) -> f (h f f) -> Product g h f f)
-> m (f (g f f)) -> m (f (h f f)) -> m (Product g h f f)
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 f (g f f) -> f (h f f) -> Product g h f f
forall (g1 :: (* -> *) -> (* -> *) -> *)
(g2 :: (* -> *) -> (* -> *) -> *) (p :: * -> *) (q :: * -> *).
q (g1 p p) -> q (g2 p p) -> Product g1 g2 p q
Pair (t -> Domain t (g (Domain t) (Domain t)) -> m (f (g f f))
forall t (g :: (* -> *) -> (* -> *) -> *) (m :: * -> *)
(f :: * -> *).
(Traversable t g, Codomain t ~ Compose m f) =>
t -> Domain t (g (Domain t) (Domain t)) -> m (f (g f f))
Full.traverse t
t Domain t (g (Domain t) (Domain t))
left) (t -> Domain t (h (Domain t) (Domain t)) -> m (f (h f f))
forall t (g :: (* -> *) -> (* -> *) -> *) (m :: * -> *)
(f :: * -> *).
(Traversable t g, Codomain t ~ Compose m f) =>
t -> Domain t (g (Domain t) (Domain t)) -> m (f (g f f))
Full.traverse t
t Domain t (h (Domain t) (Domain t))
right)
deriving instance (Typeable p, Typeable q, Typeable g1, Typeable g2,
Data (q (g1 p p)), Data (q (g2 p p))) => Data (Product g1 g2 p q)
deriving instance (Show (q (g1 p p)), Show (q (g2 p p))) => Show (Product g1 g2 p q)
fmap :: Functor t g => t -> g (Domain t) (Domain t) -> g (Codomain t) (Codomain t)
fmap :: t -> g (Domain t) (Domain t) -> g (Codomain t) (Codomain t)
fmap = t -> g (Domain t) (Domain t) -> g (Codomain t) (Codomain t)
forall t (g :: (* -> *) -> (* -> *) -> *).
Functor t g =>
t -> g (Domain t) (Domain t) -> g (Codomain t) (Codomain t)
(<$>)