{-# Language FlexibleInstances, MultiParamTypeClasses, ScopedTypeVariables,
TypeFamilies, TypeOperators, UndecidableInstances #-}
module Transformation where
import qualified Data.Functor as Rank1
import Data.Functor.Product (Product(Pair))
import Data.Functor.Sum (Sum(InL, InR))
import Data.Kind (Type)
import Data.Monoid (Ap)
import Data.Semigroup (Semigroup((<>)))
import qualified Rank2
import Prelude hiding (($))
class Transformation t where
type Domain t :: Type -> Type
type Codomain t :: Type -> Type
class Transformation t => At t x where
($) :: t -> Domain t x -> Codomain t x
infixr 0 $
apply :: t `At` x => t -> Domain t x -> Codomain t x
apply :: t -> Domain t x -> Codomain t x
apply = t -> Domain t x -> Codomain t x
forall t x. At t x => t -> Domain t x -> Codomain t x
($)
data Compose t u = Compose t u
instance (Transformation t, Transformation u, Domain t ~ Codomain u) => Transformation (Compose t u) where
type Domain (Compose t u) = Domain u
type Codomain (Compose t u) = Codomain t
instance (t `At` x, u `At` x, Domain t ~ Codomain u) => Compose t u `At` x where
Compose t
t u
u $ :: Compose t u -> Domain (Compose t u) x -> Codomain (Compose t u) x
$ Domain (Compose t u) x
x = t
t t -> Domain t x -> Codomain t x
forall t x. At t x => t -> Domain t x -> Codomain t x
$ (u
u u -> Domain u x -> Codomain u x
forall t x. At t x => t -> Domain t x -> Codomain t x
$ Domain u x
Domain (Compose t u) x
x)
instance Transformation (Rank2.Arrow p q x) where
type Domain (Rank2.Arrow p q x) = p
type Codomain (Rank2.Arrow p q x) = q
instance Rank2.Arrow p q x `At` x where
$ :: Arrow p q x -> Domain (Arrow p q x) x -> Codomain (Arrow p q x) x
($) = Arrow p q x -> Domain (Arrow p q x) x -> Codomain (Arrow p q x) x
forall k (p :: k -> *) (q :: k -> *) (a :: k).
Arrow p q a -> p a -> q a
Rank2.apply
instance (Transformation t1, Transformation t2, Domain t1 ~ Domain t2) => Transformation (t1, t2) where
type Domain (t1, t2) = Domain t1
type Codomain (t1, t2) = Product (Codomain t1) (Codomain t2)
instance (t `At` x, u `At` x, Domain t ~ Domain u) => (t, u) `At` x where
(t
t, u
u) $ :: (t, u) -> Domain (t, u) x -> Codomain (t, u) x
$ Domain (t, u) x
x = Codomain t x -> Codomain u x -> Product (Codomain t) (Codomain u) x
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (t
t t -> Domain t x -> Codomain t x
forall t x. At t x => t -> Domain t x -> Codomain t x
$ Domain t x
Domain (t, u) x
x) (u
u u -> Domain u x -> Codomain u x
forall t x. At t x => t -> Domain t x -> Codomain t x
$ Domain u x
Domain (t, u) x
x)
instance (Transformation t1, Transformation t2, Domain t1 ~ Domain t2) => Transformation (Either t1 t2) where
type Domain (Either t1 t2) = Domain t1
type Codomain (Either t1 t2) = Sum (Codomain t1) (Codomain t2)
instance (t `At` x, u `At` x, Domain t ~ Domain u) => Either t u `At` x where
Left t
t $ :: Either t u -> Domain (Either t u) x -> Codomain (Either t u) x
$ Domain (Either t u) x
x = Codomain t x -> Sum (Codomain t) (Codomain u) x
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (t
t t -> Domain t x -> Codomain t x
forall t x. At t x => t -> Domain t x -> Codomain t x
$ Domain t x
Domain (Either t u) x
x)
Right u
t $ Domain (Either t u) x
x = Codomain u x -> Sum (Codomain t) (Codomain u) x
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (u
t u -> Domain u x -> Codomain u x
forall t x. At t x => t -> Domain t x -> Codomain t x
$ Domain u x
Domain (Either t u) x
x)