csa: Connection-set algebra (CSA) library

This is a package candidate release! Here you can preview how this package release will appear once published to the main package index (which can be accomplished via the 'maintain' link below). Please note that once a package has been published to the main package index it cannot be undone! Please consult the package uploading documentation for more information.

[maintain] [Publish]

Library for algebraic connection-set expressions, built on M. Djurfeldt's idea of connection-set algebra [1].

1: Mikael Djurfeldt. The Connection-set Algebra: a formalism for the representation of connectivity structure in neuronal network models, implementations in Python and C++, and their use in simulators, BMC Neuroscience, 2011. https://doi.org/10.1186/1471-2202-12-S1-P80


[Skip to Readme]

Properties

Versions 0.1.0, 0.1.0
Change log CHANGELOG.md
Dependencies base (>=4.10.0 && <5), hmatrix [details]
License LicenseRef-GPL
Author Jens Egholm Pedersen
Maintainer Jens Egholm Pedersen
Category Algebra
Home page https://github.com/volr/csa#readme
Bug tracker https://github.com/volr/csa/issues
Source repo head: git clone https://github.com/volr/csa
Uploaded by jegp at 2018-06-22T15:14:46Z

Modules

[Index]

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees


Readme for csa-0.1.0

[back to package description]

Connection-set algebra (CSA) library

A library for constructing connection matrices between two collections of elements. Inspired by Mikael Djurfeldt's article from 2012 (Neuroinformatics).

Introduction

Connection-set algebra is a powerful algebra for describing connections between two elements. This library provides a syntax tree for modeling the set operations, as well as a means to transform the operations into adjacency matrices.

Installation

This is a library and not an executable. Clone the repository, enter it and run stack build (requires stack).

Connection-set algebra (CSA)

Say that you have two nodes that connect to each other. In a adjacency matrix this can be described as a full connection like so:

    1 2
  + ———
1 | 1 1
2 | 1 1

In CSA this is simply an AllToAll connection. Similarly a OneToOne connection describes the following adjacency matrix:

    1 2
  + ———
1 | 1 0
2 | 0 1

And here is the algebra part: If we say AllToAll - OneToOne we get:

    1 2
  + ———
1 | 0 1
2 | 1 0

Contact

Jens Egholm jensegholm@protonmail.com