> -- |
> -- Module      :  Cryptol.Eval.Reference
> -- Description :  The reference implementation of the Cryptol evaluation semantics.
> -- Copyright   :  (c) 2013-2016 Galois, Inc.
> -- License     :  BSD3
> -- Maintainer  :  cryptol@galois.com
> -- Stability   :  provisional
> -- Portability :  portable
>
> {-# LANGUAGE PatternGuards #-}
>
> module Cryptol.Eval.Reference
>   ( Value(..)
>   , evaluate
>   , ppValue
>   ) where
>
> import Control.Applicative (liftA2)
> import Data.Bits
> import Data.List
>   (genericDrop, genericIndex, genericLength, genericReplicate, genericSplitAt,
>    genericTake, sortBy)
> import Data.Ord (comparing)
> import Data.Map (Map)
> import qualified Data.Map as Map
> import Data.Semigroup (Semigroup(..))
> import qualified Data.Text as T (pack)
>
> import Cryptol.ModuleSystem.Name (asPrim)
> import Cryptol.TypeCheck.Solver.InfNat (Nat'(..), nAdd, nMin, nMul)
> import Cryptol.TypeCheck.AST
> import Cryptol.Eval.Monad (EvalError(..), PPOpts(..))
> import Cryptol.Eval.Type (TValue(..), isTBit, evalValType, evalNumType, tvSeq)
> import Cryptol.Eval.Value (mkBv, ppBV)
> import Cryptol.Prims.Eval (lg2)
> import Cryptol.Utils.Ident (Ident, mkIdent)
> import Cryptol.Utils.Panic (panic)
> import Cryptol.Utils.PP
>
> import qualified Cryptol.ModuleSystem as M
> import qualified Cryptol.ModuleSystem.Env as M (loadedModules)

Overview
========

This file describes the semantics of the explicitly-typed Cryptol
language (i.e., terms after type checking). Issues related to type
inference, type functions, and type constraints are beyond the scope
of this document.

Cryptol Types
-------------

Cryptol types come in two kinds: numeric types (kind `#`) and value
types (kind `*`). While value types are inhabited by well-typed
Cryptol expressions, numeric types are only used as parameters to
other types; they have no inhabitants. In this implementation we
represent numeric types as values of the Haskell type `Nat'` of
natural numbers with infinity; value types are represented as values
of type `TValue`.

The value types of Cryptol, along with their Haskell representations,
are as follows:

| Cryptol type      | Description    | `TValue` representation     |
|:----------------- |:-------------- |:--------------------------- |
| `Bit`             | booleans       | `TVBit`                     |
| `Integer`         | integers       | `TVInteger`                 |
| `[n]a`            | finite lists   | `TVSeq n a`                 |
| `[inf]a`          | infinite lists | `TVStream a`                |
| `(a, b, c)`       | tuples         | `TVTuple [a,b,c]`           |
| `{x:a, y:b, z:c}` | records        | `TVRec [(x,a),(y,b),(z,c)]` |
| `a -> b`          | functions      | `TVFun a b`                 |

We model each Cryptol value type `t` as a complete partial order (cpo)
*M*(`t`). To each Cryptol expression `e : t` we assign a meaning
*M*(`e`) in *M*(`t`); in particular, recursive Cryptol programs of
type `t` are modeled as least fixed points in *M*(`t`). In other words,
this is a domain-theoretic denotational semantics.

Evaluating a Cryptol expression of type `Bit` may result in:

- a defined value `True` or `False`

- a run-time error, or

- non-termination.

Accordingly, *M*(`Bit`) is a flat cpo with values for `True`,
`False`, run-time errors of type `EvalError`, and $\bot$; we
represent it with the Haskell type `Either EvalError Bool`.

Similarly, *M*(`Integer`) is a flat cpo with values for integers,
run-time errors, and $\bot$; we represent it with the Haskell type
`Either EvalError Integer`.

The cpos for lists, tuples, and records are cartesian products. The
cpo ordering is pointwise, and the bottom element $\bot$ is the
list/tuple/record whose elements are all $\bot$. Trivial types `[0]t`,
`()` and `{}` denote single-element cpos where the unique value
`[]`/`()`/`{}` *is* the bottom element $\bot$. *M*(`a -> b`) is the
continuous function space *M*(`a`) $\to$ *M*(`b`).

Type schemas of the form `{a1 ... an} (p1 ... pk) => t` classify
polymorphic values in Cryptol. These are represented with the Haskell
type `Schema`. The meaning of a schema is cpo whose elements are
functions: For each valid instantiation `t1 ... tn` of the type
parameters `a1 ... an` that satisfies the constraints `p1 ... pk`, the
function returns a value in *M*(`t[t1/a1 ... tn/an]`).

Values
------

The Haskell code in this module defines the semantics of typed Cryptol
terms by providing an evaluator to an appropriate `Value` type.

> -- | Value type for the reference evaluator.
> data Value
>   = VBit (Either EvalError Bool) -- ^ @ Bit    @ booleans
>   | VInteger (Either EvalError Integer) -- ^ @ Integer @ integers
>   | VList Nat' [Value]           -- ^ @ [n]a   @ finite or infinite lists
>   | VTuple [Value]               -- ^ @ ( .. ) @ tuples
>   | VRecord [(Ident, Value)]     -- ^ @ { .. } @ records
>   | VFun (Value -> Value)        -- ^ functions
>   | VPoly (TValue -> Value)      -- ^ polymorphic values (kind *)
>   | VNumPoly (Nat' -> Value)     -- ^ polymorphic values (kind #)

Invariant: Undefinedness and run-time exceptions are only allowed
inside the argument of a `VBit` or `VInteger` constructor. All other
`Value` and list constructors should evaluate without error. For
example, a non-terminating computation at type `(Bit,Bit)` must be
represented as `VTuple [VBit undefined, VBit undefined]`, and not
simply as `undefined`. Similarly, an expression like `1/0:[2]` that
raises a run-time error must be encoded as `VList (Nat 2) [VBit (Left
e), VBit (Left e)]` where `e = DivideByZero`.

Copy Functions
--------------

Functions `copyBySchema` and `copyByTValue` make a copy of the given
value, building the spine based only on the type without forcing the
value argument. This ensures that undefinedness appears inside `VBit`
and `VInteger` values only, and never on any constructors of the
`Value` type. In turn, this gives the appropriate semantics to
recursive definitions: The bottom value for a compound type is equal
to a value of the same type where every individual bit is bottom.

For each Cryptol type `t`, the cpo *M*(`t`) can be represented as a
subset of values of type `Value` that satisfy the datatype invariant.
This subset consists precisely of the output range of `copyByTValue
t`. Similarly, the range of output values of `copyBySchema` yields the
cpo that represents any given schema.

> copyBySchema :: Env -> Schema -> Value -> Value
> copyBySchema env0 (Forall params _props ty) = go params env0
>   where
>     go :: [TParam] -> Env -> Value -> Value
>     go []       env v = copyByTValue (evalValType (envTypes env) ty) v
>     go (p : ps) env v =
>       case v of
>         VPoly    f -> VPoly    $ \t -> go ps (bindType (tpVar p) (Right t) env) (f t)
>         VNumPoly f -> VNumPoly $ \n -> go ps (bindType (tpVar p) (Left n)  env) (f n)
>         _          -> evalPanic "copyBySchema" ["Expected polymorphic value"]
>
> copyByTValue :: TValue -> Value -> Value
> copyByTValue = go
>   where
>     go :: TValue -> Value -> Value
>     go ty val =
>       case ty of
>         TVBit        -> VBit (fromVBit val)
>         TVInteger    -> VInteger (fromVInteger val)
>         TVIntMod _   -> VInteger (fromVInteger val)
>         TVSeq w ety  -> VList (Nat w) (map (go ety) (copyList w (fromVList val)))
>         TVStream ety -> VList Inf (map (go ety) (copyStream (fromVList val)))
>         TVTuple etys -> VTuple (zipWith go etys (copyList (genericLength etys) (fromVTuple val)))
>         TVRec fields -> VRecord [ (f, go fty (lookupRecord f val)) | (f, fty) <- fields ]
>         TVFun _ bty  -> VFun (\v -> go bty (fromVFun val v))
>
> copyStream :: [a] -> [a]
> copyStream xs = head xs : copyStream (tail xs)
>
> copyList :: Integer -> [a] -> [a]
> copyList 0 _ = []
> copyList n xs = head xs : copyList (n - 1) (tail xs)

Operations on Values
--------------------

> -- | Destructor for @VBit@.
> fromVBit :: Value -> Either EvalError Bool
> fromVBit (VBit b) = b
> fromVBit _        = evalPanic "fromVBit" ["Expected a bit"]
>
> -- | Destructor for @VInteger@.
> fromVInteger :: Value -> Either EvalError Integer
> fromVInteger (VInteger i) = i
> fromVInteger _            = evalPanic "fromVInteger" ["Expected an integer"]
>
> -- | Destructor for @VList@.
> fromVList :: Value -> [Value]
> fromVList (VList _ vs) = vs
> fromVList _            = evalPanic "fromVList" ["Expected a list"]
>
> -- | Destructor for @VTuple@.
> fromVTuple :: Value -> [Value]
> fromVTuple (VTuple vs) = vs
> fromVTuple _           = evalPanic "fromVTuple" ["Expected a tuple"]
>
> -- | Destructor for @VRecord@.
> fromVRecord :: Value -> [(Ident, Value)]
> fromVRecord (VRecord fs) = fs
> fromVRecord _            = evalPanic "fromVRecord" ["Expected a record"]
>
> -- | Destructor for @VFun@.
> fromVFun :: Value -> (Value -> Value)
> fromVFun (VFun f) = f
> fromVFun _        = evalPanic "fromVFun" ["Expected a function"]
>
> -- | Destructor for @VPoly@.
> fromVPoly :: Value -> (TValue -> Value)
> fromVPoly (VPoly f) = f
> fromVPoly _         = evalPanic "fromVPoly" ["Expected a polymorphic value"]
>
> -- | Destructor for @VNumPoly@.
> fromVNumPoly :: Value -> (Nat' -> Value)
> fromVNumPoly (VNumPoly f) = f
> fromVNumPoly _            = evalPanic "fromVNumPoly" ["Expected a polymorphic value"]
>
> -- | Look up a field in a record.
> lookupRecord :: Ident -> Value -> Value
> lookupRecord f v =
>   case lookup f (fromVRecord v) of
>     Just val -> val
>     Nothing  -> evalPanic "lookupRecord" ["Malformed record"]
>
> -- | Polymorphic function values that expect a finite numeric type.
> vFinPoly :: (Integer -> Value) -> Value
> vFinPoly f = VNumPoly g
>   where
>     g (Nat n) = f n
>     g Inf     = evalPanic "vFinPoly" ["Expected finite numeric type"]


Environments
------------

An evaluation environment keeps track of the values of term variables
and type variables that are in scope at any point.

> data Env = Env
>   { envVars       :: !(Map Name Value)
>   , envTypes      :: !(Map TVar (Either Nat' TValue))
>   }
>
> instance Semigroup Env where
>   l <> r = Env
>     { envVars  = Map.union (envVars  l) (envVars  r)
>     , envTypes = Map.union (envTypes l) (envTypes r)
>     }
>
> instance Monoid Env where
>   mempty = Env
>     { envVars  = Map.empty
>     , envTypes = Map.empty
>     }
>   mappend l r = l <> r
>
> -- | Bind a variable in the evaluation environment.
> bindVar :: (Name, Value) -> Env -> Env
> bindVar (n, val) env = env { envVars = Map.insert n val (envVars env) }
>
> -- | Bind a type variable of kind # or *.
> bindType :: TVar -> Either Nat' TValue -> Env -> Env
> bindType p ty env = env { envTypes = Map.insert p ty (envTypes env) }


Evaluation
==========

The meaning *M*(`expr`) of a Cryptol expression `expr` is defined by
recursion over its structure. For an expression that contains free
variables, the meaning also depends on the environment `env`, which
assigns values to those variables.

> evalExpr :: Env     -- ^ Evaluation environment
>          -> Expr    -- ^ Expression to evaluate
>          -> Value
> evalExpr env expr =
>   case expr of
>
>     EList es _ty  -> VList (Nat (genericLength es)) [ evalExpr env e | e <- es ]
>     ETuple es     -> VTuple [ evalExpr env e | e <- es ]
>     ERec fields   -> VRecord [ (f, evalExpr env e) | (f, e) <- fields ]
>     ESel e sel    -> evalSel (evalExpr env e) sel
>
>     EIf c t f ->
>       condValue (fromVBit (evalExpr env c)) (evalExpr env t) (evalExpr env f)
>
>     EComp _n _ty e branches ->
>       evalComp env e branches
>
>     EVar n ->
>       case Map.lookup n (envVars env) of
>         Just val -> val
>         Nothing  -> evalPanic "evalExpr" ["var `" ++ show (pp n) ++ "` is not defined" ]
>
>     ETAbs tv b ->
>       case tpKind tv of
>         KType -> VPoly    $ \ty -> evalExpr (bindType (tpVar tv) (Right ty) env) b
>         KNum  -> VNumPoly $ \n  -> evalExpr (bindType (tpVar tv) (Left n) env) b
>         k     -> evalPanic "evalExpr" ["Invalid kind on type abstraction", show k]
>
>     ETApp e ty ->
>       case evalExpr env e of
>         VPoly f     -> f $! (evalValType (envTypes env) ty)
>         VNumPoly f  -> f $! (evalNumType (envTypes env) ty)
>         _           -> evalPanic "evalExpr" ["Expected a polymorphic value"]
>
>     EApp e1 e2     -> fromVFun (evalExpr env e1) (evalExpr env e2)
>     EAbs n _ty b   -> VFun (\v -> evalExpr (bindVar (n, v) env) b)
>     EProofAbs _ e  -> evalExpr env e
>     EProofApp e    -> evalExpr env e
>     EWhere e dgs   -> evalExpr (foldl evalDeclGroup env dgs) e


Selectors
---------

Apply the the given selector form to the given value.

> evalSel :: Value -> Selector -> Value
> evalSel val sel =
>   case sel of
>     TupleSel n _  -> tupleSel n val
>     RecordSel n _ -> recordSel n val
>     ListSel n _  -> listSel n val
>   where
>     tupleSel n v =
>       case v of
>         VTuple vs   -> vs !! n
>         _           -> evalPanic "evalSel"
>                        ["Unexpected value in tuple selection."]
>     recordSel n v =
>       case v of
>         VRecord _   -> lookupRecord n v
>         _           -> evalPanic "evalSel"
>                        ["Unexpected value in record selection."]
>     listSel n v =
>       case v of
>         VList _ vs  -> vs !! n
>         _           -> evalPanic "evalSel"
>                        ["Unexpected value in list selection."]


Conditionals
------------

We evaluate conditionals on larger types by pushing the conditionals
down to the individual bits.

> condValue :: Either EvalError Bool -> Value -> Value -> Value
> condValue c l r =
>   case l of
>     VBit b     -> VBit (condBit c b (fromVBit r))
>     VInteger i -> VInteger (condBit c i (fromVInteger r))
>     VList n vs -> VList n (zipWith (condValue c) vs (fromVList r))
>     VTuple vs  -> VTuple (zipWith (condValue c) vs (fromVTuple r))
>     VRecord fs -> VRecord [ (f, condValue c v (lookupRecord f r)) | (f, v) <- fs ]
>     VFun f     -> VFun (\v -> condValue c (f v) (fromVFun r v))
>     VPoly f    -> VPoly (\t -> condValue c (f t) (fromVPoly r t))
>     VNumPoly f -> VNumPoly (\n -> condValue c (f n) (fromVNumPoly r n))

Conditionals are explicitly lazy: Run-time errors in an untaken branch
are ignored.

> condBit :: Either e Bool -> Either e a -> Either e a -> Either e a
> condBit (Left e)  _ _ = Left e
> condBit (Right b) x y = if b then x else y


List Comprehensions
-------------------

Cryptol list comprehensions consist of one or more parallel branches;
each branch has one or more matches that bind values to variables.

The result of evaluating a match in an initial environment is a list
of extended environments. Each new environment binds the same single
variable to a different element of the match's list.

> evalMatch :: Env -> Match -> [Env]
> evalMatch env m =
>   case m of
>     Let d ->
>       [ bindVar (evalDecl env d) env ]
>     From n _l _ty expr ->
>       [ bindVar (n, v) env | v <- fromVList (evalExpr env expr) ]

> lenMatch :: Env -> Match -> Nat'
> lenMatch env m =
>   case m of
>     Let _          -> Nat 1
>     From _ len _ _ -> evalNumType (envTypes env) len

The result of of evaluating a branch in an initial environment is a
list of extended environments, each of which extends the initial
environment with the same set of new variables. The length of the list
is equal to the product of the lengths of the lists in the matches.

> evalBranch :: Env -> [Match] -> [Env]
> evalBranch env [] = [env]
> evalBranch env (match : matches) =
>   [ env'' | env' <- evalMatch env match
>           , env'' <- evalBranch env' matches ]

> lenBranch :: Env -> [Match] -> Nat'
> lenBranch _env [] = Nat 1
> lenBranch env (match : matches) =
>   nMul (lenMatch env match) (lenBranch env matches)

The head expression of the comprehension can refer to any variable
bound in any of the parallel branches. So to evaluate the
comprehension, we zip and merge together the lists of extended
environments from each branch. The head expression is then evaluated
separately in each merged environment. The length of the resulting
list is equal to the minimum length over all parallel branches.

> evalComp :: Env         -- ^ Starting evaluation environment
>          -> Expr        -- ^ Head expression of the comprehension
>          -> [[Match]]   -- ^ List of parallel comprehension branches
>          -> Value
> evalComp env expr branches = VList len [ evalExpr e expr | e <- envs ]
>   where
>     -- Generate a new environment for each iteration of each
>     -- parallel branch.
>     benvs :: [[Env]]
>     benvs = map (evalBranch env) branches
>
>     -- Zip together the lists of environments from each branch,
>     -- producing a list of merged environments. Longer branches get
>     -- truncated to the length of the shortest branch.
>     envs :: [Env]
>     envs = foldr1 (zipWith mappend) benvs
>
>     len :: Nat'
>     len = foldr1 nMin (map (lenBranch env) branches)


Declarations
------------

Function `evalDeclGroup` extends the given evaluation environment with
the result of evaluating the given declaration group. In the case of a
recursive declaration group, we tie the recursive knot by evaluating
each declaration in the extended environment `env'` that includes all
the new bindings.

> evalDeclGroup :: Env -> DeclGroup -> Env
> evalDeclGroup env dg = do
>   case dg of
>     NonRecursive d ->
>       bindVar (evalDecl env d) env
>     Recursive ds ->
>       let env' = foldr bindVar env bindings
>           bindings = map (evalDeclRecursive env') ds
>       in env'

To evaluate a declaration in a non-recursive context, we need only
evaluate the expression on the right-hand side or look up the
appropriate primitive.

> evalDecl :: Env -> Decl -> (Name, Value)
> evalDecl env d =
>   case dDefinition d of
>     DPrim   -> (dName d, evalPrim (dName d))
>     DExpr e -> (dName d, evalExpr env e)

To evaluate a declaration in a recursive context, we must perform a
type-directed copy to build the spine of the value. This ensures that
the definedness invariant for type `Value` will be maintained.

> evalDeclRecursive :: Env -> Decl -> (Name, Value)
> evalDeclRecursive env d =
>   case dDefinition d of
>     DPrim   -> (dName d, evalPrim (dName d))
>     DExpr e -> (dName d, copyBySchema env (dSignature d) (evalExpr env e))


Primitives
==========

To evaluate a primitive, we look up its implementation by name in a table.

> evalPrim :: Name -> Value
> evalPrim n
>   | Just i <- asPrim n, Just v <- Map.lookup i primTable = v
>   | otherwise = evalPanic "evalPrim" ["Unimplemented primitive", show n]

Cryptol primitives fall into several groups:

* Logic: `&&`, `||`, `^`, `complement`, `zero`, `True`, `False`

* Arithmetic: `+`, `-`, `*`, `/`, `%`, `^^`, `lg2`, `negate`, `number`

* Comparison: `<`, `>`, `<=`, `>=`, `==`, `!=`

* Sequences: `#`, `join`, `split`, `splitAt`, `reverse`, `transpose`

* Shifting: `<<`, `>>`, `<<<`, `>>>`

* Indexing: `@`, `@@`, `!`, `!!`, `update`, `updateEnd`

* Enumerations: `fromThen`, `fromTo`, `fromThenTo`, `infFrom`, `infFromThen`

* Polynomials: `pmult`, `pdiv`, `pmod`

* Miscellaneous: `error`, `random`, `trace`

> primTable :: Map Ident Value
> primTable = Map.fromList $ map (\(n, v) -> (mkIdent (T.pack n), v))
>
>   -- Logic (bitwise):
>   [ ("&&"         , binary (logicBinary (&&)))
>   , ("||"         , binary (logicBinary (||)))
>   , ("^"          , binary (logicBinary (/=)))
>   , ("complement" , unary  (logicUnary not))
>   , ("zero"       , VPoly (logicNullary (Right False)))
>   , ("True"       , VBit (Right True))
>   , ("False"      , VBit (Right False))
>
>   -- Arithmetic:
>   , ("+"          , binary (arithBinary (\x y -> Right (x + y))))
>   , ("-"          , binary (arithBinary (\x y -> Right (x - y))))
>   , ("*"          , binary (arithBinary (\x y -> Right (x * y))))
>   , ("/"          , binary (arithBinary divWrap))
>   , ("%"          , binary (arithBinary modWrap))
>   , ("/$"         , binary (signedArithBinary divWrap))
>   , ("%$"         , binary (signedArithBinary modWrap))
>   , ("^^"         , binary (arithBinary expWrap))
>   , ("lg2"        , unary  (arithUnary lg2Wrap))
>   , ("negate"     , unary  (arithUnary (\x -> Right (- x))))
>   , ("number"     , vFinPoly $ \val ->
>                     VPoly $ \a ->
>                     arithNullary (Right val) a)
>   , ("toInteger"  , vFinPoly $ \_bits ->
>                     VFun $ \x ->
>                     VInteger (fromVWord x))
>   , ("fromInteger", VPoly $ \a ->
>                     VFun $ \x ->
>                     arithNullary (fromVInteger x) a)
>
>   -- Comparison:
>   , ("<"          , binary (cmpOrder (\o -> o == LT)))
>   , (">"          , binary (cmpOrder (\o -> o == GT)))
>   , ("<="         , binary (cmpOrder (\o -> o /= GT)))
>   , (">="         , binary (cmpOrder (\o -> o /= LT)))
>   , ("=="         , binary (cmpOrder (\o -> o == EQ)))
>   , ("!="         , binary (cmpOrder (\o -> o /= EQ)))
>   , ("<$"         , binary signedLessThan)
>
>   -- Sequences:
>   , ("#"          , VNumPoly $ \front ->
>                     VNumPoly $ \back  ->
>                     VPoly $ \_elty  ->
>                     VFun $ \l ->
>                     VFun $ \r ->
>                     VList (nAdd front back) (fromVList l ++ fromVList r))
>
>   , ("join"       , VNumPoly $ \parts ->
>                     VNumPoly $ \each  ->
>                     VPoly $ \_a ->
>                     VFun $ \xss ->
>                       case each of
>                         -- special case when the inner sequences are of length 0
>                         Nat 0 -> VList (Nat 0) []
>                         _ -> VList (nMul parts each)
>                              (concat (map fromVList (fromVList xss))))
>
>   , ("split"      , VNumPoly $ \parts ->
>                     vFinPoly $ \each  ->
>                     VPoly $ \_a ->
>                     VFun $ \val ->
>                     VList parts (splitV parts each (fromVList val)))
>
>   , ("splitAt"    , vFinPoly $ \front ->
>                     VNumPoly $ \back ->
>                     VPoly $ \_a ->
>                     VFun $ \v ->
>                     let (xs, ys) = genericSplitAt front (fromVList v)
>                     in VTuple [VList (Nat front) xs, VList back ys])
>
>   , ("reverse"    , VNumPoly $ \n ->
>                     VPoly $ \_a ->
>                     VFun $ \v ->
>                     VList n (reverse (fromVList v)))
>
>   , ("transpose"  , VNumPoly $ \rows ->
>                     VNumPoly $ \cols ->
>                     VPoly $ \_a ->
>                     VFun $ \v ->
>                     VList cols
>                     (map (VList rows) (transposeV cols (map fromVList (fromVList v)))))
>
>   -- Shifting:
>   , ("<<"         , shiftV shiftLV)
>   , (">>"         , shiftV shiftRV)
>   , ("<<<"        , rotateV rotateLV)
>   , (">>>"        , rotateV rotateRV)
>   , (">>$"        , signedShiftRV)
>
>   -- Indexing:
>   , ("@"          , indexPrimOne  indexFront)
>   , ("!"          , indexPrimOne  indexBack)
>   , ("update"     , updatePrim updateFront)
>   , ("updateEnd"  , updatePrim updateBack)
>
>   -- Enumerations:
>   , ("fromThen"   , vFinPoly $ \first ->
>                     vFinPoly $ \next  ->
>                     vFinPoly $ \bits  ->
>                     vFinPoly $ \len   ->
>                     VList (Nat len)
>                     (map (vWordValue bits) (genericTake len [first, next ..])))
>
>   , ("fromTo"     , vFinPoly $ \first ->
>                     vFinPoly $ \lst   ->
>                     VPoly    $ \ty  ->
>                     let f i = arithNullary (Right i) ty
>                     in VList (Nat (1 + lst - first)) (map f [first .. lst]))
>
>   , ("fromThenTo" , vFinPoly $ \first ->
>                     vFinPoly $ \next  ->
>                     vFinPoly $ \_lst  ->
>                     VPoly    $ \ty    ->
>                     vFinPoly $ \len   ->
>                     let f i = arithNullary (Right i) ty
>                     in VList (Nat len) (map f (genericTake len [first, next ..])))
>
>   , ("infFrom"    , VPoly $ \ty ->
>                     VFun $ \first ->
>                     let f i = arithUnary (\x -> Right (x + i)) ty first
>                     in VList Inf (map f [0 ..]))
>
>   , ("infFromThen", VPoly $ \ty ->
>                     VFun $ \first ->
>                     VFun $ \next ->
>                     let f i = arithBinary (\x y -> Right (x + (y - x) * i)) ty first next
>                     in VList Inf (map f [0 ..]))
>
>   -- Miscellaneous:
>   , ("error"      , VPoly $ \a ->
>                     VNumPoly $ \_ ->
>                     VFun $ \_s -> logicNullary (Left (UserError "error")) a)
>                     -- TODO: obtain error string from argument s
>
>   , ("random"     , VPoly $ \a ->
>                     VFun $ \_seed ->
>                     logicNullary (Left (UserError "random: unimplemented")) a)
>
>   , ("trace"      , VNumPoly $ \_n ->
>                     VPoly $ \_a ->
>                     VPoly $ \_b ->
>                     VFun $ \_s ->
>                     VFun $ \_x ->
>                     VFun $ \y -> y)
>   ]
>
> unary :: (TValue -> Value -> Value) -> Value
> unary f = VPoly $ \ty -> VFun $ \x -> f ty x
>
> binary :: (TValue -> Value -> Value -> Value) -> Value
> binary f = VPoly $ \ty -> VFun $ \x -> VFun $ \y -> f ty x y


Word operations
---------------

Many Cryptol primitives take numeric arguments in the form of
bitvectors. For such operations, any output bit that depends on the
numeric value is strict in *all* bits of the numeric argument. This is
implemented in function `fromVWord`, which converts a value from a
big-endian binary format to an integer. The result is an evaluation
error if any of the input bits contain an evaluation error.

> fromVWord :: Value -> Either EvalError Integer
> fromVWord v = fmap bitsToInteger (mapM fromVBit (fromVList v))
>
> -- | Convert a list of booleans in big-endian format to an integer.
> bitsToInteger :: [Bool] -> Integer
> bitsToInteger bs = foldl f 0 bs
>   where f x b = if b then 2 * x + 1 else 2 * x

> fromSignedVWord :: Value -> Either EvalError Integer
> fromSignedVWord v = fmap signedBitsToInteger (mapM fromVBit (fromVList v))
>
> -- | Convert a list of booleans in signed big-endian format to an integer.
> signedBitsToInteger :: [Bool] -> Integer
> signedBitsToInteger [] = evalPanic "signedBitsToInteger" ["Bitvector has zero length"]
> signedBitsToInteger (b0 : bs) = foldl f (if b0 then -1 else 0) bs
>   where f x b = if b then 2 * x + 1 else 2 * x

Functions `vWord` and `vWordValue` convert from integers back to the
big-endian bitvector representation. If an integer-producing function
raises a run-time exception, then the output bitvector will contain
the exception in all bit positions.

> -- | Convert an integer to big-endian binary value of the specified width.
> vWordValue :: Integer -> Integer -> Value
> vWordValue w x = VList (Nat w) (map (VBit . Right) (integerToBits w x))
>
> -- | Convert an integer to a big-endian format of the specified width.
> integerToBits :: Integer -> Integer -> [Bool]
> integerToBits w x = go [] w x
>   where go bs 0 _ = bs
>         go bs n a = go (odd a : bs) (n - 1) $! (a `div` 2)
>
> vWord :: Integer -> Either EvalError Integer -> Value
> vWord w e = VList (Nat w) [ VBit (fmap (test i) e) | i <- [w-1, w-2 .. 0] ]
>   where test i x = testBit x (fromInteger i)

Logic
-----

Bitwise logic primitives are defined by recursion over the type
structure. On type `Bit`, we use `fmap` and `liftA2` to make these
operations strict in all arguments. For example, `True || error "foo"`
does not evaluate to `True`, but yields a run-time exception. On other
types, run-time exceptions on input bits only affect the output bits
at the same positions.

> logicNullary :: Either EvalError Bool -> TValue -> Value
> logicNullary b = go
>   where
>     go TVBit          = VBit b
>     go TVInteger      = VInteger (fmap (\c -> if c then -1 else 0) b)
>     go (TVIntMod _)   = VInteger (fmap (const 0) b)
>     go (TVSeq n ety)  = VList (Nat n) (genericReplicate n (go ety))
>     go (TVStream ety) = VList Inf (repeat (go ety))
>     go (TVTuple tys)  = VTuple (map go tys)
>     go (TVRec fields) = VRecord [ (f, go fty) | (f, fty) <- fields ]
>     go (TVFun _ bty)  = VFun (\_ -> go bty)
>
> logicUnary :: (Bool -> Bool) -> TValue -> Value -> Value
> logicUnary op = go
>   where
>     go :: TValue -> Value -> Value
>     go ty val =
>       case ty of
>         TVBit        -> VBit (fmap op (fromVBit val))
>         TVInteger    -> evalPanic "logicUnary" ["Integer not in class Logic"]
>         TVIntMod _   -> evalPanic "logicUnary" ["Z not in class Logic"]
>         TVSeq w ety  -> VList (Nat w) (map (go ety) (fromVList val))
>         TVStream ety -> VList Inf (map (go ety) (fromVList val))
>         TVTuple etys -> VTuple (zipWith go etys (fromVTuple val))
>         TVRec fields -> VRecord [ (f, go fty (lookupRecord f val)) | (f, fty) <- fields ]
>         TVFun _ bty  -> VFun (\v -> go bty (fromVFun val v))
>
> logicBinary :: (Bool -> Bool -> Bool) -> TValue -> Value -> Value -> Value
> logicBinary op = go
>   where
>     go :: TValue -> Value -> Value -> Value
>     go ty l r =
>       case ty of
>         TVBit        -> VBit (liftA2 op (fromVBit l) (fromVBit r))
>         TVInteger    -> evalPanic "logicBinary" ["Integer not in class Logic"]
>         TVIntMod _   -> evalPanic "logicBinary" ["Z not in class Logic"]
>         TVSeq w ety  -> VList (Nat w) (zipWith (go ety) (fromVList l) (fromVList r))
>         TVStream ety -> VList Inf (zipWith (go ety) (fromVList l) (fromVList r))
>         TVTuple etys -> VTuple (zipWith3 go etys (fromVTuple l) (fromVTuple r))
>         TVRec fields -> VRecord [ (f, go fty (lookupRecord f l) (lookupRecord f r))
>                                 | (f, fty) <- fields ]
>         TVFun _ bty  -> VFun (\v -> go bty (fromVFun l v) (fromVFun r v))


Arithmetic
----------

Arithmetic primitives may be applied to any type that is made up of
finite bitvectors. On type `[n]`, arithmetic operators are strict in
all input bits, as indicated by the definition of `fromVWord`. For
example, `[error "foo", True] * 2` does not evaluate to `[True,
False]`, but to `[error "foo", error "foo"]`.

Signed arithmetic primitives may be applied to any type that is made
up of non-empty finite bitvectors.

> arithNullary :: Either EvalError Integer -> TValue -> Value
> arithNullary i = go
>   where
>     go :: TValue -> Value
>     go ty =
>       case ty of
>         TVBit ->
>           evalPanic "arithNullary" ["Bit not in class Arith"]
>         TVInteger ->
>           VInteger i
>         TVIntMod n ->
>           VInteger (flip mod n <$> i)
>         TVSeq w a
>           | isTBit a  -> vWord w i
>           | otherwise -> VList (Nat w) (genericReplicate w (go a))
>         TVStream a ->
>           VList Inf (repeat (go a))
>         TVFun _ ety ->
>           VFun (const (go ety))
>         TVTuple tys ->
>           VTuple (map go tys)
>         TVRec fs ->
>           VRecord [ (f, go fty) | (f, fty) <- fs ]
>
> arithUnary :: (Integer -> Either EvalError Integer)
>            -> TValue -> Value -> Value
> arithUnary op = go
>   where
>     go :: TValue -> Value -> Value
>     go ty val =
>       case ty of
>         TVBit ->
>           evalPanic "arithUnary" ["Bit not in class Arith"]
>         TVInteger ->
>           VInteger $
>           case fromVInteger val of
>             Left e -> Left e
>             Right i -> op i
>         TVIntMod n ->
>           VInteger $
>           case fromVInteger val of
>             Left e -> Left e
>             Right i -> flip mod n <$> op i
>         TVSeq w a
>           | isTBit a  -> vWord w (op =<< fromVWord val)
>           | otherwise -> VList (Nat w) (map (go a) (fromVList val))
>         TVStream a ->
>           VList Inf (map (go a) (fromVList val))
>         TVFun _ ety ->
>           VFun (\x -> go ety (fromVFun val x))
>         TVTuple tys ->
>           VTuple (zipWith go tys (fromVTuple val))
>         TVRec fs ->
>           VRecord [ (f, go fty (lookupRecord f val)) | (f, fty) <- fs ]
>
> arithBinary :: (Integer -> Integer -> Either EvalError Integer)
>             -> TValue -> Value -> Value -> Value
> arithBinary = arithBinaryGeneric fromVWord
>
> signedArithBinary :: (Integer -> Integer -> Either EvalError Integer)
>                   -> TValue -> Value -> Value -> Value
> signedArithBinary = arithBinaryGeneric fromSignedVWord
>
> arithBinaryGeneric :: (Value -> Either EvalError Integer)
>                    -> (Integer -> Integer -> Either EvalError Integer)
>                    -> TValue -> Value -> Value -> Value
> arithBinaryGeneric fromWord op = go
>   where
>     go :: TValue -> Value -> Value -> Value
>     go ty l r =
>       case ty of
>         TVBit ->
>           evalPanic "arithBinary" ["Bit not in class Arith"]
>         TVInteger ->
>           VInteger $
>           case fromVInteger l of
>             Left e -> Left e
>             Right i ->
>               case fromVInteger r of
>                 Left e -> Left e
>                 Right j -> op i j
>         TVIntMod n ->
>           VInteger $
>           case fromVInteger l of
>             Left e -> Left e
>             Right i ->
>               case fromVInteger r of
>                 Left e -> Left e
>                 Right j -> flip mod n <$> op i j
>         TVSeq w a
>           | isTBit a  -> vWord w $
>                          case fromWord l of
>                            Left e -> Left e
>                            Right i ->
>                              case fromWord r of
>                                Left e -> Left e
>                                Right j -> op i j
>           | otherwise -> VList (Nat w) (zipWith (go a) (fromVList l) (fromVList r))
>         TVStream a ->
>           VList Inf (zipWith (go a) (fromVList l) (fromVList r))
>         TVFun _ ety ->
>           VFun (\x -> go ety (fromVFun l x) (fromVFun r x))
>         TVTuple tys ->
>           VTuple (zipWith3 go tys (fromVTuple l) (fromVTuple r))
>         TVRec fs ->
>           VRecord [ (f, go fty (lookupRecord f l) (lookupRecord f r)) | (f, fty) <- fs ]

Signed bitvector division (`/$`) and remainder (`%$`) are defined so
that division rounds toward zero, and the remainder `x %$ y` has the
same sign as `x`. Accordingly, they are implemented with Haskell's
`quot` and `rem` operations.

> divWrap :: Integer -> Integer -> Either EvalError Integer
> divWrap _ 0 = Left DivideByZero
> divWrap x y = Right (x `quot` y)
>
> modWrap :: Integer -> Integer -> Either EvalError Integer
> modWrap _ 0 = Left DivideByZero
> modWrap x y = Right (x `rem` y)
>
> expWrap :: Integer -> Integer -> Either EvalError Integer
> expWrap x y = if y < 0 then Left NegativeExponent else Right (x ^ y)
>
> lg2Wrap :: Integer -> Either EvalError Integer
> lg2Wrap x = if x < 0 then Left LogNegative else Right (lg2 x)


Comparison
----------

Comparison primitives may be applied to any type that contains a
finite number of bits. All such types are compared using a
lexicographic ordering on bits, where `False` < `True`. Lists and
tuples are compared left-to-right, and record fields are compared in
alphabetical order.

Comparisons on type `Bit` are strict in both arguments. Comparisons on
larger types have short-circuiting behavior: A comparison involving an
error/undefined element will only yield an error if all corresponding
bits to the *left* of that position are equal.

> -- | Process two elements based on their lexicographic ordering.
> cmpOrder :: (Ordering -> Bool) -> TValue -> Value -> Value -> Value
> cmpOrder p ty l r = VBit (fmap p (lexCompare ty l r))
>
> -- | Lexicographic ordering on two values.
> lexCompare :: TValue -> Value -> Value -> Either EvalError Ordering
> lexCompare ty l r =
>   case ty of
>     TVBit ->
>       compare <$> fromVBit l <*> fromVBit r
>     TVInteger ->
>       compare <$> fromVInteger l <*> fromVInteger r
>     TVIntMod _ ->
>       compare <$> fromVInteger l <*> fromVInteger r
>     TVSeq _w ety ->
>       lexList (zipWith (lexCompare ety) (fromVList l) (fromVList r))
>     TVStream _ ->
>       evalPanic "lexCompare" ["invalid type"]
>     TVFun _ _ ->
>       evalPanic "lexCompare" ["invalid type"]
>     TVTuple etys ->
>       lexList (zipWith3 lexCompare etys (fromVTuple l) (fromVTuple r))
>     TVRec fields ->
>       let tys    = map snd (sortBy (comparing fst) fields)
>           ls     = map snd (sortBy (comparing fst) (fromVRecord l))
>           rs     = map snd (sortBy (comparing fst) (fromVRecord r))
>        in lexList (zipWith3 lexCompare tys ls rs)
>
> lexList :: [Either EvalError Ordering] -> Either EvalError Ordering
> lexList [] = Right EQ
> lexList (e : es) =
>   case e of
>     Left err -> Left err
>     Right LT -> Right LT
>     Right EQ -> lexList es
>     Right GT -> Right GT

Signed comparisons may be applied to any type made up of non-empty
bitvectors. All such types are compared using a lexicographic
ordering: Lists and tuples are compared left-to-right, and record
fields are compared in alphabetical order.

> signedLessThan :: TValue -> Value -> Value -> Value
> signedLessThan ty l r = VBit (fmap (== LT) (lexSignedCompare ty l r))
>
> -- | Lexicographic ordering on two signed values.
> lexSignedCompare :: TValue -> Value -> Value -> Either EvalError Ordering
> lexSignedCompare ty l r =
>   case ty of
>     TVBit ->
>       evalPanic "lexSignedCompare" ["invalid type"]
>     TVInteger ->
>       evalPanic "lexSignedCompare" ["invalid type"]
>     TVIntMod _ ->
>       evalPanic "lexSignedCompare" ["invalid type"]
>     TVSeq _w ety
>       | isTBit ety ->
>         case fromSignedVWord l of
>           Left e -> Left e
>           Right i ->
>             case fromSignedVWord r of
>               Left e -> Left e
>               Right j -> Right (compare i j)
>       | otherwise ->
>         lexList (zipWith (lexSignedCompare ety) (fromVList l) (fromVList r))
>     TVStream _ ->
>       evalPanic "lexSignedCompare" ["invalid type"]
>     TVFun _ _ ->
>       evalPanic "lexSignedCompare" ["invalid type"]
>     TVTuple etys ->
>       lexList (zipWith3 lexSignedCompare etys (fromVTuple l) (fromVTuple r))
>     TVRec fields ->
>       let tys    = map snd (sortBy (comparing fst) fields)
>           ls     = map snd (sortBy (comparing fst) (fromVRecord l))
>           rs     = map snd (sortBy (comparing fst) (fromVRecord r))
>        in lexList (zipWith3 lexSignedCompare tys ls rs)


Sequences
---------

> -- | Split a list into 'w' pieces, each of length 'k'.
> splitV :: Nat' -> Integer -> [Value] -> [Value]
> splitV w k xs =
>   case w of
>     Nat 0 -> []
>     Nat n -> VList (Nat k) ys : splitV (Nat (n - 1)) k zs
>     Inf   -> VList (Nat k) ys : splitV Inf k zs
>   where
>     (ys, zs) = genericSplitAt k xs
>
> -- | Transpose a list of length-'w' lists into 'w' lists.
> transposeV :: Nat' -> [[Value]] -> [[Value]]
> transposeV w xss =
>   case w of
>     Nat 0 -> []
>     Nat n -> heads : transposeV (Nat (n - 1)) tails
>     Inf   -> heads : transposeV Inf tails
>   where
>     (heads, tails) = dest xss
>
>     -- Split a list of non-empty lists into
>     -- a list of heads and a list of tails
>     dest :: [[Value]] -> ([Value], [[Value]])
>     dest [] = ([], [])
>     dest ([] : _) = evalPanic "transposeV" ["Expected non-empty list"]
>     dest ((y : ys) : yss) = (y : zs, ys : zss)
>       where (zs, zss) = dest yss


Shifting
--------

Shift and rotate operations are strict in all bits of the shift/rotate
amount, but as lazy as possible in the list values.

> shiftV :: (Nat' -> Value -> [Value] -> Integer -> [Value]) -> Value
> shiftV op =
>   VNumPoly $ \n ->
>   VNumPoly $ \_ix ->
>   VPoly $ \a ->
>   VFun $ \v ->
>   VFun $ \x ->
>   copyByTValue (tvSeq n a) $
>   case fromVWord x of
>     Left e -> logicNullary (Left e) (tvSeq n a)
>     Right i -> VList n (op n (logicNullary (Right False) a) (fromVList v) i)
>
> shiftLV :: Nat' -> Value -> [Value] -> Integer -> [Value]
> shiftLV w z vs i =
>   case w of
>     Nat n -> genericDrop (min n i) vs ++ genericReplicate (min n i) z
>     Inf   -> genericDrop i vs
>
> shiftRV :: Nat' -> Value -> [Value] -> Integer -> [Value]
> shiftRV w z vs i =
>   case w of
>     Nat n -> genericReplicate (min n i) z ++ genericTake (n - min n i) vs
>     Inf   -> genericReplicate i z ++ vs
>
> rotateV :: (Integer -> [Value] -> Integer -> [Value]) -> Value
> rotateV op =
>   vFinPoly $ \n ->
>   VNumPoly $ \_ix ->
>   VPoly $ \a ->
>   VFun $ \v ->
>   VFun $ \x ->
>   copyByTValue (TVSeq n a) $
>   case fromVWord x of
>     Left e -> VList (Nat n) (genericReplicate n (logicNullary (Left e) a))
>     Right i -> VList (Nat n) (op n (fromVList v) i)
>
> rotateLV :: Integer -> [Value] -> Integer -> [Value]
> rotateLV 0 vs _ = vs
> rotateLV w vs i = ys ++ xs
>   where (xs, ys) = genericSplitAt (i `mod` w) vs
>
> rotateRV :: Integer -> [Value] -> Integer -> [Value]
> rotateRV 0 vs _ = vs
> rotateRV w vs i = ys ++ xs
>   where (xs, ys) = genericSplitAt ((w - i) `mod` w) vs
>
> signedShiftRV :: Value
> signedShiftRV =
>   VNumPoly $ \n ->
>   VNumPoly $ \_ix ->
>   VFun $ \v ->
>   VFun $ \x ->
>   copyByTValue (tvSeq n TVBit) $
>   case fromVWord x of
>     Left e -> logicNullary (Left e) (tvSeq n TVBit)
>     Right i -> VList n $
>       let vs = fromVList v
>           z = head vs in
>       case n of
>         Nat m -> genericReplicate (min m i) z ++ genericTake (m - min m i) vs
>         Inf   -> genericReplicate i z ++ vs


Indexing
--------

Indexing operations are strict in all index bits, but as lazy as
possible in the list values. An index greater than or equal to the
length of the list produces a run-time error.

> -- | Indexing operations that return one element.
> indexPrimOne :: (Nat' -> TValue -> [Value] -> Integer -> Value) -> Value
> indexPrimOne op =
>   VNumPoly $ \n ->
>   VPoly $ \a ->
>   VNumPoly $ \_w ->
>   VFun $ \l ->
>   VFun $ \r ->
>   copyByTValue a $
>   case fromVWord r of
>     Left e -> logicNullary (Left e) a
>     Right i -> op n a (fromVList l) i
>
> indexFront :: Nat' -> TValue -> [Value] -> Integer -> Value
> indexFront w a vs ix =
>   case w of
>     Nat n | n <= ix -> logicNullary (Left (InvalidIndex ix)) a
>     _               -> genericIndex vs ix
>
> indexBack :: Nat' -> TValue -> [Value] -> Integer -> Value
> indexBack w a vs ix =
>   case w of
>     Nat n | n > ix    -> genericIndex vs (n - ix - 1)
>           | otherwise -> logicNullary (Left (InvalidIndex ix)) a
>     Inf               -> evalPanic "indexBack" ["unexpected infinite sequence"]
>
> updatePrim :: (Nat' -> [Value] -> Integer -> Value -> [Value]) -> Value
> updatePrim op =
>   VNumPoly $ \len ->
>   VPoly $ \eltTy ->
>   VNumPoly $ \_idxLen ->
>   VFun $ \xs ->
>   VFun $ \idx ->
>   VFun $ \val ->
>   copyByTValue (tvSeq len eltTy) $
>   case fromVWord idx of
>     Left e -> logicNullary (Left e) (tvSeq len eltTy)
>     Right i
>       | Nat i < len -> VList len (op len (fromVList xs) i val)
>       | otherwise   -> logicNullary (Left (InvalidIndex i)) (tvSeq len eltTy)
>
> updateFront :: Nat' -> [Value] -> Integer -> Value -> [Value]
> updateFront _ vs i x = updateAt vs i x
>
> updateBack :: Nat' -> [Value] -> Integer -> Value -> [Value]
> updateBack Inf _vs _i _x = evalPanic "Unexpected infinite sequence in updateEnd" []
> updateBack (Nat n) vs i x = updateAt vs (n - i - 1) x
>
> updateAt :: [a] -> Integer -> a -> [a]
> updateAt []       _ _ = []
> updateAt (_ : xs) 0 y = y : xs
> updateAt (x : xs) i y = x : updateAt xs (i - 1) y


Error Handling
--------------

The `evalPanic` function is only called if an internal data invariant
is violated, such as an expression that is not well-typed. Panics
should (hopefully) never occur in practice; a panic message indicates
a bug in Cryptol.

> evalPanic :: String -> [String] -> a
> evalPanic cxt = panic ("[Reference Evaluator]" ++ cxt)

Pretty Printing
---------------

> ppValue :: PPOpts -> Value -> Doc
> ppValue opts val =
>   case val of
>     VBit b     -> text (either show show b)
>     VInteger i -> text (either show show i)
>     VList l vs ->
>       case l of
>         Inf -> ppList (map (ppValue opts) (take (useInfLength opts) vs) ++ [text "..."])
>         Nat n ->
>           -- For lists of defined bits, print the value as a numeral.
>           case traverse isBit vs of
>             Just bs -> ppBV opts (mkBv n (bitsToInteger bs))
>             Nothing -> ppList (map (ppValue opts) vs)
>       where ppList docs = brackets (fsep (punctuate comma docs))
>             isBit v = case v of VBit (Right b) -> Just b
>                                 _              -> Nothing
>     VTuple vs  -> parens (sep (punctuate comma (map (ppValue opts) vs)))
>     VRecord fs -> braces (sep (punctuate comma (map ppField fs)))
>       where ppField (f,r) = pp f <+> char '=' <+> ppValue opts r
>     VFun _     -> text "<function>"
>     VPoly _    -> text "<polymorphic value>"
>     VNumPoly _ -> text "<polymorphic value>"

Module Command
--------------

This module implements the core functionality of the `:eval
<expression>` command for the Cryptol REPL, which prints the result of
running the reference evaluator on an expression.

> evaluate :: Expr -> M.ModuleCmd Value
> evaluate expr (_,modEnv) = return (Right (evalExpr env expr, modEnv), [])
>   where
>     extDgs = concatMap mDecls (M.loadedModules modEnv)
>     env = foldl evalDeclGroup mempty extDgs