{-# LANGUAGE TypeApplications #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ViewPatterns #-} -------------------------------------------------------------------------------- -- | -- Module : ArrayFire.Algorithm -- Copyright : David Johnson (c) 2019-2020 -- License : BSD 3 -- Maintainer : David Johnson <djohnson.m@gmail.com> -- Stability : Experimental -- Portability : GHC -- -- Functions for aggregation, manipulation of 'Array' -- -- @ -- module Main where -- -- import qualified ArrayFire as A -- -- main :: IO () -- main = print $ A.sum (A.vector @Double 10 [1..]) 0 -- -- 55 -- @ -------------------------------------------------------------------------------- module ArrayFire.Algorithm where import ArrayFire.Array import ArrayFire.FFI import ArrayFire.Internal.Algorithm import ArrayFire.Internal.Types import Foreign.C.Types import Data.Word -- | Sum all of the elements in 'Array' along the specified dimension -- -- >>> A.sum (A.vector @Double 10 [1..]) 0 -- 55.0 -- -- >>> A.sum (A.matrix @Double (10,10) [[2..],[2..]]) 0 -- 65.0 sum :: AFType a => Array a -- ^ Array to sum -> Int -- ^ Dimension along which to perform sum -> a -- ^ Will return the sum of all values in the input array along the specified dimension sum x (fromIntegral -> n) = getScalar (x `op1` (\p a -> af_sum p a n)) -- | Sum all of the elements in 'Array' along the specified dimension, using a default value for NaN -- -- >>> A.sumNaN (A.vector @Double 10 [1..]) 0 0.0 -- 55 sumNaN :: (Fractional a, AFType a) => Array a -- ^ Array to sum -> Int -- ^ Dimension along which to perform sum -> Double -- ^ Default value to use in the case of NaN -> a -- ^ Will return the sum of all values in the input array along the specified dimension, substituted with the default value sumNaN n (fromIntegral -> i) d = getScalar (n `op1` (\p a -> af_sum_nan p a i d)) -- | Product all of the elements in 'Array' along the specified dimension -- -- >>> A.product (A.vector @Double 10 [1..]) 0 -- 3628800.0 product :: AFType a => Array a -- ^ Array to product -> Int -- ^ Dimension along which to perform product -> a -- ^ Will return the product of all values in the input array along the specified dimension product x (fromIntegral -> n) = getScalar (x `op1` (\p a -> af_product p a n)) -- | Product all of the elements in 'Array' along the specified dimension, using a default value for NaN -- -- >>> A.productNaN (A.vector @Double 10 [1..]) 0 0.0 -- 3628800.0 productNaN :: (AFType a, Fractional a) => Array a -- ^ Array to product -> Int -- ^ Dimension along which to perform product -> Double -- ^ Default value to use in the case of NaN -> a -- ^ Will return the product of all values in the input array along the specified dimension, substituted with the default value productNaN n (fromIntegral -> i) d = getScalar (n `op1` (\p a -> af_product_nan p a i d)) -- | Take the minimum of an 'Array' along a specific dimension -- -- >>> A.min (A.vector @Double 10 [1..]) 0 -- 1.0 min :: AFType a => Array a -- ^ Array input -> Int -- ^ Dimension along which to retrieve the min element -> a -- ^ Will contain the minimum of all values in the input array along dim min x (fromIntegral -> n) = getScalar (x `op1` (\p a -> af_min p a n)) -- | Take the maximum of an 'Array' along a specific dimension -- -- >>> A.max (A.vector @Double 10 [1..]) 0 -- 10 max :: AFType a => Array a -- ^ Array input -> Int -- ^ Dimension along which to retrieve the max element -> a -- ^ Will contain the maximum of all values in the input array along dim max x (fromIntegral -> n) = getScalar (x `op1` (\p a -> af_max p a n)) -- | Find if all elements in an 'Array' are 'True' along a dimension -- -- >>> A.allTrue (A.vector @CBool 10 (repeat 0)) 0 -- False allTrue :: forall a. AFType a => Array a -- ^ Array input -> Int -- ^ Dimension along which to see if all elements are True -> Bool -- ^ Will contain the maximum of all values in the input array along dim allTrue x (fromIntegral -> n) = toEnum . fromIntegral $ getScalar @CBool @a (x `op1` (\p a -> af_all_true p a n)) -- | Find if any elements in an 'Array' are 'True' along a dimension -- -- >>> A.anyTrue (A.vector @CBool 10 (repeat 0)) 0 -- False anyTrue :: forall a . AFType a => Array a -- ^ Array input -> Int -- ^ Dimension along which to see if all elements are True -> Bool -- ^ Returns if all elements are true anyTrue x (fromIntegral -> n) = toEnum . fromIntegral $ getScalar @CBool @a (x `op1` (\p a -> af_any_true p a n)) -- | Count elements in an 'Array' along a dimension -- -- >>> A.count (A.vector @Double 10 [1..]) 0 -- 10 count :: forall a . AFType a => Array a -- ^ Array input -> Int -- ^ Dimension along which to count -> Int -- ^ Count of all elements along dimension count x (fromIntegral -> n) = fromIntegral $ getScalar @Word32 @a (x `op1` (\p a -> af_count p a n)) -- | Sum all elements in an 'Array' along all dimensions -- -- >>> A.sumAll (A.vector @Double 10 [1..]) -- (55.0,0.0) sumAll :: AFType a => Array a -- ^ Input array -> (Double, Double) -- ^ imaginary and real part sumAll = (`infoFromArray2` af_sum_all) -- | Sum all elements in an 'Array' along all dimensions, using a default value for NaN -- -- >>> A.sumNaNAll (A.vector @Double 10 [1..]) 0.0 -- (55.0,0.0) sumNaNAll :: (AFType a, Fractional a) => Array a -- ^ Input array -> Double -- ^ NaN substitute -> (Double, Double) -- ^ imaginary and real part sumNaNAll a d = infoFromArray2 a (\p g x -> af_sum_nan_all p g x d) -- | Product all elements in an 'Array' along all dimensions, using a default value for NaN -- -- >>> A.productAll (A.vector @Double 10 [1..]) -- (3628800.0,0.0) productAll :: AFType a => Array a -- ^ Input array -> (Double, Double) -- ^ imaginary and real part productAll = (`infoFromArray2` af_product_all) -- | Product all elements in an 'Array' along all dimensions, using a default value for NaN -- -- >>> A.productNaNAll (A.vector @Double 10 [1..]) 1.0 -- (3628800.0,0.0) productNaNAll :: (AFType a, Fractional a) => Array a -- ^ Input array -> Double -- ^ NaN substitute -> (Double, Double) -- ^ imaginary and real part productNaNAll a d = infoFromArray2 a (\p x y -> af_product_nan_all p x y d) -- | Take the minimum across all elements along all dimensions in 'Array' -- -- >>> A.minAll (A.vector @Double 10 [1..]) -- (1.0,0.0) minAll :: AFType a => Array a -- ^ Input array -> (Double, Double) -- ^ imaginary and real part minAll = (`infoFromArray2` af_min_all) -- | Take the maximum across all elements along all dimensions in 'Array' -- -- >>> A.maxAll (A.vector @Double 10 [1..]) -- (10.0,0.0) maxAll :: AFType a => Array a -- ^ Input array -> (Double, Double) -- ^ imaginary and real part maxAll = (`infoFromArray2` af_max_all) -- | Decide if all elements along all dimensions in 'Array' are True -- -- >>> A.allTrueAll (A.vector @CBool 10 (repeat 1)) -- (1.0, 0.0) allTrueAll :: AFType a => Array a -- ^ Input array -> (Double, Double) -- ^ imaginary and real part allTrueAll = (`infoFromArray2` af_all_true_all) -- | Decide if any elements along all dimensions in 'Array' are True -- -- >>> A.anyTrueAll $ A.vector @CBool 10 (repeat 0) -- (0.0,0.0) anyTrueAll :: AFType a => Array a -- ^ Input array -> (Double, Double) -- ^ imaginary and real part anyTrueAll = (`infoFromArray2` af_any_true_all) -- | Count all elements along all dimensions in 'Array' -- -- >>> A.countAll (A.matrix @Double (100,100) (replicate 100 [1..])) -- (10000.0,0.0) countAll :: AFType a => Array a -- ^ Input array -> (Double, Double) -- ^ imaginary and real part countAll = (`infoFromArray2` af_count_all) -- | Find the minimum element along a specified dimension in 'Array' -- -- >>> A.imin (A.vector @Double 10 [1..]) 0 -- (ArrayFire Array -- [1 1 1 1] -- 1.0000 -- ,ArrayFire Array -- [1 1 1 1] -- 0 -- ) imin :: AFType a => Array a -- ^ Input array -> Int -- ^ The dimension along which the minimum value is extracted -> (Array a, Array a) -- ^ will contain the minimum of all values along dim, will also contain the location of minimum of all values in in along dim imin a (fromIntegral -> n) = op2p a (\x y z -> af_imin x y z n) -- | Find the maximum element along a specified dimension in 'Array' -- -- >>> A.imax (A.vector @Double 10 [1..]) 0 -- (ArrayFire Array -- [1 1 1 1] -- 10.0000 -- ,ArrayFire Array -- [1 1 1 1] -- 9 -- ) imax :: AFType a => Array a -- ^ Input array -> Int -- ^ The dimension along which the minimum value is extracted -> (Array a, Array a) -- ^ will contain the maximum of all values in in along dim, will also contain the location of maximum of all values in in along dim imax a (fromIntegral -> n) = op2p a (\x y z -> af_imax x y z n) -- | Find the minimum element along all dimensions in 'Array' -- -- >>> A.iminAll (A.vector @Double 10 [1..]) -- (1.0,0.0,0) iminAll :: AFType a => Array a -- ^ Input array -> (Double, Double, Int) -- ^ will contain the real part of minimum value of all elements in input in, also will contain the imaginary part of minimum value of all elements in input in, will contain the location of minimum of all values in iminAll a = do let (x,y,fromIntegral -> z) = a `infoFromArray3` af_imin_all (x,y,z) -- | Find the maximum element along all dimensions in 'Array' -- -- >>> A.imaxAll (A.vector @Double 10 [1..]) -- (10.0,0.0,9) imaxAll :: AFType a => Array a -- ^ Input array -> (Double, Double, Int) -- ^ will contain the real part of maximum value of all elements in input in, also will contain the imaginary part of maximum value of all elements in input in, will contain the location of maximum of all values in imaxAll a = do let (x,y,fromIntegral -> z) = a `infoFromArray3` af_imax_all (x,y,z) -- | Calculate sum of 'Array' across specified dimension -- -- >>> A.accum (A.vector @Double 10 [1..]) 0 -- ArrayFire Array -- [10 1 1 1] -- 1.0000 3.0000 6.0000 10.0000 15.0000 21.0000 28.0000 36.0000 45.0000 55.0000 accum :: AFType a => Array a -- ^ Input array -> Int -- ^ Dimension along which to calculate the sum -> Array a -- ^ Contains inclusive sum accum a (fromIntegral -> n) = a `op1` (\x y -> af_accum x y n) -- | Scan elements of an 'Array' across a dimension, using a 'BinaryOp', specifying inclusivity. -- -- >>> A.scan (A.vector @Double 10 [1..]) 0 Add True -- ArrayFire Array -- [10 1 1 1] -- 1.0000 3.0000 6.0000 10.0000 15.0000 21.0000 28.0000 36.0000 45.0000 55.0000 scan :: AFType a => Array a -- ^ The input array -> Int -- ^ The dimension along which the scan is performed -> BinaryOp -- ^ Binary operation to be used -> Bool -- ^ Should the scan be inclusive or not -> Array a -- ^ The scan of the input scan a (fromIntegral -> d) op (fromIntegral . fromEnum -> inclusive) = a `op1` (\x y -> af_scan x y d (toBinaryOp op) inclusive) -- | Scan elements of an 'Array' across a dimension, by key, using a 'BinaryOp', specifying inclusivity. -- -- >>> A.scanByKey (A.vector @Int 7 [2..]) (A.vector @Int 10 [1..]) 1 Add True -- ArrayFire Array -- [7 1 1 1] -- 2 3 4 5 6 7 8 scanByKey :: (AFType a, AFType k) => Array k -- ^ The key array -> Array a -- ^ The input array -> Int -- ^ Dimension along which scan is performed -> BinaryOp -- ^ Type of binary operation used -> Bool -- ^ Is the scan incluside or not -> Array a scanByKey a b (fromIntegral -> d) op (fromIntegral . fromEnum -> inclusive) = op2 a b (\x y z -> af_scan_by_key x y z d (toBinaryOp op) inclusive) -- | Find indices where input Array is non zero -- -- >>> A.where' (A.vector @Double 10 (repeat 0)) -- ArrayFire Array -- [0 1 1 1] -- <empty> where' :: AFType a => Array a -- ^ Is the input array. -> Array a -- ^ will contain indices where input array is non-zero where' = (`op1` af_where) -- | First order numerical difference along specified dimension. -- -- >>> A.diff1 (A.vector @Double 4 [10,35,65,95]) 0 -- ArrayFire Array -- [3 1 1 1] -- 25.0000 30.0000 30.0000 diff1 :: AFType a => Array a -- ^ Input array -> Int -- ^ Dimension along which numerical difference is performed -> Array a -- ^ Will contain first order numerical difference diff1 a (fromIntegral -> n) = a `op1` (\p x -> af_diff1 p x n) -- | Second order numerical difference along specified dimension. -- -- >>> A.diff2 (A.vector @Double 5 [1.0,20,55,89,44]) 0 -- ArrayFire Array -- [3 1 1 1] -- 16.0000 -1.0000 -79.0000 diff2 :: AFType a => Array a -- ^ Input array -> Int -- ^ Dimension along which numerical difference is performed -> Array a -- ^ Will contain second order numerical difference diff2 a (fromIntegral -> n) = a `op1` (\p x -> af_diff2 p x n) -- | Sort an Array along a specified dimension, specifying ordering of results (ascending / descending) -- -- >>> A.sort (A.vector @Double 4 [ 2,4,3,1 ]) 0 True -- ArrayFire Array -- [4 1 1 1] -- 1.0000 2.0000 3.0000 4.0000 -- -- >>> A.sort (A.vector @Double 4 [ 2,4,3,1 ]) 0 False -- ArrayFire Array -- [4 1 1 1] -- 4.0000 3.0000 2.0000 1.0000 sort :: AFType a => Array a -- ^ Input array -> Int -- ^ Dimension along `sort` is performed -> Bool -- ^ Return results in ascending order -> Array a -- ^ Will contain sorted input sort a (fromIntegral -> n) (fromIntegral . fromEnum -> b) = a `op1` (\p x -> af_sort p x n b) -- | Sort an 'Array' along a specified dimension, specifying ordering of results (ascending / descending), returns indices of sorted results -- -- -- >>> A.sortIndex (A.vector @Double 4 [3,2,1,4]) 0 True -- (ArrayFire Array -- [4 1 1 1] -- 1.0000 2.0000 3.0000 4.0000 -- ,ArrayFire Array -- [4 1 1 1] -- 2 1 0 3 -- ) sortIndex :: AFType a => Array a -- ^ Input array -> Int -- ^ Dimension along `sortIndex` is performed -> Bool -- ^ Return results in ascending order -> (Array a, Array a) -- ^ Contains the sorted, contains indices for original input sortIndex a (fromIntegral -> n) (fromIntegral . fromEnum -> b) = a `op2p` (\p1 p2 p3 -> af_sort_index p1 p2 p3 n b) -- | Sort an 'Array' along a specified dimension by keys, specifying ordering of results (ascending / descending) -- -- >>> A.sortByKey (A.vector @Double 4 [2,1,4,3]) (A.vector @Double 4 [10,9,8,7]) 0 True -- (ArrayFire Array -- [4 1 1 1] -- 1.0000 2.0000 3.0000 4.0000 -- ,ArrayFire Array -- [4 1 1 1] -- 9.0000 10.0000 7.0000 8.0000 -- ) sortByKey :: AFType a => Array a -- ^ Keys input array -> Array a -- ^ Values input array -> Int -- ^ Dimension along which to perform the operation -> Bool -- ^ Return results in ascending order -> (Array a, Array a) sortByKey a1 a2 (fromIntegral -> n) (fromIntegral . fromEnum -> b) = op2p2 a1 a2 (\w x y z -> af_sort_by_key w x y z n b) -- | Finds the unique values in an 'Array', specifying if sorting should occur. -- -- >>> A.setUnique (A.vector @Double 2 [1.0,1.0]) True -- ArrayFire Array -- [1 1 1 1] -- 1.0000 setUnique :: AFType a => Array a -- ^ input array -> Bool -- ^ if true, skips the sorting steps internally -> Array a -- ^ Will contain the unique values from in setUnique a (fromIntegral . fromEnum -> b) = op1 a (\x y -> af_set_unique x y b) -- | Takes the union of two 'Array's, specifying if `setUnique` should be called first. -- -- >>> A.setUnion (A.vector @Double 3 [3,4,5]) (A.vector @Double 3 [1,2,3]) True -- ArrayFire Array -- [5 1 1 1] -- 1.0000 2.0000 3.0000 4.0000 5.0000 setUnion :: AFType a => Array a -- ^ First input array -> Array a -- ^ Second input array -> Bool -- ^ If true, skips calling unique internally -> Array a setUnion a1 a2 (fromIntegral . fromEnum -> b) = op2 a1 a2 (\x y z -> af_set_union x y z b) -- | Takes the intersection of two 'Array's, specifying if `setUnique` should be called first. -- -- >>> A.setIntersect (A.vector @Double 3 [3,4,5]) (A.vector @Double 3 [1,2,3]) True -- ArrayFire Array -- [1 1 1 1] -- 3.0000 setIntersect :: AFType a => Array a -- ^ First input array -> Array a -- ^ Second input array -> Bool -- ^ If true, skips calling unique internally -> Array a -- ^ Intersection of first and second array setIntersect a1 a2 (fromIntegral . fromEnum -> b) = op2 a1 a2 (\x y z -> af_set_intersect x y z b)