arrayfire-0.4.0.0: Haskell bindings to the ArrayFire general-purpose GPU library

CopyrightDavid Johnson (c) 2019-2020
LicenseBSD3
MaintainerDavid Johnson <djohnson.m@gmail.com>
StabilityExperimental
PortabilityGHC
Safe HaskellNone
LanguageHaskell2010

ArrayFire.BLAS

Description

Basic Linear Algebra Subprograms (BLAS) API

main :: IO ()
main = print (matmul x y xProp yProp)
 where
    x,y :: Array Double
    x = matrix (2,3) [1..]
    y = matrix (3,2) [1..]

    xProp, yProp :: MatProp
    xProp = None
    yProp = None
ArrayFire Array
[2 2 1 1]
  22.0000    28.0000
  49.0000    64.0000
Synopsis

Documentation

matmul Source #

Arguments

:: Array a

2D matrix of Array a, left-hand side

-> Array a

2D matrix of Array a, right-hand side

-> MatProp

Left hand side matrix options

-> MatProp

Right hand side matrix options

-> Array a

Output of matmul

The following applies for Sparse-Dense matrix multiplication.

This function can be used with one sparse input. The sparse input must always be the lhs and the dense matrix must be rhs.

The sparse array can only be of CSR format.

The returned array is always dense.

optLhs an only be one of AF_MAT_NONE, AF_MAT_TRANS, AF_MAT_CTRANS.

optRhs can only be AF_MAT_NONE.

>>> matmul (matrix @Double (2,2) [[1,2],[3,4]]) (matrix @Double (2,2) [[1,2],[3,4]]) None None
ArrayFire Array
[2 2 1 1]
   7.0000    10.0000
  15.0000    22.0000

dot Source #

Arguments

:: Array a

Left-hand side input

-> Array a

Right-hand side input

-> MatProp

Options for left-hand side. Currently only AF_MAT_NONE and AF_MAT_CONJ are supported.

-> MatProp

Options for right-hand side. Currently only AF_MAT_NONE and AF_MAT_CONJ are supported.

-> Array a

Output of dot

Scalar dot product between two vectors. Also referred to as the inner product.

>>> dot (vector @Double 10 [1..]) (vector @Double 10 [1..]) None None
ArrayFire Array
[1 1 1 1]
  385.0000

dotAll Source #

Arguments

:: Array a

Left-hand side array

-> Array a

Right-hand side array

-> MatProp

Options for left-hand side. Currently only AF_MAT_NONE and AF_MAT_CONJ are supported.

-> MatProp

Options for right-hand side. Currently only AF_MAT_NONE and AF_MAT_CONJ are supported.

-> Complex Double

Real and imaginary component result

Scalar dot product between two vectors. Also referred to as the inner product. Returns the result as a host scalar.

>>> dotAll (vector @Double 10 [1..]) (vector @Double 10 [1..]) None None
385.0 :+ 0.0

transpose Source #

Arguments

:: Array a

Input matrix to be transposed

-> Bool

Should perform conjugate transposition

-> Array a

The transposed matrix

Transposes a matrix.

>>> matrix @Double (2,3) [[2,3,4],[4,5,6]]
ArrayFire Array
[2 3 1 1]
   2.0000     3.0000
   4.0000     4.0000
   5.0000     6.0000
>>> transpose (matrix @Double (2,3) [[2,3,4],[4,5,6]]) True
ArrayFire Array
[3 2 1 1]
   2.0000     4.0000     5.0000
   3.0000     4.0000     6.0000

transposeInPlace Source #

Arguments

:: Array a

Input matrix to be transposed

-> Bool

Should perform conjugate transposition

-> IO () 

Transposes a matrix.

  • Warning: This function mutates an array in-place, all subsequent references will be changed. Use carefully.
>>> array = matrix @Double (2,2) [[1..2],[3..4]]
>>> transposeInPlace array False
()