{-# LANGUAGE ViewPatterns #-} -------------------------------------------------------------------------------- -- | -- Module : ArrayFire.BLAS -- Copyright : David Johnson (c) 2019-2020 -- License : BSD3 -- Maintainer : David Johnson <djohnson.m@gmail.com> -- Stability : Experimental -- Portability : GHC -- -- Basic Linear Algebra Subprograms (BLAS) API -- -- @ -- main :: IO () -- main = print (matmul x y xProp yProp) -- where -- x,y :: Array Double -- x = matrix (2,3) [1..] -- y = matrix (3,2) [1..] -- -- xProp, yProp :: MatProp -- xProp = None -- yProp = None -- @ -- @ -- ArrayFire Array -- [2 2 1 1] -- 22.0000 28.0000 -- 49.0000 64.0000 -- @ -------------------------------------------------------------------------------- module ArrayFire.BLAS where import Data.Complex import ArrayFire.FFI import ArrayFire.Internal.BLAS import ArrayFire.Internal.Types -- | The following applies for Sparse-Dense matrix multiplication. -- -- This function can be used with one sparse input. The sparse input must always be the lhs and the dense matrix must be rhs. -- -- The sparse array can only be of 'CSR' format. -- -- The returned array is always dense. -- -- optLhs an only be one of AF_MAT_NONE, AF_MAT_TRANS, AF_MAT_CTRANS. -- -- optRhs can only be AF_MAT_NONE. -- -- >>> matmul (matrix @Double (2,2) [[1,2],[3,4]]) (matrix @Double (2,2) [[1,2],[3,4]]) None None -- ArrayFire Array -- [2 2 1 1] -- 7.0000 10.0000 -- 15.0000 22.0000 matmul :: Array a -- ^ 2D matrix of Array a, left-hand side -> Array a -- ^ 2D matrix of Array a, right-hand side -> MatProp -- ^ Left hand side matrix options -> MatProp -- ^ Right hand side matrix options -> Array a -- ^ Output of 'matmul' matmul arr1 arr2 prop1 prop2 = do op2 arr1 arr2 (\p a b -> af_matmul p a b (toMatProp prop1) (toMatProp prop2)) -- | Scalar dot product between two vectors. Also referred to as the inner product. -- -- >>> dot (vector @Double 10 [1..]) (vector @Double 10 [1..]) None None -- ArrayFire Array -- [1 1 1 1] -- 385.0000 dot :: Array a -- ^ Left-hand side input -> Array a -- ^ Right-hand side input -> MatProp -- ^ Options for left-hand side. Currently only AF_MAT_NONE and AF_MAT_CONJ are supported. -> MatProp -- ^ Options for right-hand side. Currently only AF_MAT_NONE and AF_MAT_CONJ are supported. -> Array a -- ^ Output of 'dot' dot arr1 arr2 prop1 prop2 = op2 arr1 arr2 (\p a b -> af_dot p a b (toMatProp prop1) (toMatProp prop2)) -- | Scalar dot product between two vectors. Also referred to as the inner product. Returns the result as a host scalar. -- -- >>> dotAll (vector @Double 10 [1..]) (vector @Double 10 [1..]) None None -- 385.0 :+ 0.0 dotAll :: Array a -- ^ Left-hand side array -> Array a -- ^ Right-hand side array -> MatProp -- ^ Options for left-hand side. Currently only AF_MAT_NONE and AF_MAT_CONJ are supported. -> MatProp -- ^ Options for right-hand side. Currently only AF_MAT_NONE and AF_MAT_CONJ are supported. -> Complex Double -- ^ Real and imaginary component result dotAll arr1 arr2 prop1 prop2 = do let (real,imag) = infoFromArray22 arr1 arr2 $ \a b c d -> af_dot_all a b c d (toMatProp prop1) (toMatProp prop2) real :+ imag -- | Transposes a matrix. -- -- >>> matrix @Double (2,3) [[2,3,4],[4,5,6]] -- ArrayFire Array -- [2 3 1 1] -- 2.0000 3.0000 -- 4.0000 4.0000 -- 5.0000 6.0000 -- -- >>> transpose (matrix @Double (2,3) [[2,3,4],[4,5,6]]) True -- ArrayFire Array -- [3 2 1 1] -- 2.0000 4.0000 5.0000 -- 3.0000 4.0000 6.0000 -- transpose :: Array a -- ^ Input matrix to be transposed -> Bool -- ^ Should perform conjugate transposition -> Array a -- ^ The transposed matrix transpose arr1 (fromIntegral . fromEnum -> b) = arr1 `op1` (\x y -> af_transpose x y b) -- | Transposes a matrix. -- -- * Warning: This function mutates an array in-place, all subsequent references will be changed. Use carefully. -- -- >>> array = matrix @Double (2,2) [[1..2],[3..4]] -- >>> transposeInPlace array False -- () -- transposeInPlace :: Array a -- ^ Input matrix to be transposed -> Bool -- ^ Should perform conjugate transposition -> IO () transposeInPlace arr (fromIntegral . fromEnum -> b) = arr `inPlace` (`af_transpose_inplace` b)