----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.Relation.Transitive -- Copyright : (c) Andrey Mokhov 2016-2019 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- An abstract implementation of transitive binary relations. Use -- "Algebra.Graph.Class" for polymorphic construction and manipulation. ----------------------------------------------------------------------------- module Algebra.Graph.Relation.Transitive ( -- * Data structure TransitiveRelation, fromRelation, toRelation ) where import Control.DeepSeq import Algebra.Graph.Relation import qualified Algebra.Graph.Class as C -- TODO: Optimise the implementation by caching the results of transitive closure. {-| The 'TransitiveRelation' data type represents a /transitive binary relation/ over a set of elements. Transitive relations satisfy all laws of the 'Transitive' type class and, in particular, the /closure/ axiom: @y /= 'empty' ==> x * y + x * z + y * z == x * y + y * z@ For example, the following holds: @'path' xs == ('clique' xs :: TransitiveRelation Int)@ The 'Show' instance produces transitively closed expressions: @show (1 * 2 :: TransitiveRelation Int) == "edge 1 2" show (1 * 2 + 2 * 3 :: TransitiveRelation Int) == "edges [(1,2),(1,3),(2,3)]"@ -} newtype TransitiveRelation a = TransitiveRelation { fromTransitive :: Relation a } deriving (Num, NFData) instance Ord a => Eq (TransitiveRelation a) where x == y = toRelation x == toRelation y instance Ord a => Ord (TransitiveRelation a) where compare x y = compare (toRelation x) (toRelation y) instance (Ord a, Show a) => Show (TransitiveRelation a) where show = show . toRelation -- TODO: To be derived automatically using GeneralizedNewtypeDeriving in GHC 8.2 instance Ord a => C.Graph (TransitiveRelation a) where type Vertex (TransitiveRelation a) = a empty = TransitiveRelation empty vertex = TransitiveRelation . vertex overlay x y = TransitiveRelation $ fromTransitive x `overlay` fromTransitive y connect x y = TransitiveRelation $ fromTransitive x `connect` fromTransitive y instance Ord a => C.Transitive (TransitiveRelation a) -- | Construct a transitive relation from a 'Relation'. -- Complexity: /O(1)/ time. fromRelation :: Relation a -> TransitiveRelation a fromRelation = TransitiveRelation -- | Extract the underlying relation. -- Complexity: /O(n * m * log(m))/ time. toRelation :: Ord a => TransitiveRelation a -> Relation a toRelation = transitiveClosure . fromTransitive