----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.Relation -- Copyright : (c) Andrey Mokhov 2016-2019 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See <https://github.com/snowleopard/alga-paper this paper> for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module defines the 'Relation' data type, as well as associated -- operations and algorithms. 'Relation' is an instance of the 'C.Graph' type -- class, which can be used for polymorphic graph construction and manipulation. ----------------------------------------------------------------------------- module Algebra.Graph.Relation ( -- * Data structure Relation, domain, relation, -- * Basic graph construction primitives empty, vertex, edge, overlay, connect, vertices, edges, overlays, connects, -- * Relations on graphs isSubgraphOf, -- * Graph properties isEmpty, hasVertex, hasEdge, vertexCount, edgeCount, vertexList, edgeList, adjacencyList, vertexSet, edgeSet, preSet, postSet, -- * Standard families of graphs path, circuit, clique, biclique, star, stars, tree, forest, -- * Graph transformation removeVertex, removeEdge, replaceVertex, mergeVertices, transpose, gmap, induce, induceJust, -- * Relational operations compose, closure, reflexiveClosure, symmetricClosure, transitiveClosure, -- * Miscellaneous consistent ) where import Control.DeepSeq import Data.Set (Set, union) import Data.Tree import Data.Tuple import qualified Data.Maybe as Maybe import qualified Data.Set as Set import qualified Data.Tree as Tree import Algebra.Graph.Internal {-| The 'Relation' data type represents a graph as a /binary relation/. We define a 'Num' instance as a convenient notation for working with graphs: > 0 == vertex 0 > 1 + 2 == overlay (vertex 1) (vertex 2) > 1 * 2 == connect (vertex 1) (vertex 2) > 1 + 2 * 3 == overlay (vertex 1) (connect (vertex 2) (vertex 3)) > 1 * (2 + 3) == connect (vertex 1) (overlay (vertex 2) (vertex 3)) __Note:__ the 'Num' instance does not satisfy several "customary laws" of 'Num', which dictate that 'fromInteger' @0@ and 'fromInteger' @1@ should act as additive and multiplicative identities, and 'negate' as additive inverse. Nevertheless, overloading 'fromInteger', '+' and '*' is very convenient when working with algebraic graphs; we hope that in future Haskell's Prelude will provide a more fine-grained class hierarchy for algebraic structures, which we would be able to utilise without violating any laws. The 'Show' instance is defined using basic graph construction primitives: @show (empty :: Relation Int) == "empty" show (1 :: Relation Int) == "vertex 1" show (1 + 2 :: Relation Int) == "vertices [1,2]" show (1 * 2 :: Relation Int) == "edge 1 2" show (1 * 2 * 3 :: Relation Int) == "edges [(1,2),(1,3),(2,3)]" show (1 * 2 + 3 :: Relation Int) == "overlay (vertex 3) (edge 1 2)"@ The 'Eq' instance satisfies all axioms of algebraic graphs: * 'overlay' is commutative and associative: > x + y == y + x > x + (y + z) == (x + y) + z * 'connect' is associative and has 'empty' as the identity: > x * empty == x > empty * x == x > x * (y * z) == (x * y) * z * 'connect' distributes over 'overlay': > x * (y + z) == x * y + x * z > (x + y) * z == x * z + y * z * 'connect' can be decomposed: > x * y * z == x * y + x * z + y * z The following useful theorems can be proved from the above set of axioms. * 'overlay' has 'empty' as the identity and is idempotent: > x + empty == x > empty + x == x > x + x == x * Absorption and saturation of 'connect': > x * y + x + y == x * y > x * x * x == x * x When specifying the time and memory complexity of graph algorithms, /n/ and /m/ will denote the number of vertices and edges in the graph, respectively. The total order on graphs is defined using /size-lexicographic/ comparison: * Compare the number of vertices. In case of a tie, continue. * Compare the sets of vertices. In case of a tie, continue. * Compare the number of edges. In case of a tie, continue. * Compare the sets of edges. Here are a few examples: @'vertex' 1 < 'vertex' 2 'vertex' 3 < 'edge' 1 2 'vertex' 1 < 'edge' 1 1 'edge' 1 1 < 'edge' 1 2 'edge' 1 2 < 'edge' 1 1 + 'edge' 2 2 'edge' 1 2 < 'edge' 1 3@ Note that the resulting order refines the 'isSubgraphOf' relation and is compatible with 'overlay' and 'connect' operations: @'isSubgraphOf' x y ==> x <= y@ @'empty' <= x x <= x + y x + y <= x * y@ -} data Relation a = Relation { -- | The /domain/ of the relation. Complexity: /O(1)/ time and memory. domain :: Set a, -- | The set of pairs of elements that are /related/. It is guaranteed that -- each element belongs to the domain. Complexity: /O(1)/ time and memory. relation :: Set (a, a) } deriving Eq instance (Ord a, Show a) => Show (Relation a) where showsPrec p (Relation d r) | Set.null d = showString "empty" | Set.null r = showParen (p > 10) $ vshow (Set.toAscList d) | d == used = showParen (p > 10) $ eshow (Set.toAscList r) | otherwise = showParen (p > 10) $ showString "overlay (" . vshow (Set.toAscList $ Set.difference d used) . showString ") (" . eshow (Set.toAscList r) . showString ")" where vshow [x] = showString "vertex " . showsPrec 11 x vshow xs = showString "vertices " . showsPrec 11 xs eshow [(x, y)] = showString "edge " . showsPrec 11 x . showString " " . showsPrec 11 y eshow xs = showString "edges " . showsPrec 11 xs used = referredToVertexSet r instance Ord a => Ord (Relation a) where compare x y = mconcat [ compare (vertexCount x) (vertexCount y) , compare (vertexSet x) (vertexSet y) , compare (edgeCount x) (edgeCount y) , compare (edgeSet x) (edgeSet y) ] instance NFData a => NFData (Relation a) where rnf (Relation d r) = rnf d `seq` rnf r `seq` () -- | __Note:__ this does not satisfy the usual ring laws; see 'Relation' for -- more details. instance (Ord a, Num a) => Num (Relation a) where fromInteger = vertex . fromInteger (+) = overlay (*) = connect signum = const empty abs = id negate = id -- | Construct the /empty graph/. -- Complexity: /O(1)/ time and memory. -- -- @ -- 'isEmpty' empty == True -- 'hasVertex' x empty == False -- 'vertexCount' empty == 0 -- 'edgeCount' empty == 0 -- @ empty :: Relation a empty = Relation Set.empty Set.empty -- | Construct the graph comprising /a single isolated vertex/. -- Complexity: /O(1)/ time and memory. -- -- @ -- 'isEmpty' (vertex x) == False -- 'hasVertex' x (vertex y) == (x == y) -- 'vertexCount' (vertex x) == 1 -- 'edgeCount' (vertex x) == 0 -- @ vertex :: a -> Relation a vertex x = Relation (Set.singleton x) Set.empty -- | /Overlay/ two graphs. This is a commutative, associative and idempotent -- operation with the identity 'empty'. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- 'isEmpty' (overlay x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (overlay x y) >= 'vertexCount' x -- 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (overlay x y) >= 'edgeCount' x -- 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y -- 'vertexCount' (overlay 1 2) == 2 -- 'edgeCount' (overlay 1 2) == 0 -- @ overlay :: Ord a => Relation a -> Relation a -> Relation a overlay x y = Relation (domain x `union` domain y) (relation x `union` relation y) -- | /Connect/ two graphs. This is an associative operation with the identity -- 'empty', which distributes over 'overlay' and obeys the decomposition axiom. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. Note that the -- number of edges in the resulting graph is quadratic with respect to the number -- of vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'isEmpty' (connect x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (connect x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (connect x y) >= 'vertexCount' x -- 'vertexCount' (connect x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (connect x y) >= 'edgeCount' x -- 'edgeCount' (connect x y) >= 'edgeCount' y -- 'edgeCount' (connect x y) >= 'vertexCount' x * 'vertexCount' y -- 'edgeCount' (connect x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y -- 'vertexCount' (connect 1 2) == 2 -- 'edgeCount' (connect 1 2) == 1 -- @ connect :: Ord a => Relation a -> Relation a -> Relation a connect x y = Relation (domain x `union` domain y) (relation x `union` relation y `union` (domain x `setProduct` domain y)) -- | Construct the graph comprising /a single edge/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- edge x y == 'connect' ('vertex' x) ('vertex' y) -- 'hasEdge' x y (edge x y) == True -- 'edgeCount' (edge x y) == 1 -- 'vertexCount' (edge 1 1) == 1 -- 'vertexCount' (edge 1 2) == 2 -- @ edge :: Ord a => a -> a -> Relation a edge x y = Relation (Set.fromList [x, y]) (Set.singleton (x, y)) -- | Construct the graph comprising a given list of isolated vertices. -- Complexity: /O(L * log(L))/ time and /O(L)/ memory, where /L/ is the length -- of the given list. -- -- @ -- vertices [] == 'empty' -- vertices [x] == 'vertex' x -- 'hasVertex' x . vertices == 'elem' x -- 'vertexCount' . vertices == 'length' . 'Data.List.nub' -- 'vertexSet' . vertices == Set.'Set.fromList' -- @ vertices :: Ord a => [a] -> Relation a vertices xs = Relation (Set.fromList xs) Set.empty -- | Construct the graph from a list of edges. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- edges [] == 'empty' -- edges [(x,y)] == 'edge' x y -- edges == 'overlays' . 'map' ('uncurry' 'edge') -- 'edgeCount' . edges == 'length' . 'Data.List.nub' -- @ edges :: Ord a => [(a, a)] -> Relation a edges es = Relation (Set.fromList $ uncurry (++) $ unzip es) (Set.fromList es) -- | Overlay a given list of graphs. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- overlays [] == 'empty' -- overlays [x] == x -- overlays [x,y] == 'overlay' x y -- overlays == 'foldr' 'overlay' 'empty' -- 'isEmpty' . overlays == 'all' 'isEmpty' -- @ overlays :: Ord a => [Relation a] -> Relation a overlays xs = Relation (Set.unions $ map domain xs) (Set.unions $ map relation xs) -- | Connect a given list of graphs. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- connects [] == 'empty' -- connects [x] == x -- connects [x,y] == 'connect' x y -- connects == 'foldr' 'connect' 'empty' -- 'isEmpty' . connects == 'all' 'isEmpty' -- @ connects :: Ord a => [Relation a] -> Relation a connects = foldr connect empty -- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the -- first graph is a /subgraph/ of the second. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- isSubgraphOf 'empty' x == True -- isSubgraphOf ('vertex' x) 'empty' == False -- isSubgraphOf x ('overlay' x y) == True -- isSubgraphOf ('overlay' x y) ('connect' x y) == True -- isSubgraphOf ('path' xs) ('circuit' xs) == True -- isSubgraphOf x y ==> x <= y -- @ isSubgraphOf :: Ord a => Relation a -> Relation a -> Bool isSubgraphOf x y = domain x `Set.isSubsetOf` domain y && relation x `Set.isSubsetOf` relation y -- | Check if a relation is empty. -- Complexity: /O(1)/ time. -- -- @ -- isEmpty 'empty' == True -- isEmpty ('overlay' 'empty' 'empty') == True -- isEmpty ('vertex' x) == False -- isEmpty ('removeVertex' x $ 'vertex' x) == True -- isEmpty ('removeEdge' x y $ 'edge' x y) == False -- @ isEmpty :: Relation a -> Bool isEmpty = null . domain -- | Check if a graph contains a given vertex. -- Complexity: /O(log(n))/ time. -- -- @ -- hasVertex x 'empty' == False -- hasVertex x ('vertex' y) == (x == y) -- hasVertex x . 'removeVertex' x == 'const' False -- @ hasVertex :: Ord a => a -> Relation a -> Bool hasVertex x = Set.member x . domain -- | Check if a graph contains a given edge. -- Complexity: /O(log(n))/ time. -- -- @ -- hasEdge x y 'empty' == False -- hasEdge x y ('vertex' z) == False -- hasEdge x y ('edge' x y) == True -- hasEdge x y . 'removeEdge' x y == 'const' False -- hasEdge x y == 'elem' (x,y) . 'edgeList' -- @ hasEdge :: Ord a => a -> a -> Relation a -> Bool hasEdge x y = Set.member (x, y) . relation -- | The number of vertices in a graph. -- Complexity: /O(1)/ time. -- -- @ -- vertexCount 'empty' == 0 -- vertexCount ('vertex' x) == 1 -- vertexCount == 'length' . 'vertexList' -- vertexCount x \< vertexCount y ==> x \< y -- @ vertexCount :: Relation a -> Int vertexCount = Set.size . domain -- | The number of edges in a graph. -- Complexity: /O(1)/ time. -- -- @ -- edgeCount 'empty' == 0 -- edgeCount ('vertex' x) == 0 -- edgeCount ('edge' x y) == 1 -- edgeCount == 'length' . 'edgeList' -- @ edgeCount :: Relation a -> Int edgeCount = Set.size . relation -- | The sorted list of vertices of a given graph. -- Complexity: /O(n)/ time and memory. -- -- @ -- vertexList 'empty' == [] -- vertexList ('vertex' x) == [x] -- vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort' -- @ vertexList :: Relation a -> [a] vertexList = Set.toAscList . domain -- | The sorted list of edges of a graph. -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- edgeList 'empty' == [] -- edgeList ('vertex' x) == [] -- edgeList ('edge' x y) == [(x,y)] -- edgeList ('star' 2 [3,1]) == [(2,1), (2,3)] -- edgeList . 'edges' == 'Data.List.nub' . 'Data.List.sort' -- edgeList . 'transpose' == 'Data.List.sort' . 'map' 'Data.Tuple.swap' . edgeList -- @ edgeList :: Relation a -> [(a, a)] edgeList = Set.toAscList . relation -- | The set of vertices of a given graph. -- Complexity: /O(1)/ time. -- -- @ -- vertexSet 'empty' == Set.'Set.empty' -- vertexSet . 'vertex' == Set.'Set.singleton' -- vertexSet . 'vertices' == Set.'Set.fromList' -- @ vertexSet :: Relation a -> Set.Set a vertexSet = domain -- | The set of edges of a given graph. -- Complexity: /O(1)/ time. -- -- @ -- edgeSet 'empty' == Set.'Set.empty' -- edgeSet ('vertex' x) == Set.'Set.empty' -- edgeSet ('edge' x y) == Set.'Set.singleton' (x,y) -- edgeSet . 'edges' == Set.'Set.fromList' -- @ edgeSet :: Relation a -> Set.Set (a, a) edgeSet = relation -- | The sorted /adjacency list/ of a graph. -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- adjacencyList 'empty' == [] -- adjacencyList ('vertex' x) == [(x, [])] -- adjacencyList ('edge' 1 2) == [(1, [2]), (2, [])] -- adjacencyList ('star' 2 [3,1]) == [(1, []), (2, [1,3]), (3, [])] -- 'stars' . adjacencyList == id -- @ adjacencyList :: Eq a => Relation a -> [(a, [a])] adjacencyList r = go (Set.toAscList $ domain r) (Set.toAscList $ relation r) where go [] _ = [] go vs [] = map ((,[])) vs go (x:vs) es = let (ys, zs) = span ((==x) . fst) es in (x, map snd ys) : go vs zs -- | The /preset/ of an element @x@ is the set of elements that are related to -- it on the /left/, i.e. @preSet x == { a | aRx }@. In the context of directed -- graphs, this corresponds to the set of /direct predecessors/ of vertex @x@. -- Complexity: /O(n + m)/ time and /O(n)/ memory. -- -- @ -- preSet x 'empty' == Set.'Set.empty' -- preSet x ('vertex' x) == Set.'Set.empty' -- preSet 1 ('edge' 1 2) == Set.'Set.empty' -- preSet y ('edge' x y) == Set.'Set.fromList' [x] -- @ preSet :: Ord a => a -> Relation a -> Set.Set a preSet x = Set.mapMonotonic fst . Set.filter ((== x) . snd) . relation -- | The /postset/ of an element @x@ is the set of elements that are related to -- it on the /right/, i.e. @postSet x == { a | xRa }@. In the context of directed -- graphs, this corresponds to the set of /direct successors/ of vertex @x@. -- Complexity: /O(n + m)/ time and /O(n)/ memory. -- -- @ -- postSet x 'empty' == Set.'Set.empty' -- postSet x ('vertex' x) == Set.'Set.empty' -- postSet x ('edge' x y) == Set.'Set.fromList' [y] -- postSet 2 ('edge' 1 2) == Set.'Set.empty' -- @ postSet :: Ord a => a -> Relation a -> Set.Set a postSet x = Set.mapMonotonic snd . Set.filter ((== x) . fst) . relation -- | The /path/ on a list of vertices. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- path [] == 'empty' -- path [x] == 'vertex' x -- path [x,y] == 'edge' x y -- path . 'reverse' == 'transpose' . path -- @ path :: Ord a => [a] -> Relation a path xs = case xs of [] -> empty [x] -> vertex x (_:ys) -> edges (zip xs ys) -- | The /circuit/ on a list of vertices. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- circuit [] == 'empty' -- circuit [x] == 'edge' x x -- circuit [x,y] == 'edges' [(x,y), (y,x)] -- circuit . 'reverse' == 'transpose' . circuit -- @ circuit :: Ord a => [a] -> Relation a circuit [] = empty circuit (x:xs) = path $ [x] ++ xs ++ [x] -- | The /clique/ on a list of vertices. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- clique [] == 'empty' -- clique [x] == 'vertex' x -- clique [x,y] == 'edge' x y -- clique [x,y,z] == 'edges' [(x,y), (x,z), (y,z)] -- clique (xs ++ ys) == 'connect' (clique xs) (clique ys) -- clique . 'reverse' == 'transpose' . clique -- @ clique :: Ord a => [a] -> Relation a clique xs = Relation (Set.fromList xs) (fst $ go xs) where go [] = (Set.empty, Set.empty) go (x:xs) = (Set.union res (Set.map (x,) set), Set.insert x set) where (res, set) = go xs -- | The /biclique/ on two lists of vertices. -- Complexity: /O(n * log(n) + m)/ time and /O(n + m)/ memory. -- -- @ -- biclique [] [] == 'empty' -- biclique [x] [] == 'vertex' x -- biclique [] [y] == 'vertex' y -- biclique [x1,x2] [y1,y2] == 'edges' [(x1,y1), (x1,y2), (x2,y1), (x2,y2)] -- biclique xs ys == 'connect' ('vertices' xs) ('vertices' ys) -- @ biclique :: Ord a => [a] -> [a] -> Relation a biclique xs ys = Relation (x `Set.union` y) (x `setProduct` y) where x = Set.fromList xs y = Set.fromList ys -- TODO: Optimise. -- | The /star/ formed by a centre vertex connected to a list of leaves. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- star x [] == 'vertex' x -- star x [y] == 'edge' x y -- star x [y,z] == 'edges' [(x,y), (x,z)] -- star x ys == 'connect' ('vertex' x) ('vertices' ys) -- @ star :: Ord a => a -> [a] -> Relation a star x [] = vertex x star x ys = connect (vertex x) (vertices ys) -- | The /stars/ formed by overlaying a list of 'star's. An inverse of -- 'adjacencyList'. -- Complexity: /O(L * log(n))/ time, memory and size, where /L/ is the total -- size of the input. -- -- @ -- stars [] == 'empty' -- stars [(x, [])] == 'vertex' x -- stars [(x, [y])] == 'edge' x y -- stars [(x, ys)] == 'star' x ys -- stars == 'overlays' . 'map' ('uncurry' 'star') -- stars . 'adjacencyList' == id -- 'overlay' (stars xs) (stars ys) == stars (xs ++ ys) -- @ stars :: Ord a => [(a, [a])] -> Relation a stars as = Relation (Set.fromList vs) (Set.fromList es) where vs = concatMap (uncurry (:)) as es = [ (x, y) | (x, ys) <- as, y <- ys ] -- | The /tree graph/ constructed from a given 'Tree.Tree' data structure. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- tree (Node x []) == 'vertex' x -- tree (Node x [Node y [Node z []]]) == 'path' [x,y,z] -- tree (Node x [Node y [], Node z []]) == 'star' x [y,z] -- tree (Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]) == 'edges' [(1,2), (1,3), (3,4), (3,5)] -- @ tree :: Ord a => Tree.Tree a -> Relation a tree (Node x []) = vertex x tree (Node x f ) = star x (map rootLabel f) `overlay` forest (filter (not . null . subForest) f) -- | The /forest graph/ constructed from a given 'Tree.Forest' data structure. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- forest [] == 'empty' -- forest [x] == 'tree' x -- forest [Node 1 [Node 2 [], Node 3 []], Node 4 [Node 5 []]] == 'edges' [(1,2), (1,3), (4,5)] -- forest == 'overlays' . 'map' 'tree' -- @ forest :: Ord a => Tree.Forest a -> Relation a forest = overlays. map tree -- | Remove a vertex from a given graph. -- Complexity: /O(n + m)/ time. -- -- @ -- removeVertex x ('vertex' x) == 'empty' -- removeVertex 1 ('vertex' 2) == 'vertex' 2 -- removeVertex x ('edge' x x) == 'empty' -- removeVertex 1 ('edge' 1 2) == 'vertex' 2 -- removeVertex x . removeVertex x == removeVertex x -- @ removeVertex :: Ord a => a -> Relation a -> Relation a removeVertex x (Relation d r) = Relation (Set.delete x d) (Set.filter notx r) where notx (a, b) = a /= x && b /= x -- | Remove an edge from a given graph. -- Complexity: /O(log(m))/ time. -- -- @ -- removeEdge x y ('AdjacencyMap.edge' x y) == 'vertices' [x,y] -- removeEdge x y . removeEdge x y == removeEdge x y -- removeEdge x y . 'removeVertex' x == 'removeVertex' x -- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2 -- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2 -- @ removeEdge :: Ord a => a -> a -> Relation a -> Relation a removeEdge x y (Relation d r) = Relation d (Set.delete (x, y) r) -- | The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a -- given 'AdjacencyMap'. If @y@ already exists, @x@ and @y@ will be merged. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- replaceVertex x x == id -- replaceVertex x y ('vertex' x) == 'vertex' y -- replaceVertex x y == 'mergeVertices' (== x) y -- @ replaceVertex :: Ord a => a -> a -> Relation a -> Relation a replaceVertex u v = gmap $ \w -> if w == u then v else w -- | Merge vertices satisfying a given predicate into a given vertex. -- Complexity: /O((n + m) * log(n))/ time, assuming that the predicate takes -- /O(1)/ to be evaluated. -- -- @ -- mergeVertices ('const' False) x == id -- mergeVertices (== x) y == 'replaceVertex' x y -- mergeVertices 'even' 1 (0 * 2) == 1 * 1 -- mergeVertices 'odd' 1 (3 + 4 * 5) == 4 * 1 -- @ mergeVertices :: Ord a => (a -> Bool) -> a -> Relation a -> Relation a mergeVertices p v = gmap $ \u -> if p u then v else u -- | Transpose a given graph. -- Complexity: /O(m * log(m))/ time. -- -- @ -- transpose 'empty' == 'empty' -- transpose ('vertex' x) == 'vertex' x -- transpose ('edge' x y) == 'edge' y x -- transpose . transpose == id -- 'edgeList' . transpose == 'Data.List.sort' . 'map' 'Data.Tuple.swap' . 'edgeList' -- @ transpose :: Ord a => Relation a -> Relation a transpose (Relation d r) = Relation d (Set.map swap r) -- | Transform a graph by applying a function to each of its vertices. This is -- similar to @Functor@'s 'fmap' but can be used with non-fully-parametric -- 'Relation'. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- gmap f 'empty' == 'empty' -- gmap f ('vertex' x) == 'vertex' (f x) -- gmap f ('edge' x y) == 'edge' (f x) (f y) -- gmap id == id -- gmap f . gmap g == gmap (f . g) -- @ gmap :: Ord b => (a -> b) -> Relation a -> Relation b gmap f (Relation d r) = Relation (Set.map f d) (Set.map (\(x, y) -> (f x, f y)) r) -- | Construct the /induced subgraph/ of a given graph by removing the -- vertices that do not satisfy a given predicate. -- Complexity: /O(n + m)/ time, assuming that the predicate takes /O(1)/ to -- be evaluated. -- -- @ -- induce ('const' True ) x == x -- induce ('const' False) x == 'empty' -- induce (/= x) == 'removeVertex' x -- induce p . induce q == induce (\\x -> p x && q x) -- 'isSubgraphOf' (induce p x) x == True -- @ induce :: (a -> Bool) -> Relation a -> Relation a induce p (Relation d r) = Relation (Set.filter p d) (Set.filter pp r) where pp (x, y) = p x && p y -- | Construct the /induced subgraph/ of a given graph by removing the vertices -- that are 'Nothing'. -- Complexity: /O(n + m)/ time. -- -- @ -- induceJust ('vertex' 'Nothing') == 'empty' -- induceJust ('edge' ('Just' x) 'Nothing') == 'vertex' x -- induceJust . 'gmap' 'Just' == 'id' -- induceJust . 'gmap' (\\x -> if p x then 'Just' x else 'Nothing') == 'induce' p -- @ induceJust :: Ord a => Relation (Maybe a) -> Relation a induceJust (Relation d r) = Relation (catMaybesSet d) (catMaybesSet2 r) where catMaybesSet = Set.mapMonotonic Maybe.fromJust . Set.delete Nothing catMaybesSet2 = Set.mapMonotonic (\(x, y) -> (Maybe.fromJust x, Maybe.fromJust y)) . Set.filter p p (Nothing, _) = False p (_, Nothing) = False p (_, _) = True -- | Left-to-right /relational composition/ of graphs: vertices @x@ and @z@ are -- connected in the resulting graph if there is a vertex @y@, such that @x@ is -- connected to @y@ in the first graph, and @y@ is connected to @z@ in the -- second graph. There are no isolated vertices in the result. This operation is -- associative, has 'empty' and single-'vertex' graphs as /annihilating zeroes/, -- and distributes over 'overlay'. -- Complexity: /O(n * m * log(m))/ time and /O(n + m)/ memory. -- -- @ -- compose 'empty' x == 'empty' -- compose x 'empty' == 'empty' -- compose ('vertex' x) y == 'empty' -- compose x ('vertex' y) == 'empty' -- compose x (compose y z) == compose (compose x y) z -- compose x ('overlay' y z) == 'overlay' (compose x y) (compose x z) -- compose ('overlay' x y) z == 'overlay' (compose x z) (compose y z) -- compose ('edge' x y) ('edge' y z) == 'edge' x z -- compose ('path' [1..5]) ('path' [1..5]) == 'edges' [(1,3), (2,4), (3,5)] -- compose ('circuit' [1..5]) ('circuit' [1..5]) == 'circuit' [1,3,5,2,4] -- @ compose :: Ord a => Relation a -> Relation a -> Relation a compose x y = Relation (referredToVertexSet r) r where d = domain x `Set.union` domain y r = Set.unions [ preSet v x `setProduct` postSet v y | v <- Set.toAscList d ] -- | Compute the /reflexive and transitive closure/ of a graph. -- Complexity: /O(n * m * log(n) * log(m))/ time. -- -- @ -- closure 'empty' == 'empty' -- closure ('vertex' x) == 'edge' x x -- closure ('edge' x x) == 'edge' x x -- closure ('edge' x y) == 'edges' [(x,x), (x,y), (y,y)] -- closure ('path' $ 'Data.List.nub' xs) == 'reflexiveClosure' ('clique' $ 'Data.List.nub' xs) -- closure == 'reflexiveClosure' . 'transitiveClosure' -- closure == 'transitiveClosure' . 'reflexiveClosure' -- closure . closure == closure -- 'postSet' x (closure y) == Set.'Set.fromList' ('Algebra.Graph.ToGraph.reachable' x y) -- @ closure :: Ord a => Relation a -> Relation a closure = reflexiveClosure . transitiveClosure -- | Compute the /reflexive closure/ of a graph. -- Complexity: /O(n * log(m))/ time. -- -- @ -- reflexiveClosure 'empty' == 'empty' -- reflexiveClosure ('vertex' x) == 'edge' x x -- reflexiveClosure ('edge' x x) == 'edge' x x -- reflexiveClosure ('edge' x y) == 'edges' [(x,x), (x,y), (y,y)] -- reflexiveClosure . reflexiveClosure == reflexiveClosure -- @ reflexiveClosure :: Ord a => Relation a -> Relation a reflexiveClosure (Relation d r) = Relation d $ r `Set.union` Set.fromDistinctAscList [ (a, a) | a <- Set.toAscList d ] -- | Compute the /symmetric closure/ of a graph. -- Complexity: /O(m * log(m))/ time. -- -- @ -- symmetricClosure 'empty' == 'empty' -- symmetricClosure ('vertex' x) == 'vertex' x -- symmetricClosure ('edge' x y) == 'edges' [(x,y), (y,x)] -- symmetricClosure x == 'overlay' x ('transpose' x) -- symmetricClosure . symmetricClosure == symmetricClosure -- @ symmetricClosure :: Ord a => Relation a -> Relation a symmetricClosure (Relation d r) = Relation d $ r `Set.union` Set.map swap r -- | Compute the /transitive closure/ of a graph. -- Complexity: /O(n * m * log(n) * log(m))/ time. -- -- @ -- transitiveClosure 'empty' == 'empty' -- transitiveClosure ('vertex' x) == 'vertex' x -- transitiveClosure ('edge' x y) == 'edge' x y -- transitiveClosure ('path' $ 'Data.List.nub' xs) == 'clique' ('Data.List.nub' xs) -- transitiveClosure . transitiveClosure == transitiveClosure -- @ transitiveClosure :: Ord a => Relation a -> Relation a transitiveClosure old | old == new = old | otherwise = transitiveClosure new where new = overlay old (old `compose` old) -- | Check that the internal representation of a relation is consistent, i.e. if all -- pairs of elements in the 'relation' refer to existing elements in the 'domain'. -- It should be impossible to create an inconsistent 'Relation', and we use this -- function in testing. -- -- @ -- consistent 'empty' == True -- consistent ('vertex' x) == True -- consistent ('overlay' x y) == True -- consistent ('connect' x y) == True -- consistent ('edge' x y) == True -- consistent ('edges' xs) == True -- consistent ('stars' xs) == True -- @ consistent :: Ord a => Relation a -> Bool consistent (Relation d r) = referredToVertexSet r `Set.isSubsetOf` d -- The set of elements that appear in a given set of pairs. referredToVertexSet :: Ord a => Set (a, a) -> Set a referredToVertexSet = Set.fromList . uncurry (++) . unzip . Set.toAscList