{-# LANGUAGE DeriveFunctor, DeriveGeneric, FlexibleInstances #-} ----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.Labelled -- Copyright : (c) Andrey Mokhov 2016-2019 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See <https://github.com/snowleopard/alga-paper this paper> for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module provides a minimal and experimental implementation of algebraic -- graphs with edge labels. The API will be expanded in the next release. ----------------------------------------------------------------------------- module Algebra.Graph.Labelled ( -- * Algebraic data type for edge-labelled graphs Graph (..), empty, vertex, edge, (-<), (>-), overlay, connect, vertices, edges, overlays, -- * Graph folding foldg, -- * Relations on graphs isSubgraphOf, -- * Graph properties isEmpty, size, hasVertex, hasEdge, edgeLabel, vertexList, edgeList, vertexSet, edgeSet, -- * Graph transformation removeVertex, removeEdge, replaceVertex, replaceEdge, transpose, emap, induce, induceJust, -- * Relational operations closure, reflexiveClosure, symmetricClosure, transitiveClosure, -- * Types of edge-labelled graphs UnlabelledGraph, Automaton, Network, -- * Context Context (..), context ) where import Data.Bifunctor import Data.Monoid import Control.DeepSeq import GHC.Generics import Algebra.Graph.Internal (List (..)) import Algebra.Graph.Label import qualified Algebra.Graph.Labelled.AdjacencyMap as AM import qualified Data.Set as Set import qualified Data.Map as Map import qualified GHC.Exts as Exts -- | Edge-labelled graphs, where the type variable @e@ stands for edge labels. -- For example, 'Graph' @Bool@ @a@ is isomorphic to unlabelled graphs defined in -- the top-level module "Algebra.Graph.Graph", where @False@ and @True@ denote -- the lack of and the existence of an unlabelled edge, respectively. data Graph e a = Empty | Vertex a | Connect e (Graph e a) (Graph e a) deriving (Functor, Show, Generic) instance (Eq e, Monoid e, Ord a) => Eq (Graph e a) where x == y = toAdjacencyMap x == toAdjacencyMap y instance (Eq e, Monoid e, Ord a, Ord e) => Ord (Graph e a) where compare x y = compare (toAdjacencyMap x) (toAdjacencyMap y) -- | __Note:__ this does not satisfy the usual ring laws; see 'Graph' -- for more details. instance (Ord a, Num a, Dioid e) => Num (Graph e a) where fromInteger = vertex . fromInteger (+) = overlay (*) = connect one signum = const empty abs = id negate = id instance Bifunctor Graph where bimap f g = foldg Empty (Vertex . g) (Connect . f) instance (NFData e, NFData a) => NFData (Graph e a) where rnf Empty = () rnf (Vertex x ) = rnf x rnf (Connect e x y) = e `seq` rnf x `seq` rnf y -- TODO: This is a very inefficient implementation. Find a way to construct an -- adjacency map directly, without building intermediate representations for all -- subgraphs. -- Extract the adjacency map of a graph. toAdjacencyMap :: (Eq e, Monoid e, Ord a) => Graph e a -> AM.AdjacencyMap e a toAdjacencyMap = foldg AM.empty AM.vertex AM.connect -- Convert the adjacency map to a graph. fromAdjacencyMap :: Monoid e => AM.AdjacencyMap e a -> Graph e a fromAdjacencyMap = overlays . map go . Map.toList . AM.adjacencyMap where go (u, m) = overlay (vertex u) (edges [ (e, u, v) | (v, e) <- Map.toList m]) -- | Generalised 'Graph' folding: recursively collapse a 'Graph' by applying -- the provided functions to the leaves and internal nodes of the expression. -- The order of arguments is: empty, vertex and connect. -- Complexity: /O(s)/ applications of given functions. As an example, the -- complexity of 'size' is /O(s)/, since all functions have cost /O(1)/. -- -- @ -- foldg 'empty' 'vertex' 'connect' == 'id' -- foldg 'empty' 'vertex' ('fmap' 'flip' 'connect') == 'transpose' -- foldg 1 ('const' 1) ('const' (+)) == 'size' -- foldg True ('const' False) ('const' (&&)) == 'isEmpty' -- foldg False (== x) ('const' (||)) == 'hasVertex' x -- foldg Set.'Set.empty' Set.'Set.singleton' ('const' Set.'Set.union') == 'vertexSet' -- @ foldg :: b -> (a -> b) -> (e -> b -> b -> b) -> Graph e a -> b foldg e v c = go where go Empty = e go (Vertex x ) = v x go (Connect e x y) = c e (go x) (go y) -- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the -- first graph is a /subgraph/ of the second. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- isSubgraphOf 'empty' x == True -- isSubgraphOf ('vertex' x) 'empty' == False -- isSubgraphOf x ('overlay' x y) == True -- isSubgraphOf ('overlay' x y) ('connect' x y) == True -- isSubgraphOf x y ==> x <= y -- @ isSubgraphOf :: (Eq e, Monoid e, Ord a) => Graph e a -> Graph e a -> Bool isSubgraphOf x y = overlay x y == y -- | Construct the /empty graph/. An alias for the constructor 'Empty'. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- 'isEmpty' empty == True -- 'hasVertex' x empty == False -- 'Algebra.Graph.ToGraph.vertexCount' empty == 0 -- 'Algebra.Graph.ToGraph.edgeCount' empty == 0 -- @ empty :: Graph e a empty = Empty -- | Construct the graph comprising /a single isolated vertex/. An alias for the -- constructor 'Vertex'. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- 'isEmpty' (vertex x) == False -- 'hasVertex' x (vertex y) == (x == y) -- 'Algebra.Graph.ToGraph.vertexCount' (vertex x) == 1 -- 'Algebra.Graph.ToGraph.edgeCount' (vertex x) == 0 -- @ vertex :: a -> Graph e a vertex = Vertex -- | Construct the graph comprising /a single labelled edge/. -- Complexity: /O(1)/ time, memory and size. -- -- @ -- edge e x y == 'connect' e ('vertex' x) ('vertex' y) -- edge 'zero' x y == 'vertices' [x,y] -- 'hasEdge' x y (edge e x y) == (e /= 'zero') -- 'edgeLabel' x y (edge e x y) == e -- 'Algebra.Graph.ToGraph.edgeCount' (edge e x y) == if e == 'zero' then 0 else 1 -- 'Algebra.Graph.ToGraph.vertexCount' (edge e 1 1) == 1 -- 'Algebra.Graph.ToGraph.vertexCount' (edge e 1 2) == 2 -- @ edge :: e -> a -> a -> Graph e a edge e x y = connect e (vertex x) (vertex y) -- | The left-hand part of a convenient ternary-ish operator @x-\<e\>-y@ for -- creating labelled edges. -- -- @ -- x -\<e\>- y == 'edge' e x y -- @ (-<) :: a -> e -> (a, e) g -< e = (g, e) -- | The right-hand part of a convenient ternary-ish operator @x-\<e\>-y@ for -- creating labelled edges. -- -- @ -- x -\<e\>- y == 'edge' e x y -- @ (>-) :: (a, e) -> a -> Graph e a (x, e) >- y = edge e x y infixl 5 -< infixl 5 >- -- | /Overlay/ two graphs. An alias for 'Connect' 'zero'. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. -- -- @ -- 'isEmpty' (overlay x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y -- 'Algebra.Graph.ToGraph.vertexCount' (overlay x y) >= 'Algebra.Graph.ToGraph.vertexCount' x -- 'Algebra.Graph.ToGraph.vertexCount' (overlay x y) <= 'Algebra.Graph.ToGraph.vertexCount' x + 'Algebra.Graph.ToGraph.vertexCount' y -- 'Algebra.Graph.ToGraph.edgeCount' (overlay x y) >= 'Algebra.Graph.ToGraph.edgeCount' x -- 'Algebra.Graph.ToGraph.edgeCount' (overlay x y) <= 'Algebra.Graph.ToGraph.edgeCount' x + 'Algebra.Graph.ToGraph.edgeCount' y -- 'Algebra.Graph.ToGraph.vertexCount' (overlay 1 2) == 2 -- 'Algebra.Graph.ToGraph.edgeCount' (overlay 1 2) == 0 -- @ -- -- Note: 'overlay' composes edges in parallel using the operator '<+>' with -- 'zero' acting as the identity: -- -- @ -- 'edgeLabel' x y $ overlay ('edge' e x y) ('edge' 'zero' x y) == e -- 'edgeLabel' x y $ overlay ('edge' e x y) ('edge' f x y) == e '<+>' f -- @ -- -- Furthermore, when applied to transitive graphs, 'overlay' composes edges in -- sequence using the operator '<.>' with 'one' acting as the identity: -- -- @ -- 'edgeLabel' x z $ 'transitiveClosure' (overlay ('edge' e x y) ('edge' 'one' y z)) == e -- 'edgeLabel' x z $ 'transitiveClosure' (overlay ('edge' e x y) ('edge' f y z)) == e '<.>' f -- @ overlay :: Monoid e => Graph e a -> Graph e a -> Graph e a overlay = connect zero -- | /Connect/ two graphs with edges labelled by a given label. An alias for -- 'Connect'. -- Complexity: /O(1)/ time and memory, /O(s1 + s2)/ size. Note that the number -- of edges in the resulting graph is quadratic with respect to the number of -- vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'isEmpty' (connect e x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (connect e x y) == 'hasVertex' z x || 'hasVertex' z y -- 'Algebra.Graph.ToGraph.vertexCount' (connect e x y) >= 'Algebra.Graph.ToGraph.vertexCount' x -- 'Algebra.Graph.ToGraph.vertexCount' (connect e x y) <= 'Algebra.Graph.ToGraph.vertexCount' x + 'Algebra.Graph.ToGraph.vertexCount' y -- 'Algebra.Graph.ToGraph.edgeCount' (connect e x y) <= 'Algebra.Graph.ToGraph.vertexCount' x * 'Algebra.Graph.ToGraph.vertexCount' y + 'Algebra.Graph.ToGraph.edgeCount' x + 'Algebra.Graph.ToGraph.edgeCount' y -- 'Algebra.Graph.ToGraph.vertexCount' (connect e 1 2) == 2 -- 'Algebra.Graph.ToGraph.edgeCount' (connect e 1 2) == if e == 'zero' then 0 else 1 -- @ connect :: e -> Graph e a -> Graph e a -> Graph e a connect = Connect -- | Construct the graph comprising a given list of isolated vertices. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- vertices [] == 'empty' -- vertices [x] == 'vertex' x -- 'hasVertex' x . vertices == 'elem' x -- 'Algebra.Graph.ToGraph.vertexCount' . vertices == 'length' . 'Data.List.nub' -- 'Algebra.Graph.ToGraph.vertexSet' . vertices == Set.'Set.fromList' -- @ vertices :: Monoid e => [a] -> Graph e a vertices = overlays . map vertex -- | Construct the graph from a list of labelled edges. -- Complexity: /O(L)/ time, memory and size, where /L/ is the length of the -- given list. -- -- @ -- edges [] == 'empty' -- edges [(e,x,y)] == 'edge' e x y -- edges == 'overlays' . 'map' (\\(e, x, y) -> 'edge' e x y) -- @ edges :: Monoid e => [(e, a, a)] -> Graph e a edges = overlays . map (\(e, x, y) -> edge e x y) -- | Overlay a given list of graphs. -- Complexity: /O(L)/ time and memory, and /O(S)/ size, where /L/ is the length -- of the given list, and /S/ is the sum of sizes of the graphs in the list. -- -- @ -- overlays [] == 'empty' -- overlays [x] == x -- overlays [x,y] == 'overlay' x y -- overlays == 'foldr' 'overlay' 'empty' -- 'isEmpty' . overlays == 'all' 'isEmpty' -- @ overlays :: Monoid e => [Graph e a] -> Graph e a overlays = foldr overlay empty -- | Check if a graph is empty. -- Complexity: /O(s)/ time. -- -- @ -- isEmpty 'empty' == True -- isEmpty ('overlay' 'empty' 'empty') == True -- isEmpty ('vertex' x) == False -- isEmpty ('removeVertex' x $ 'vertex' x) == True -- isEmpty ('removeEdge' x y $ 'edge' e x y) == False -- @ isEmpty :: Graph e a -> Bool isEmpty = foldg True (const False) (const (&&)) -- | The /size/ of a graph, i.e. the number of leaves of the expression -- including 'empty' leaves. -- Complexity: /O(s)/ time. -- -- @ -- size 'empty' == 1 -- size ('vertex' x) == 1 -- size ('overlay' x y) == size x + size y -- size ('connect' x y) == size x + size y -- size x >= 1 -- size x >= 'Algebra.Graph.ToGraph.vertexCount' x -- @ size :: Graph e a -> Int size = foldg 1 (const 1) (const (+)) -- | Check if a graph contains a given vertex. -- Complexity: /O(s)/ time. -- -- @ -- hasVertex x 'empty' == False -- hasVertex x ('vertex' y) == (x == y) -- hasVertex x . 'removeVertex' x == 'const' False -- @ hasVertex :: Eq a => a -> Graph e a -> Bool hasVertex x = foldg False (==x) (const (||)) -- | Check if a graph contains a given edge. -- Complexity: /O(s)/ time. -- -- @ -- hasEdge x y 'empty' == False -- hasEdge x y ('vertex' z) == False -- hasEdge x y ('edge' e x y) == (e /= 'zero') -- hasEdge x y . 'removeEdge' x y == 'const' False -- hasEdge x y == 'not' . 'null' . 'filter' (\\(_,ex,ey) -> ex == x && ey == y) . 'edgeList' -- @ hasEdge :: (Eq e, Monoid e, Ord a) => a -> a -> Graph e a -> Bool hasEdge x y = (/= zero) . edgeLabel x y -- | Extract the label of a specified edge from a graph. edgeLabel :: (Eq a, Monoid e) => a -> a -> Graph e a -> e edgeLabel s t g = let (res, _, _) = foldg e v c g in res where e = (zero , False , False ) v x = (zero , x == s , x == t ) c l (l1, s1, t1) (l2, s2, t2) | s1 && t2 = (mconcat [l1, l, l2], s1 || s2, t1 || t2) | otherwise = (mconcat [l1, l2], s1 || s2, t1 || t2) -- | The sorted list of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexList 'empty' == [] -- vertexList ('vertex' x) == [x] -- vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort' -- @ vertexList :: Ord a => Graph e a -> [a] vertexList = Set.toAscList . vertexSet -- | The list of edges of a graph, sorted lexicographically with respect to -- pairs of connected vertices (i.e. edge-labels are ignored when sorting). -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- edgeList 'empty' == [] -- edgeList ('vertex' x) == [] -- edgeList ('edge' e x y) == if e == 'zero' then [] else [(e,x,y)] -- @ edgeList :: (Eq e, Monoid e, Ord a) => Graph e a -> [(e, a, a)] edgeList = AM.edgeList . toAdjacencyMap -- | The set of vertices of a given graph. -- Complexity: /O(s * log(n))/ time and /O(n)/ memory. -- -- @ -- vertexSet 'empty' == Set.'Set.empty' -- vertexSet . 'vertex' == Set.'Set.singleton' -- vertexSet . 'vertices' == Set.'Set.fromList' -- @ vertexSet :: Ord a => Graph e a -> Set.Set a vertexSet = foldg Set.empty Set.singleton (const Set.union) -- | The set of edges of a given graph. -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- edgeSet 'empty' == Set.'Set.empty' -- edgeSet ('vertex' x) == Set.'Set.empty' -- edgeSet ('edge' e x y) == if e == 'zero' then Set.'Set.empty' else Set.'Set.singleton' (e,x,y) -- @ edgeSet :: (Eq e, Monoid e, Ord a) => Graph e a -> Set.Set (e, a, a) edgeSet = Set.fromAscList . edgeList -- | Remove a vertex from a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeVertex x ('vertex' x) == 'empty' -- removeVertex 1 ('vertex' 2) == 'vertex' 2 -- removeVertex x ('edge' e x x) == 'empty' -- removeVertex 1 ('edge' e 1 2) == 'vertex' 2 -- removeVertex x . removeVertex x == removeVertex x -- @ removeVertex :: Eq a => a -> Graph e a -> Graph e a removeVertex x = induce (/= x) -- | Remove an edge from a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- removeEdge x y ('edge' e x y) == 'vertices' [x,y] -- removeEdge x y . removeEdge x y == removeEdge x y -- removeEdge x y . 'removeVertex' x == 'removeVertex' x -- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2 -- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2 -- @ removeEdge :: (Eq a, Eq e, Monoid e) => a -> a -> Graph e a -> Graph e a removeEdge s t = filterContext s (/=s) (/=t) -- | The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a -- given 'Graph'. If @y@ already exists, @x@ and @y@ will be merged. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- replaceVertex x x == id -- replaceVertex x y ('vertex' x) == 'vertex' y -- replaceVertex x y == 'fmap' (\\v -> if v == x then y else v) -- @ replaceVertex :: Eq a => a -> a -> Graph e a -> Graph e a replaceVertex u v = fmap $ \w -> if w == u then v else w -- | Replace an edge from a given graph. If it doesn't exist, it will be created. -- Complexity: /O(log(n))/ time. -- -- @ -- replaceEdge e x y z == 'overlay' (removeEdge x y z) ('edge' e x y) -- replaceEdge e x y ('edge' f x y) == 'edge' e x y -- 'edgeLabel' x y (replaceEdge e x y z) == e -- @ replaceEdge :: (Eq e, Monoid e, Ord a) => e -> a -> a -> Graph e a -> Graph e a replaceEdge e x y = overlay (edge e x y) . removeEdge x y -- | Transpose a given graph. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- transpose 'empty' == 'empty' -- transpose ('vertex' x) == 'vertex' x -- transpose ('edge' e x y) == 'edge' e y x -- transpose . transpose == id -- @ transpose :: Graph e a -> Graph e a transpose = foldg empty vertex (fmap flip connect) -- | Transform a graph by applying a function to each of its edge labels. -- Complexity: /O(s)/ time, memory and size. -- -- The function @h@ is required to be a /homomorphism/ on the underlying type of -- labels @e@. At the very least it must preserve 'zero' and '<+>': -- -- @ -- h 'zero' == 'zero' -- h x '<+>' h y == h (x '<+>' y) -- @ -- -- If @e@ is also a semiring, then @h@ must also preserve the multiplicative -- structure: -- -- @ -- h 'one' == 'one' -- h x '<.>' h y == h (x '<.>' y) -- @ -- -- If the above requirements hold, then the implementation provides the -- following guarantees. -- -- @ -- emap h 'empty' == 'empty' -- emap h ('vertex' x) == 'vertex' x -- emap h ('edge' e x y) == 'edge' (h e) x y -- emap h ('overlay' x y) == 'overlay' (emap h x) (emap h y) -- emap h ('connect' e x y) == 'connect' (h e) (emap h x) (emap h y) -- emap 'id' == 'id' -- emap g . emap h == emap (g . h) -- @ emap :: (e -> f) -> Graph e a -> Graph f a emap f = foldg Empty Vertex (Connect . f) -- TODO: Implement via 'induceJust' to reduce code duplication. -- | Construct the /induced subgraph/ of a given graph by removing the -- vertices that do not satisfy a given predicate. -- Complexity: /O(s)/ time, memory and size, assuming that the predicate takes -- /O(1)/ to be evaluated. -- -- @ -- induce ('const' True ) x == x -- induce ('const' False) x == 'empty' -- induce (/= x) == 'removeVertex' x -- induce p . induce q == induce (\\x -> p x && q x) -- 'isSubgraphOf' (induce p x) x == True -- @ induce :: (a -> Bool) -> Graph e a -> Graph e a induce p = foldg Empty (\x -> if p x then Vertex x else Empty) c where c _ x Empty = x -- Constant folding to get rid of Empty leaves c _ Empty y = y c e x y = Connect e x y -- | Construct the /induced subgraph/ of a given graph by removing the vertices -- that are 'Nothing'. -- Complexity: /O(s)/ time, memory and size. -- -- @ -- induceJust ('vertex' 'Nothing') == 'empty' -- induceJust ('edge' ('Just' x) 'Nothing') == 'vertex' x -- induceJust . 'fmap' 'Just' == 'id' -- induceJust . 'fmap' (\\x -> if p x then 'Just' x else 'Nothing') == 'induce' p -- @ induceJust :: Graph e (Maybe a) -> Graph e a induceJust = foldg Empty (maybe Empty Vertex) c where c _ x Empty = x -- Constant folding to get rid of Empty leaves c _ Empty y = y c e x y = Connect e x y -- | Compute the /reflexive and transitive closure/ of a graph over the -- underlying star semiring using the Warshall-Floyd-Kleene algorithm. -- -- @ -- closure 'empty' == 'empty' -- closure ('vertex' x) == 'edge' 'one' x x -- closure ('edge' e x x) == 'edge' 'one' x x -- closure ('edge' e x y) == 'edges' [('one',x,x), (e,x,y), ('one',y,y)] -- closure == 'reflexiveClosure' . 'transitiveClosure' -- closure == 'transitiveClosure' . 'reflexiveClosure' -- closure . closure == closure -- 'Algebra.Graph.ToGraph.postSet' x (closure y) == Set.'Set.fromList' ('Algebra.Graph.ToGraph.reachable' x y) -- @ closure :: (Eq e, Ord a, StarSemiring e) => Graph e a -> Graph e a closure = fromAdjacencyMap . AM.closure . toAdjacencyMap -- | Compute the /reflexive closure/ of a graph over the underlying semiring by -- adding a self-loop of weight 'one' to every vertex. -- Complexity: /O(n * log(n))/ time. -- -- @ -- reflexiveClosure 'empty' == 'empty' -- reflexiveClosure ('vertex' x) == 'edge' 'one' x x -- reflexiveClosure ('edge' e x x) == 'edge' 'one' x x -- reflexiveClosure ('edge' e x y) == 'edges' [('one',x,x), (e,x,y), ('one',y,y)] -- reflexiveClosure . reflexiveClosure == reflexiveClosure -- @ reflexiveClosure :: (Ord a, Semiring e) => Graph e a -> Graph e a reflexiveClosure x = overlay x $ edges [ (one, v, v) | v <- vertexList x ] -- | Compute the /symmetric closure/ of a graph by overlaying it with its own -- transpose. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- symmetricClosure 'empty' == 'empty' -- symmetricClosure ('vertex' x) == 'vertex' x -- symmetricClosure ('edge' e x y) == 'edges' [(e,x,y), (e,y,x)] -- symmetricClosure x == 'overlay' x ('transpose' x) -- symmetricClosure . symmetricClosure == symmetricClosure -- @ symmetricClosure :: Monoid e => Graph e a -> Graph e a symmetricClosure m = overlay m (transpose m) -- | Compute the /transitive closure/ of a graph over the underlying star -- semiring using a modified version of the Warshall-Floyd-Kleene algorithm, -- which omits the reflexivity step. -- -- @ -- transitiveClosure 'empty' == 'empty' -- transitiveClosure ('vertex' x) == 'vertex' x -- transitiveClosure ('edge' e x y) == 'edge' e x y -- transitiveClosure . transitiveClosure == transitiveClosure -- @ transitiveClosure :: (Eq e, Ord a, StarSemiring e) => Graph e a -> Graph e a transitiveClosure = fromAdjacencyMap . AM.transitiveClosure . toAdjacencyMap -- | A type synonym for /unlabelled graphs/. type UnlabelledGraph a = Graph Any a -- | A type synonym for /automata/ or /labelled transition systems/. type Automaton a s = Graph (RegularExpression a) s -- | A /network/ is a graph whose edges are labelled with distances. type Network e a = Graph (Distance e) a -- Filter vertices in a subgraph context. filterContext :: (Eq a, Eq e, Monoid e) => a -> (a -> Bool) -> (a -> Bool) -> Graph e a -> Graph e a filterContext s i o g = maybe g go $ context (==s) g where go (Context is os) = overlays [ vertex s , induce (/=s) g , edges [ (e, v, s) | (e, v) <- is, i v ] , edges [ (e, s, v) | (e, v) <- os, o v ] ] -- The /focus/ of a graph expression is a flattened represenentation of the -- subgraph under focus, its context, as well as the list of all encountered -- vertices. See 'removeEdge' for a use-case example. data Focus e a = Focus { ok :: Bool -- ^ True if focus on the specified subgraph is obtained. , is :: List (e, a) -- ^ Inputs into the focused subgraph. , os :: List (e, a) -- ^ Outputs out of the focused subgraph. , vs :: List a } -- ^ All vertices (leaves) of the graph expression. -- Focus on the 'empty' graph. emptyFocus :: Focus e a emptyFocus = Focus False mempty mempty mempty -- | Focus on the graph with a single vertex, given a predicate indicating -- whether the vertex is of interest. vertexFocus :: (a -> Bool) -> a -> Focus e a vertexFocus f x = Focus (f x) mempty mempty (pure x) -- | Connect two foci. connectFoci :: (Eq e, Monoid e) => e -> Focus e a -> Focus e a -> Focus e a connectFoci e x y | e == mempty = Focus (ok x || ok y) (is x <> is y) (os x <> os y) (vs x <> vs y) | otherwise = Focus (ok x || ok y) (xs <> is y) (os x <> ys ) (vs x <> vs y) where xs = if ok y then fmap (e,) (vs x) else is x ys = if ok x then fmap (e,) (vs y) else os y -- | 'Focus' on a specified subgraph. focus :: (Eq e, Monoid e) => (a -> Bool) -> Graph e a -> Focus e a focus f = foldg emptyFocus (vertexFocus f) connectFoci -- | The 'Context' of a subgraph comprises its 'inputs' and 'outputs', i.e. all -- the vertices that are connected to the subgraph's vertices (along with the -- corresponding edge labels). Note that inputs and outputs can belong to the -- subgraph itself. In general, there are no guarantees on the order of vertices -- in 'inputs' and 'outputs'; furthermore, there may be repetitions. data Context e a = Context { inputs :: [(e, a)], outputs :: [(e, a)] } deriving (Eq, Show) -- | Extract the 'Context' of a subgraph specified by a given predicate. Returns -- @Nothing@ if the specified subgraph is empty. -- -- @ -- context ('const' False) x == Nothing -- context (== 1) ('edge' e 1 2) == if e == 'zero' then Just ('Context' [] []) else Just ('Context' [ ] [(e,2)]) -- context (== 2) ('edge' e 1 2) == if e == 'zero' then Just ('Context' [] []) else Just ('Context' [(e,1)] [ ]) -- context ('const' True ) ('edge' e 1 2) == if e == 'zero' then Just ('Context' [] []) else Just ('Context' [(e,1)] [(e,2)]) -- context (== 4) (3 * 1 * 4 * 1 * 5) == Just ('Context' [('one',3), ('one',1)] [('one',1), ('one',5)]) -- @ context :: (Eq e, Monoid e) => (a -> Bool) -> Graph e a -> Maybe (Context e a) context p g | ok f = Just $ Context (Exts.toList $ is f) (Exts.toList $ os f) | otherwise = Nothing where f = focus p g