{-# LANGUAGE DeriveGeneric #-} ----------------------------------------------------------------------------- -- | -- Module : Algebra.Graph.Labelled.AdjacencyMap -- Copyright : (c) Andrey Mokhov 2016-2019 -- License : MIT (see the file LICENSE) -- Maintainer : andrey.mokhov@gmail.com -- Stability : experimental -- -- __Alga__ is a library for algebraic construction and manipulation of graphs -- in Haskell. See <https://github.com/snowleopard/alga-paper this paper> for the -- motivation behind the library, the underlying theory, and implementation details. -- -- This module defines the 'AdjacencyMap' data type for edge-labelled graphs, as -- well as associated operations and algorithms. 'AdjacencyMap' is an instance -- of the 'C.Graph' type class, which can be used for polymorphic graph -- construction and manipulation. ----------------------------------------------------------------------------- module Algebra.Graph.Labelled.AdjacencyMap ( -- * Data structure AdjacencyMap, adjacencyMap, -- * Basic graph construction primitives empty, vertex, edge, (-<), (>-), overlay, connect, vertices, edges, overlays, fromAdjacencyMaps, -- * Relations on graphs isSubgraphOf, -- * Graph properties isEmpty, hasVertex, hasEdge, edgeLabel, vertexCount, edgeCount, vertexList, edgeList, vertexSet, edgeSet, preSet, postSet, skeleton, -- * Graph transformation removeVertex, removeEdge, replaceVertex, replaceEdge, transpose, gmap, emap, induce, induceJust, -- * Relational operations closure, reflexiveClosure, symmetricClosure, transitiveClosure, -- * Miscellaneous consistent ) where import Control.DeepSeq import Data.Maybe import Data.Map (Map) import Data.Monoid (Sum (..)) import Data.Set (Set, (\\)) import GHC.Generics import Algebra.Graph.Label import qualified Algebra.Graph.AdjacencyMap as AM import qualified Data.Map.Strict as Map import qualified Data.Set as Set -- | Edge-labelled graphs, where the type variable @e@ stands for edge labels. -- For example, 'AdjacencyMap' @Bool@ @a@ is isomorphic to unlabelled graphs -- defined in the top-level module "Algebra.Graph.AdjacencyMap", where @False@ -- and @True@ denote the lack of and the existence of an unlabelled edge, -- respectively. newtype AdjacencyMap e a = AM { -- | The /adjacency map/ of an edge-labelled graph: each vertex is -- associated with a map from its direct successors to the corresponding -- edge labels. adjacencyMap :: Map a (Map a e) } deriving (Eq, Generic, NFData) instance (Ord a, Show a, Ord e, Show e) => Show (AdjacencyMap e a) where showsPrec p lam@(AM m) | Set.null vs = showString "empty" | null es = showParen (p > 10) $ vshow vs | vs == used = showParen (p > 10) $ eshow es | otherwise = showParen (p > 10) $ showString "overlay (" . vshow (vs \\ used) . showString ") (" . eshow es . showString ")" where vs = vertexSet lam es = edgeList lam used = referredToVertexSet m vshow vs = case Set.toAscList vs of [x] -> showString "vertex " . showsPrec 11 x xs -> showString "vertices " . showsPrec 11 xs eshow es = case es of [(e, x, y)] -> showString "edge " . showsPrec 11 e . showString " " . showsPrec 11 x . showString " " . showsPrec 11 y xs -> showString "edges " . showsPrec 11 xs instance (Ord e, Monoid e, Ord a) => Ord (AdjacencyMap e a) where compare x y = mconcat [ compare (vertexCount x) (vertexCount y) , compare (vertexSet x) (vertexSet y) , compare (edgeCount x) (edgeCount y) , compare (eSet x) (eSet y) , cmp ] where eSet = Set.map (\(_, x, y) -> (x, y)) . edgeSet cmp | x == y = EQ | overlays [x, y] == y = LT | otherwise = compare x y -- | __Note:__ this does not satisfy the usual ring laws; see 'AdjacencyMap' -- for more details. instance (Eq e, Dioid e, Num a, Ord a) => Num (AdjacencyMap e a) where fromInteger = vertex . fromInteger (+) = overlay (*) = connect mempty signum = const empty abs = id negate = id -- | Construct the /empty graph/. -- Complexity: /O(1)/ time and memory. -- -- @ -- 'isEmpty' empty == True -- 'hasVertex' x empty == False -- 'vertexCount' empty == 0 -- 'edgeCount' empty == 0 -- @ empty :: AdjacencyMap e a empty = AM Map.empty -- | Construct the graph comprising /a single isolated vertex/. -- Complexity: /O(1)/ time and memory. -- -- @ -- 'isEmpty' (vertex x) == False -- 'hasVertex' x (vertex y) == (x == y) -- 'vertexCount' (vertex x) == 1 -- 'edgeCount' (vertex x) == 0 -- @ vertex :: a -> AdjacencyMap e a vertex x = AM $ Map.singleton x Map.empty -- | Construct the graph comprising /a single edge/. -- Complexity: /O(1)/ time, memory. -- -- @ -- edge e x y == 'connect' e ('vertex' x) ('vertex' y) -- edge 'zero' x y == 'vertices' [x,y] -- 'hasEdge' x y (edge e x y) == (e /= 'zero') -- 'edgeLabel' x y (edge e x y) == e -- 'edgeCount' (edge e x y) == if e == 'zero' then 0 else 1 -- 'vertexCount' (edge e 1 1) == 1 -- 'vertexCount' (edge e 1 2) == 2 -- @ edge :: (Eq e, Monoid e, Ord a) => e -> a -> a -> AdjacencyMap e a edge e x y | e == zero = vertices [x, y] | x == y = AM $ Map.singleton x (Map.singleton x e) | otherwise = AM $ Map.fromList [(x, Map.singleton y e), (y, Map.empty)] -- | The left-hand part of a convenient ternary-ish operator @x-\<e\>-y@ for -- creating labelled edges. -- -- @ -- x -\<e\>- y == 'edge' e x y -- @ (-<) :: a -> e -> (a, e) g -< e = (g, e) -- | The right-hand part of a convenient ternary-ish operator @x-\<e\>-y@ for -- creating labelled edges. -- -- @ -- x -\<e\>- y == 'edge' e x y -- @ (>-) :: (Eq e, Monoid e, Ord a) => (a, e) -> a -> AdjacencyMap e a (x, e) >- y = edge e x y infixl 5 -< infixl 5 >- -- | /Overlay/ two graphs. This is a commutative, associative and idempotent -- operation with the identity 'empty'. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- 'isEmpty' (overlay x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (overlay x y) >= 'vertexCount' x -- 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (overlay x y) >= 'edgeCount' x -- 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y -- 'vertexCount' (overlay 1 2) == 2 -- 'edgeCount' (overlay 1 2) == 0 -- @ -- -- Note: 'overlay' composes edges in parallel using the operator '<+>' with -- 'zero' acting as the identity: -- -- @ -- 'edgeLabel' x y $ overlay ('edge' e x y) ('edge' 'zero' x y) == e -- 'edgeLabel' x y $ overlay ('edge' e x y) ('edge' f x y) == e '<+>' f -- @ -- -- Furthermore, when applied to transitive graphs, 'overlay' composes edges in -- sequence using the operator '<.>' with 'one' acting as the identity: -- -- @ -- 'edgeLabel' x z $ 'transitiveClosure' (overlay ('edge' e x y) ('edge' 'one' y z)) == e -- 'edgeLabel' x z $ 'transitiveClosure' (overlay ('edge' e x y) ('edge' f y z)) == e '<.>' f -- @ overlay :: (Eq e, Monoid e, Ord a) => AdjacencyMap e a -> AdjacencyMap e a -> AdjacencyMap e a overlay (AM x) (AM y) = AM $ Map.unionWith nonZeroUnion x y -- Union maps, removing zero elements from the result. nonZeroUnion :: (Eq e, Monoid e, Ord a) => Map a e -> Map a e -> Map a e nonZeroUnion x y = Map.filter (/= zero) $ Map.unionWith mappend x y -- Drop all edges with zero labels. trimZeroes :: (Eq e, Monoid e) => Map a (Map a e) -> Map a (Map a e) trimZeroes = Map.map (Map.filter (/= zero)) -- | /Connect/ two graphs with edges labelled by a given label. When applied to -- the same labels, this is an associative operation with the identity 'empty', -- which distributes over 'overlay' and obeys the decomposition axiom. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. Note that the -- number of edges in the resulting graph is quadratic with respect to the -- number of vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/. -- -- @ -- 'isEmpty' (connect e x y) == 'isEmpty' x && 'isEmpty' y -- 'hasVertex' z (connect e x y) == 'hasVertex' z x || 'hasVertex' z y -- 'vertexCount' (connect e x y) >= 'vertexCount' x -- 'vertexCount' (connect e x y) <= 'vertexCount' x + 'vertexCount' y -- 'edgeCount' (connect e x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y -- 'vertexCount' (connect e 1 2) == 2 -- 'edgeCount' (connect e 1 2) == if e == 'zero' then 0 else 1 -- @ connect :: (Eq e, Monoid e, Ord a) => e -> AdjacencyMap e a -> AdjacencyMap e a -> AdjacencyMap e a connect e (AM x) (AM y) | e == mempty = overlay (AM x) (AM y) | otherwise = AM $ Map.unionsWith nonZeroUnion $ x : y : [ Map.fromSet (const targets) (Map.keysSet x) ] where targets = Map.fromSet (const e) (Map.keysSet y) -- | Construct the graph comprising a given list of isolated vertices. -- Complexity: /O(L * log(L))/ time and /O(L)/ memory, where /L/ is the length -- of the given list. -- -- @ -- vertices [] == 'empty' -- vertices [x] == 'vertex' x -- 'hasVertex' x . vertices == 'elem' x -- 'vertexCount' . vertices == 'length' . 'Data.List.nub' -- 'vertexSet' . vertices == Set.'Set.fromList' -- @ vertices :: Ord a => [a] -> AdjacencyMap e a vertices = AM . Map.fromList . map (, Map.empty) -- | Construct the graph from a list of edges. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- edges [] == 'empty' -- edges [(e,x,y)] == 'edge' e x y -- edges == 'overlays' . 'map' (\\(e, x, y) -> 'edge' e x y) -- @ edges :: (Eq e, Monoid e, Ord a) => [(e, a, a)] -> AdjacencyMap e a edges es = fromAdjacencyMaps [ (x, Map.singleton y e) | (e, x, y) <- es ] -- | Overlay a given list of graphs. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- overlays [] == 'empty' -- overlays [x] == x -- overlays [x,y] == 'overlay' x y -- overlays == 'foldr' 'overlay' 'empty' -- 'isEmpty' . overlays == 'all' 'isEmpty' -- @ overlays :: (Eq e, Monoid e, Ord a) => [AdjacencyMap e a] -> AdjacencyMap e a overlays = AM . Map.unionsWith nonZeroUnion . map adjacencyMap -- | Construct a graph from a list of adjacency sets. -- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. -- -- @ -- fromAdjacencyMaps [] == 'empty' -- fromAdjacencyMaps [(x, Map.'Map.empty')] == 'vertex' x -- fromAdjacencyMaps [(x, Map.'Map.singleton' y e)] == if e == 'zero' then 'vertices' [x,y] else 'edge' e x y -- 'overlay' (fromAdjacencyMaps xs) (fromAdjacencyMaps ys) == fromAdjacencyMaps (xs '++' ys) -- @ fromAdjacencyMaps :: (Eq e, Monoid e, Ord a) => [(a, Map a e)] -> AdjacencyMap e a fromAdjacencyMaps xs = AM $ trimZeroes $ Map.unionWith mappend vs es where vs = Map.fromSet (const Map.empty) . Set.unions $ map (Map.keysSet . snd) xs es = Map.fromListWith (Map.unionWith mappend) xs -- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the -- first graph is a /subgraph/ of the second. -- Complexity: /O(s + m * log(m))/ time. Note that the number of edges /m/ of a -- graph can be quadratic with respect to the expression size /s/. -- -- @ -- isSubgraphOf 'empty' x == True -- isSubgraphOf ('vertex' x) 'empty' == False -- isSubgraphOf x y ==> x <= y -- @ isSubgraphOf :: (Eq e, Monoid e, Ord a) => AdjacencyMap e a -> AdjacencyMap e a -> Bool isSubgraphOf (AM x) (AM y) = Map.isSubmapOfBy (Map.isSubmapOfBy le) x y where le x y = mappend x y == y -- | Check if a graph is empty. -- Complexity: /O(1)/ time. -- -- @ -- isEmpty 'empty' == True -- isEmpty ('overlay' 'empty' 'empty') == True -- isEmpty ('vertex' x) == False -- isEmpty ('removeVertex' x $ 'vertex' x) == True -- isEmpty ('removeEdge' x y $ 'edge' e x y) == False -- @ isEmpty :: AdjacencyMap e a -> Bool isEmpty = Map.null . adjacencyMap -- | Check if a graph contains a given vertex. -- Complexity: /O(log(n))/ time. -- -- @ -- hasVertex x 'empty' == False -- hasVertex x ('vertex' y) == (x == y) -- hasVertex x . 'removeVertex' x == 'const' False -- @ hasVertex :: Ord a => a -> AdjacencyMap e a -> Bool hasVertex x = Map.member x . adjacencyMap -- | Check if a graph contains a given edge. -- Complexity: /O(log(n))/ time. -- -- @ -- hasEdge x y 'empty' == False -- hasEdge x y ('vertex' z) == False -- hasEdge x y ('edge' e x y) == (e /= 'zero') -- hasEdge x y . 'removeEdge' x y == 'const' False -- hasEdge x y == 'not' . 'null' . 'filter' (\\(_,ex,ey) -> ex == x && ey == y) . 'edgeList' -- @ hasEdge :: Ord a => a -> a -> AdjacencyMap e a -> Bool hasEdge x y (AM m) = fromMaybe False (Map.member y <$> Map.lookup x m) -- | Extract the label of a specified edge in a graph. -- Complexity: /O(log(n))/ time. -- -- @ -- edgeLabel x y 'empty' == 'zero' -- edgeLabel x y ('vertex' z) == 'zero' -- edgeLabel x y ('edge' e x y) == e -- edgeLabel s t ('overlay' x y) == edgeLabel s t x <+> edgeLabel s t y -- @ edgeLabel :: (Monoid e, Ord a) => a -> a -> AdjacencyMap e a -> e edgeLabel x y (AM m) = fromMaybe zero (Map.lookup x m >>= Map.lookup y) -- | The number of vertices in a graph. -- Complexity: /O(1)/ time. -- -- @ -- vertexCount 'empty' == 0 -- vertexCount ('vertex' x) == 1 -- vertexCount == 'length' . 'vertexList' -- vertexCount x \< vertexCount y ==> x \< y -- @ vertexCount :: AdjacencyMap e a -> Int vertexCount = Map.size . adjacencyMap -- | The number of (non-'zero') edges in a graph. -- Complexity: /O(n)/ time. -- -- @ -- edgeCount 'empty' == 0 -- edgeCount ('vertex' x) == 0 -- edgeCount ('edge' e x y) == if e == 'zero' then 0 else 1 -- edgeCount == 'length' . 'edgeList' -- @ edgeCount :: AdjacencyMap e a -> Int edgeCount = getSum . foldMap (Sum . Map.size) . adjacencyMap -- | The sorted list of vertices of a given graph. -- Complexity: /O(n)/ time and memory. -- -- @ -- vertexList 'empty' == [] -- vertexList ('vertex' x) == [x] -- vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort' -- @ vertexList :: AdjacencyMap e a -> [a] vertexList = Map.keys . adjacencyMap -- | The list of edges of a graph, sorted lexicographically with respect to -- pairs of connected vertices (i.e. edge-labels are ignored when sorting). -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- edgeList 'empty' == [] -- edgeList ('vertex' x) == [] -- edgeList ('edge' e x y) == if e == 'zero' then [] else [(e,x,y)] -- @ edgeList :: AdjacencyMap e a -> [(e, a, a)] edgeList (AM m) = [ (e, x, y) | (x, ys) <- Map.toAscList m, (y, e) <- Map.toAscList ys ] -- | The set of vertices of a given graph. -- Complexity: /O(n)/ time and memory. -- -- @ -- vertexSet 'empty' == Set.'Set.empty' -- vertexSet . 'vertex' == Set.'Set.singleton' -- vertexSet . 'vertices' == Set.'Set.fromList' -- @ vertexSet :: AdjacencyMap e a -> Set a vertexSet = Map.keysSet . adjacencyMap -- | The set of edges of a given graph. -- Complexity: /O(n + m)/ time and /O(m)/ memory. -- -- @ -- edgeSet 'empty' == Set.'Set.empty' -- edgeSet ('vertex' x) == Set.'Set.empty' -- edgeSet ('edge' e x y) == if e == 'zero' then Set.'Set.empty' else Set.'Set.singleton' (e,x,y) -- @ edgeSet :: (Eq a, Eq e) => AdjacencyMap e a -> Set (e, a, a) edgeSet = Set.fromAscList . edgeList -- | The /preset/ of an element @x@ is the set of its /direct predecessors/. -- Complexity: /O(n * log(n))/ time and /O(n)/ memory. -- -- @ -- preSet x 'empty' == Set.'Set.empty' -- preSet x ('vertex' x) == Set.'Set.empty' -- preSet 1 ('edge' e 1 2) == Set.'Set.empty' -- preSet y ('edge' e x y) == if e == 'zero' then Set.'Set.empty' else Set.'Set.fromList' [x] -- @ preSet :: Ord a => a -> AdjacencyMap e a -> Set a preSet x (AM m) = Set.fromAscList [ a | (a, es) <- Map.toAscList m, Map.member x es ] -- | The /postset/ of a vertex is the set of its /direct successors/. -- Complexity: /O(log(n))/ time and /O(1)/ memory. -- -- @ -- postSet x 'empty' == Set.'Set.empty' -- postSet x ('vertex' x) == Set.'Set.empty' -- postSet x ('edge' e x y) == if e == 'zero' then Set.'Set.empty' else Set.'Set.fromList' [y] -- postSet 2 ('edge' e 1 2) == Set.'Set.empty' -- @ postSet :: Ord a => a -> AdjacencyMap e a -> Set a postSet x = Map.keysSet . Map.findWithDefault Map.empty x . adjacencyMap -- TODO: Optimise. -- | Convert a graph to the corresponding unlabelled 'AM.AdjacencyMap' by -- forgetting labels on all non-'zero' edges. -- Complexity: /O((n + m) * log(n))/ time and memory. -- -- @ -- 'hasEdge' x y == 'AM.hasEdge' x y . skeleton -- @ skeleton :: Ord a => AdjacencyMap e a -> AM.AdjacencyMap a skeleton (AM m) = AM.fromAdjacencySets $ Map.toAscList $ Map.map Map.keysSet m -- | Remove a vertex from a given graph. -- Complexity: /O(n*log(n))/ time. -- -- @ -- removeVertex x ('vertex' x) == 'empty' -- removeVertex 1 ('vertex' 2) == 'vertex' 2 -- removeVertex x ('edge' e x x) == 'empty' -- removeVertex 1 ('edge' e 1 2) == 'vertex' 2 -- removeVertex x . removeVertex x == removeVertex x -- @ removeVertex :: Ord a => a -> AdjacencyMap e a -> AdjacencyMap e a removeVertex x = AM . Map.map (Map.delete x) . Map.delete x . adjacencyMap -- | Remove an edge from a given graph. -- Complexity: /O(log(n))/ time. -- -- @ -- removeEdge x y ('edge' e x y) == 'vertices' [x,y] -- removeEdge x y . removeEdge x y == removeEdge x y -- removeEdge x y . 'removeVertex' x == 'removeVertex' x -- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2 -- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2 -- @ removeEdge :: Ord a => a -> a -> AdjacencyMap e a -> AdjacencyMap e a removeEdge x y = AM . Map.adjust (Map.delete y) x . adjacencyMap -- | The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a -- given 'AdjacencyMap'. If @y@ already exists, @x@ and @y@ will be merged. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- replaceVertex x x == id -- replaceVertex x y ('vertex' x) == 'vertex' y -- replaceVertex x y == 'gmap' (\\v -> if v == x then y else v) -- @ replaceVertex :: (Eq e, Monoid e, Ord a) => a -> a -> AdjacencyMap e a -> AdjacencyMap e a replaceVertex u v = gmap $ \w -> if w == u then v else w -- | Replace an edge from a given graph. If it doesn't exist, it will be created. -- Complexity: /O(log(n))/ time. -- -- @ -- replaceEdge e x y z == 'overlay' (removeEdge x y z) ('edge' e x y) -- replaceEdge e x y ('edge' f x y) == 'edge' e x y -- 'edgeLabel' x y (replaceEdge e x y z) == e -- @ replaceEdge :: (Eq e, Monoid e, Ord a) => e -> a -> a -> AdjacencyMap e a -> AdjacencyMap e a replaceEdge e x y | e == zero = AM . addY . Map.alter (Just . maybe Map.empty (Map.delete y)) x . adjacencyMap | otherwise = AM . addY . Map.alter replace x . adjacencyMap where addY = Map.alter (Just . fromMaybe Map.empty) y replace (Just m) = Just $ Map.insert y e m replace Nothing = Just $ Map.singleton y e -- | Transpose a given graph. -- Complexity: /O(m * log(n))/ time, /O(n + m)/ memory. -- -- @ -- transpose 'empty' == 'empty' -- transpose ('vertex' x) == 'vertex' x -- transpose ('edge' e x y) == 'edge' e y x -- transpose . transpose == id -- @ transpose :: (Monoid e, Ord a) => AdjacencyMap e a -> AdjacencyMap e a transpose (AM m) = AM $ Map.foldrWithKey combine vs m where -- No need to use @nonZeroUnion@ here, since we do not add any new edges combine v es = Map.unionWith (Map.unionWith mappend) $ Map.fromAscList [ (u, Map.singleton v e) | (u, e) <- Map.toAscList es ] vs = Map.fromSet (const Map.empty) (Map.keysSet m) -- | Transform a graph by applying a function to each of its vertices. This is -- similar to @Functor@'s 'fmap' but can be used with non-fully-parametric -- 'AdjacencyMap'. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- gmap f 'empty' == 'empty' -- gmap f ('vertex' x) == 'vertex' (f x) -- gmap f ('edge' e x y) == 'edge' e (f x) (f y) -- gmap 'id' == 'id' -- gmap f . gmap g == gmap (f . g) -- @ gmap :: (Eq e, Monoid e, Ord a, Ord b) => (a -> b) -> AdjacencyMap e a -> AdjacencyMap e b gmap f = AM . trimZeroes . Map.map (Map.mapKeysWith mappend f) . Map.mapKeysWith (Map.unionWith mappend) f . adjacencyMap -- | Transform a graph by applying a function @h@ to each of its edge labels. -- Complexity: /O((n + m) * log(n))/ time. -- -- The function @h@ is required to be a /homomorphism/ on the underlying type of -- labels @e@. At the very least it must preserve 'zero' and '<+>': -- -- @ -- h 'zero' == 'zero' -- h x '<+>' h y == h (x '<+>' y) -- @ -- -- If @e@ is also a semiring, then @h@ must also preserve the multiplicative -- structure: -- -- @ -- h 'one' == 'one' -- h x '<.>' h y == h (x '<.>' y) -- @ -- -- If the above requirements hold, then the implementation provides the -- following guarantees. -- -- @ -- emap h 'empty' == 'empty' -- emap h ('vertex' x) == 'vertex' x -- emap h ('edge' e x y) == 'edge' (h e) x y -- emap h ('overlay' x y) == 'overlay' (emap h x) (emap h y) -- emap h ('connect' e x y) == 'connect' (h e) (emap h x) (emap h y) -- emap 'id' == 'id' -- emap g . emap h == emap (g . h) -- @ emap :: (Eq f, Monoid f) => (e -> f) -> AdjacencyMap e a -> AdjacencyMap f a emap h = AM . trimZeroes . Map.map (Map.map h) . adjacencyMap -- | Construct the /induced subgraph/ of a given graph by removing the -- vertices that do not satisfy a given predicate. -- Complexity: /O(n + m)/ time, assuming that the predicate takes /O(1)/ to -- be evaluated. -- -- @ -- induce ('const' True ) x == x -- induce ('const' False) x == 'empty' -- induce (/= x) == 'removeVertex' x -- induce p . induce q == induce (\\x -> p x && q x) -- 'isSubgraphOf' (induce p x) x == True -- @ induce :: (a -> Bool) -> AdjacencyMap e a -> AdjacencyMap e a induce p = AM . Map.map (Map.filterWithKey (\k _ -> p k)) . Map.filterWithKey (\k _ -> p k) . adjacencyMap -- | Construct the /induced subgraph/ of a given graph by removing the vertices -- that are 'Nothing'. -- Complexity: /O(n + m)/ time. -- -- @ -- induceJust ('vertex' 'Nothing') == 'empty' -- induceJust ('edge' ('Just' x) 'Nothing') == 'vertex' x -- induceJust . 'gmap' 'Just' == 'id' -- induceJust . 'gmap' (\\x -> if p x then 'Just' x else 'Nothing') == 'induce' p -- @ induceJust :: Ord a => AdjacencyMap e (Maybe a) -> AdjacencyMap e a induceJust = AM . Map.map catMaybesMap . catMaybesMap . adjacencyMap where catMaybesMap = Map.mapKeysMonotonic fromJust . Map.delete Nothing -- | Compute the /reflexive and transitive closure/ of a graph over the -- underlying star semiring using the Warshall-Floyd-Kleene algorithm. -- -- @ -- closure 'empty' == 'empty' -- closure ('vertex' x) == 'edge' 'one' x x -- closure ('edge' e x x) == 'edge' 'one' x x -- closure ('edge' e x y) == 'edges' [('one',x,x), (e,x,y), ('one',y,y)] -- closure == 'reflexiveClosure' . 'transitiveClosure' -- closure == 'transitiveClosure' . 'reflexiveClosure' -- closure . closure == closure -- 'postSet' x (closure y) == Set.'Set.fromList' ('Algebra.Graph.ToGraph.reachable' x y) -- @ closure :: (Eq e, Ord a, StarSemiring e) => AdjacencyMap e a -> AdjacencyMap e a closure = goWarshallFloydKleene . reflexiveClosure -- | Compute the /reflexive closure/ of a graph over the underlying semiring by -- adding a self-loop of weight 'one' to every vertex. -- Complexity: /O(n * log(n))/ time. -- -- @ -- reflexiveClosure 'empty' == 'empty' -- reflexiveClosure ('vertex' x) == 'edge' 'one' x x -- reflexiveClosure ('edge' e x x) == 'edge' 'one' x x -- reflexiveClosure ('edge' e x y) == 'edges' [('one',x,x), (e,x,y), ('one',y,y)] -- reflexiveClosure . reflexiveClosure == reflexiveClosure -- @ reflexiveClosure :: (Ord a, Semiring e) => AdjacencyMap e a -> AdjacencyMap e a reflexiveClosure (AM m) = AM $ Map.mapWithKey (\k -> Map.insertWith (<+>) k one) m -- | Compute the /symmetric closure/ of a graph by overlaying it with its own -- transpose. -- Complexity: /O((n + m) * log(n))/ time. -- -- @ -- symmetricClosure 'empty' == 'empty' -- symmetricClosure ('vertex' x) == 'vertex' x -- symmetricClosure ('edge' e x y) == 'edges' [(e,x,y), (e,y,x)] -- symmetricClosure x == 'overlay' x ('transpose' x) -- symmetricClosure . symmetricClosure == symmetricClosure -- @ symmetricClosure :: (Eq e, Monoid e, Ord a) => AdjacencyMap e a -> AdjacencyMap e a symmetricClosure m = overlay m (transpose m) -- | Compute the /transitive closure/ of a graph over the underlying star -- semiring using a modified version of the Warshall-Floyd-Kleene algorithm, -- which omits the reflexivity step. -- -- @ -- transitiveClosure 'empty' == 'empty' -- transitiveClosure ('vertex' x) == 'vertex' x -- transitiveClosure ('edge' e x y) == 'edge' e x y -- transitiveClosure . transitiveClosure == transitiveClosure -- @ transitiveClosure :: (Eq e, Ord a, StarSemiring e) => AdjacencyMap e a -> AdjacencyMap e a transitiveClosure = goWarshallFloydKleene -- The iterative part of the Warshall-Floyd-Kleene algorithm goWarshallFloydKleene :: (Eq e, Ord a, StarSemiring e) => AdjacencyMap e a -> AdjacencyMap e a goWarshallFloydKleene (AM m) = AM $ foldr update m vs where vs = Set.toAscList (Map.keysSet m) update k cur = Map.fromAscList [ (i, go i (get i k <.> starkk)) | i <- vs ] where get i j = edgeLabel i j (AM cur) starkk = star (get k k) go i ik = Map.fromAscList [ (j, e) | j <- vs, let e = get i j <+> ik <.> get k j, e /= zero ] -- | Check that the internal graph representation is consistent, i.e. that all -- edges refer to existing vertices, and there are no 'zero'-labelled edges. It -- should be impossible to create an inconsistent adjacency map, and we use this -- function in testing. consistent :: (Ord a, Eq e, Monoid e) => AdjacencyMap e a -> Bool consistent (AM m) = referredToVertexSet m `Set.isSubsetOf` Map.keysSet m && and [ e /= zero | (_, es) <- Map.toAscList m, (_, e) <- Map.toAscList es ] -- The set of vertices that are referred to by the edges in an adjacency map referredToVertexSet :: Ord a => Map a (Map a e) -> Set a referredToVertexSet m = Set.fromList $ concat [ [x, y] | (x, ys) <- Map.toAscList m, (y, _) <- Map.toAscList ys ]