Copyright | (c) Edward Kmett 2010-2015 |
---|---|
License | BSD3 |
Maintainer | ekmett@gmail.com |
Stability | experimental |
Portability | GHC only |
Safe Haskell | None |
Language | Haskell2010 |
Higher order derivatives via a "dual number tower".
- data AD s a
- data Sparse a
- auto :: Mode t => Scalar t -> t
- grad :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f a
- grad' :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f a)
- grads :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> Cofree f a
- gradWith :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f b
- gradWith' :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f b)
- jacobian :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (f a)
- jacobian' :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (a, f a)
- jacobianWith :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (f b)
- jacobianWith' :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (a, f b)
- jacobians :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (Cofree f a)
- hessian :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f (f a)
- hessian' :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f (a, f a))
- hessianF :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (f (f a))
- hessianF' :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (a, f (a, f a))
Documentation
Bounded a => Bounded (AD s a) Source # | |
Enum a => Enum (AD s a) Source # | |
Eq a => Eq (AD s a) Source # | |
Floating a => Floating (AD s a) Source # | |
Fractional a => Fractional (AD s a) Source # | |
Num a => Num (AD s a) Source # | |
Ord a => Ord (AD s a) Source # | |
Read a => Read (AD s a) Source # | |
Real a => Real (AD s a) Source # | |
RealFloat a => RealFloat (AD s a) Source # | |
RealFrac a => RealFrac (AD s a) Source # | |
Show a => Show (AD s a) Source # | |
Erf a => Erf (AD s a) Source # | |
InvErf a => InvErf (AD s a) Source # | |
Mode a => Mode (AD s a) Source # | |
type Scalar (AD s a) Source # | |
We only store partials in sorted order, so the map contained in a partial will only contain partials with equal or greater keys to that of the map in which it was found. This should be key for efficiently computing sparse hessians. there are only (n + k - 1) choose (k - 1) distinct nth partial derivatives of a function with k inputs.
(Num a, Bounded a) => Bounded (Sparse a) # | |
(Num a, Enum a) => Enum (Sparse a) # | |
(Num a, Eq a) => Eq (Sparse a) # | |
Floating a => Floating (Sparse a) # | |
Fractional a => Fractional (Sparse a) # | |
Data a => Data (Sparse a) Source # | |
Num a => Num (Sparse a) # | |
(Num a, Ord a) => Ord (Sparse a) # | |
Real a => Real (Sparse a) # | |
RealFloat a => RealFloat (Sparse a) # | |
RealFrac a => RealFrac (Sparse a) # | |
Show a => Show (Sparse a) Source # | |
Erf a => Erf (Sparse a) # | |
InvErf a => InvErf (Sparse a) # | |
Num a => Mode (Sparse a) Source # | |
Num a => Jacobian (Sparse a) Source # | |
Num a => Grad (Sparse a) [a] (a, [a]) a Source # | |
Num a => Grads (Sparse a) (Cofree [] a) a Source # | |
Grads i o a => Grads (Sparse a -> i) (a -> o) a Source # | |
Grad i o o' a => Grad (Sparse a -> i) (a -> o) (a -> o') a Source # | |
type Scalar (Sparse a) Source # | |
type D (Sparse a) Source # | |
Sparse Gradients
grad :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f a Source #
The grad
function calculates the gradient of a non-scalar-to-scalar function with sparse-mode AD in a single pass.
>>>
grad (\[x,y,z] -> x*y+z) [1,2,3]
[2,1,1]
>>>
grad (\[x,y] -> x**y) [0,2]
[0.0,NaN]
grad' :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f a) Source #
grads :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> Cofree f a Source #
gradWith :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f b Source #
gradWith' :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f b) Source #
Sparse Jacobians (synonyms)
jacobian :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (f a) Source #
jacobian' :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (a, f a) Source #
jacobianWith :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (f b) Source #
jacobianWith' :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (a, f b) Source #
jacobians :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (Cofree f a) Source #
Sparse Hessians
hessian :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f (f a) Source #
hessian' :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f (a, f a)) Source #