ad-4.3.5: Automatic Differentiation

Copyright(c) Edward Kmett 2010-2015
LicenseBSD3
Maintainerekmett@gmail.com
Stabilityexperimental
PortabilityGHC only
Safe HaskellNone
LanguageHaskell2010

Numeric.AD.Rank1.Sparse

Contents

Description

Higher order derivatives via a "dual number tower".

Synopsis

Documentation

data Sparse a Source #

We only store partials in sorted order, so the map contained in a partial will only contain partials with equal or greater keys to that of the map in which it was found. This should be key for efficiently computing sparse hessians. there are only (n + k - 1) choose (k - 1) distinct nth partial derivatives of a function with k inputs.

Instances

(Num a, Bounded a) => Bounded (Sparse a) # 

Methods

minBound :: Sparse a #

maxBound :: Sparse a #

(Num a, Enum a) => Enum (Sparse a) # 

Methods

succ :: Sparse a -> Sparse a #

pred :: Sparse a -> Sparse a #

toEnum :: Int -> Sparse a #

fromEnum :: Sparse a -> Int #

enumFrom :: Sparse a -> [Sparse a] #

enumFromThen :: Sparse a -> Sparse a -> [Sparse a] #

enumFromTo :: Sparse a -> Sparse a -> [Sparse a] #

enumFromThenTo :: Sparse a -> Sparse a -> Sparse a -> [Sparse a] #

(Num a, Eq a) => Eq (Sparse a) # 

Methods

(==) :: Sparse a -> Sparse a -> Bool #

(/=) :: Sparse a -> Sparse a -> Bool #

Floating a => Floating (Sparse a) # 

Methods

pi :: Sparse a #

exp :: Sparse a -> Sparse a #

log :: Sparse a -> Sparse a #

sqrt :: Sparse a -> Sparse a #

(**) :: Sparse a -> Sparse a -> Sparse a #

logBase :: Sparse a -> Sparse a -> Sparse a #

sin :: Sparse a -> Sparse a #

cos :: Sparse a -> Sparse a #

tan :: Sparse a -> Sparse a #

asin :: Sparse a -> Sparse a #

acos :: Sparse a -> Sparse a #

atan :: Sparse a -> Sparse a #

sinh :: Sparse a -> Sparse a #

cosh :: Sparse a -> Sparse a #

tanh :: Sparse a -> Sparse a #

asinh :: Sparse a -> Sparse a #

acosh :: Sparse a -> Sparse a #

atanh :: Sparse a -> Sparse a #

log1p :: Sparse a -> Sparse a #

expm1 :: Sparse a -> Sparse a #

log1pexp :: Sparse a -> Sparse a #

log1mexp :: Sparse a -> Sparse a #

Fractional a => Fractional (Sparse a) # 

Methods

(/) :: Sparse a -> Sparse a -> Sparse a #

recip :: Sparse a -> Sparse a #

fromRational :: Rational -> Sparse a #

Data a => Data (Sparse a) Source # 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sparse a -> c (Sparse a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sparse a) #

toConstr :: Sparse a -> Constr #

dataTypeOf :: Sparse a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Sparse a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sparse a)) #

gmapT :: (forall b. Data b => b -> b) -> Sparse a -> Sparse a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sparse a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sparse a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Sparse a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Sparse a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sparse a -> m (Sparse a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sparse a -> m (Sparse a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sparse a -> m (Sparse a) #

Num a => Num (Sparse a) # 

Methods

(+) :: Sparse a -> Sparse a -> Sparse a #

(-) :: Sparse a -> Sparse a -> Sparse a #

(*) :: Sparse a -> Sparse a -> Sparse a #

negate :: Sparse a -> Sparse a #

abs :: Sparse a -> Sparse a #

signum :: Sparse a -> Sparse a #

fromInteger :: Integer -> Sparse a #

(Num a, Ord a) => Ord (Sparse a) # 

Methods

compare :: Sparse a -> Sparse a -> Ordering #

(<) :: Sparse a -> Sparse a -> Bool #

(<=) :: Sparse a -> Sparse a -> Bool #

(>) :: Sparse a -> Sparse a -> Bool #

(>=) :: Sparse a -> Sparse a -> Bool #

max :: Sparse a -> Sparse a -> Sparse a #

min :: Sparse a -> Sparse a -> Sparse a #

Real a => Real (Sparse a) # 

Methods

toRational :: Sparse a -> Rational #

RealFloat a => RealFloat (Sparse a) # 
RealFrac a => RealFrac (Sparse a) # 

Methods

properFraction :: Integral b => Sparse a -> (b, Sparse a) #

truncate :: Integral b => Sparse a -> b #

round :: Integral b => Sparse a -> b #

ceiling :: Integral b => Sparse a -> b #

floor :: Integral b => Sparse a -> b #

Show a => Show (Sparse a) Source # 

Methods

showsPrec :: Int -> Sparse a -> ShowS #

show :: Sparse a -> String #

showList :: [Sparse a] -> ShowS #

Erf a => Erf (Sparse a) # 

Methods

erf :: Sparse a -> Sparse a #

erfc :: Sparse a -> Sparse a #

erfcx :: Sparse a -> Sparse a #

normcdf :: Sparse a -> Sparse a #

InvErf a => InvErf (Sparse a) # 

Methods

inverf :: Sparse a -> Sparse a #

inverfc :: Sparse a -> Sparse a #

invnormcdf :: Sparse a -> Sparse a #

Num a => Mode (Sparse a) Source # 

Associated Types

type Scalar (Sparse a) :: * Source #

Num a => Jacobian (Sparse a) Source # 

Associated Types

type D (Sparse a) :: * Source #

Methods

unary :: (Scalar (Sparse a) -> Scalar (Sparse a)) -> D (Sparse a) -> Sparse a -> Sparse a Source #

lift1 :: (Scalar (Sparse a) -> Scalar (Sparse a)) -> (D (Sparse a) -> D (Sparse a)) -> Sparse a -> Sparse a Source #

lift1_ :: (Scalar (Sparse a) -> Scalar (Sparse a)) -> (D (Sparse a) -> D (Sparse a) -> D (Sparse a)) -> Sparse a -> Sparse a Source #

binary :: (Scalar (Sparse a) -> Scalar (Sparse a) -> Scalar (Sparse a)) -> D (Sparse a) -> D (Sparse a) -> Sparse a -> Sparse a -> Sparse a Source #

lift2 :: (Scalar (Sparse a) -> Scalar (Sparse a) -> Scalar (Sparse a)) -> (D (Sparse a) -> D (Sparse a) -> (D (Sparse a), D (Sparse a))) -> Sparse a -> Sparse a -> Sparse a Source #

lift2_ :: (Scalar (Sparse a) -> Scalar (Sparse a) -> Scalar (Sparse a)) -> (D (Sparse a) -> D (Sparse a) -> D (Sparse a) -> (D (Sparse a), D (Sparse a))) -> Sparse a -> Sparse a -> Sparse a Source #

Num a => Grad (Sparse a) [a] (a, [a]) a Source # 

Methods

pack :: Sparse a -> [Sparse a] -> Sparse a Source #

unpack :: ([a] -> [a]) -> [a] Source #

unpack' :: ([a] -> (a, [a])) -> (a, [a]) Source #

Num a => Grads (Sparse a) (Cofree [] a) a Source # 

Methods

packs :: Sparse a -> [Sparse a] -> Sparse a Source #

unpacks :: ([a] -> Cofree [] a) -> Cofree [] a Source #

Grads i o a => Grads (Sparse a -> i) (a -> o) a Source # 

Methods

packs :: (Sparse a -> i) -> [Sparse a] -> Sparse a Source #

unpacks :: ([a] -> Cofree [] a) -> a -> o Source #

Grad i o o' a => Grad (Sparse a -> i) (a -> o) (a -> o') a Source # 

Methods

pack :: (Sparse a -> i) -> [Sparse a] -> Sparse a Source #

unpack :: ([a] -> [a]) -> a -> o Source #

unpack' :: ([a] -> (a, [a])) -> a -> o' Source #

type Scalar (Sparse a) Source # 
type Scalar (Sparse a) = a
type D (Sparse a) Source # 
type D (Sparse a) = Sparse a

auto :: Mode t => Scalar t -> t Source #

Embed a constant

Sparse Gradients

grad :: (Traversable f, Num a) => (f (Sparse a) -> Sparse a) -> f a -> f a Source #

grad' :: (Traversable f, Num a) => (f (Sparse a) -> Sparse a) -> f a -> (a, f a) Source #

gradWith :: (Traversable f, Num a) => (a -> a -> b) -> (f (Sparse a) -> Sparse a) -> f a -> f b Source #

gradWith' :: (Traversable f, Num a) => (a -> a -> b) -> (f (Sparse a) -> Sparse a) -> f a -> (a, f b) Source #

Variadic Gradients

Variadic combinators for variadic mixed-mode automatic differentiation.

Unfortunately, variadicity comes at the expense of being able to use quantification to avoid sensitivity confusion, so be careful when counting the number of auto calls you use when taking the gradient of a function that takes gradients!

class Num a => Grad i o o' a | i -> a o o', o -> a i o', o' -> a i o Source #

Minimal complete definition

pack, unpack, unpack'

Instances

Num a => Grad (Sparse a) [a] (a, [a]) a Source # 

Methods

pack :: Sparse a -> [Sparse a] -> Sparse a Source #

unpack :: ([a] -> [a]) -> [a] Source #

unpack' :: ([a] -> (a, [a])) -> (a, [a]) Source #

Grad i o o' a => Grad (Sparse a -> i) (a -> o) (a -> o') a Source # 

Methods

pack :: (Sparse a -> i) -> [Sparse a] -> Sparse a Source #

unpack :: ([a] -> [a]) -> a -> o Source #

unpack' :: ([a] -> (a, [a])) -> a -> o' Source #

vgrad :: Grad i o o' a => i -> o Source #

Higher-Order Gradients

grads :: (Traversable f, Num a) => (f (Sparse a) -> Sparse a) -> f a -> Cofree f a Source #

Variadic Higher-Order Gradients

class Num a => Grads i o a | i -> a o, o -> a i Source #

Minimal complete definition

packs, unpacks

Instances

Num a => Grads (Sparse a) (Cofree [] a) a Source # 

Methods

packs :: Sparse a -> [Sparse a] -> Sparse a Source #

unpacks :: ([a] -> Cofree [] a) -> Cofree [] a Source #

Grads i o a => Grads (Sparse a -> i) (a -> o) a Source # 

Methods

packs :: (Sparse a -> i) -> [Sparse a] -> Sparse a Source #

unpacks :: ([a] -> Cofree [] a) -> a -> o Source #

vgrads :: Grads i o a => i -> o Source #

Sparse Jacobians (synonyms)

jacobian :: (Traversable f, Functor g, Num a) => (f (Sparse a) -> g (Sparse a)) -> f a -> g (f a) Source #

jacobian' :: (Traversable f, Functor g, Num a) => (f (Sparse a) -> g (Sparse a)) -> f a -> g (a, f a) Source #

jacobianWith :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (f (Sparse a) -> g (Sparse a)) -> f a -> g (f b) Source #

jacobianWith' :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (f (Sparse a) -> g (Sparse a)) -> f a -> g (a, f b) Source #

jacobians :: (Traversable f, Functor g, Num a) => (f (Sparse a) -> g (Sparse a)) -> f a -> g (Cofree f a) Source #

Sparse Hessians

hessian :: (Traversable f, Num a) => (f (Sparse a) -> Sparse a) -> f a -> f (f a) Source #

hessian' :: (Traversable f, Num a) => (f (Sparse a) -> Sparse a) -> f a -> (a, f (a, f a)) Source #

hessianF :: (Traversable f, Functor g, Num a) => (f (Sparse a) -> g (Sparse a)) -> f a -> g (f (f a)) Source #

hessianF' :: (Traversable f, Functor g, Num a) => (f (Sparse a) -> g (Sparse a)) -> f a -> g (a, f (a, f a)) Source #