Copyright | (c) Dong Han 2017-2019 |
---|---|
License | BSD |
Maintainer | winterland1989@gmail.com |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
This module provides exactly the same API with Z.Data.Array, but will throw an IndexOutOfBounds
ArrayException
on bound check failure, it's useful when debugging array algorithms: just swap this
module with Z.Data.Array, segmentation faults caused by out bound access will be turned into exceptions
with more informations.
Synopsis
- class Arr (arr :: Type -> Type) a
- type family MArr arr = (mar :: Type -> Type -> Type) | mar -> arr
- emptyArr :: Arr arr a => arr a
- singletonArr :: Arr arr a => a -> arr a
- doubletonArr :: Arr arr a => a -> a -> arr a
- modifyIndexArr :: (Arr arr a, HasCallStack) => arr a -> Int -> Int -> Int -> (a -> a) -> arr a
- insertIndexArr :: Arr arr a => arr a -> Int -> Int -> Int -> a -> arr a
- deleteIndexArr :: Arr arr a => arr a -> Int -> Int -> Int -> arr a
- data RealWorld
- data Array a = Array {}
- data MutableArray s a = MutableArray {
- marray# :: MutableArray# s a
- data SmallArray a = SmallArray (SmallArray# a)
- data SmallMutableArray s a = SmallMutableArray (SmallMutableArray# s a)
- uninitialized :: a
- data PrimArray a = PrimArray ByteArray#
- data MutablePrimArray s a = MutablePrimArray (MutableByteArray# s)
- class Prim a where
- sizeOf# :: a -> Int#
- alignment# :: a -> Int#
- indexByteArray# :: ByteArray# -> Int# -> a
- readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, a #)
- writeByteArray# :: MutableByteArray# s -> Int# -> a -> State# s -> State# s
- setByteArray# :: MutableByteArray# s -> Int# -> Int# -> a -> State# s -> State# s
- indexOffAddr# :: Addr# -> Int# -> a
- readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, a #)
- writeOffAddr# :: Addr# -> Int# -> a -> State# s -> State# s
- setOffAddr# :: Addr# -> Int# -> Int# -> a -> State# s -> State# s
- newArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => Int -> m (MArr arr s a)
- newArrWith :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => Int -> a -> m (MArr arr s a)
- readArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> m a
- writeArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> a -> m ()
- setArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> Int -> a -> m ()
- indexArr :: (Arr arr a, HasCallStack) => arr a -> Int -> a
- indexArr' :: (Arr arr a, HasCallStack) => arr a -> Int -> (# a #)
- indexArrM :: (Arr arr a, Monad m, HasCallStack) => arr a -> Int -> m a
- freezeArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> Int -> m (arr a)
- thawArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => arr a -> Int -> Int -> m (MArr arr s a)
- copyArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> arr a -> Int -> Int -> m ()
- copyMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> MArr arr s a -> Int -> Int -> m ()
- moveArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> MArr arr s a -> Int -> Int -> m ()
- cloneArr :: (Arr arr a, HasCallStack) => arr a -> Int -> Int -> arr a
- cloneMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> Int -> m (MArr arr s a)
- resizeMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> m (MArr arr s a)
- shrinkMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> m ()
- unsafeFreezeArr :: (Arr arr a, PrimMonad m, PrimState m ~ s) => MArr arr s a -> m (arr a)
- unsafeThawArr :: (Arr arr a, PrimMonad m, PrimState m ~ s) => arr a -> m (MArr arr s a)
- sameMutableArr :: Arr arr a => MArr arr s a -> MArr arr s a -> Bool
- sizeofArr :: Arr arr a => arr a -> Int
- sizeofMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s) => MArr arr s a -> m Int
- sameArr :: Arr arr a => arr a -> arr a -> Bool
- newPinnedPrimArray :: (PrimMonad m, Prim a, HasCallStack) => Int -> m (MutablePrimArray (PrimState m) a)
- newAlignedPinnedPrimArray :: (PrimMonad m, Prim a, HasCallStack) => Int -> m (MutablePrimArray (PrimState m) a)
- copyPrimArrayToPtr :: (PrimMonad m, Prim a, HasCallStack) => Ptr a -> PrimArray a -> Int -> Int -> m ()
- copyMutablePrimArrayToPtr :: (PrimMonad m, Prim a, HasCallStack) => Ptr a -> MutablePrimArray (PrimState m) a -> Int -> Int -> m ()
- copyPtrToMutablePrimArray :: (PrimMonad m, Prim a, HasCallStack) => MutablePrimArray (PrimState m) a -> Int -> Ptr a -> Int -> m ()
- primArrayContents :: PrimArray a -> Ptr a
- mutablePrimArrayContents :: MutablePrimArray s a -> Ptr a
- withPrimArrayContents :: PrimArray a -> (Ptr a -> IO b) -> IO b
- withMutablePrimArrayContents :: MutablePrimArray RealWorld a -> (Ptr a -> IO b) -> IO b
- isPrimArrayPinned :: PrimArray a -> Bool
- isMutablePrimArrayPinned :: MutablePrimArray s a -> Bool
- data UnliftedArray a = UnliftedArray ArrayArray#
- data MutableUnliftedArray s a = MutableUnliftedArray (MutableArrayArray# s)
- class PrimUnlifted a where
- writeUnliftedArray# :: MutableArrayArray# s -> Int# -> a -> State# s -> State# s
- readUnliftedArray# :: MutableArrayArray# s -> Int# -> State# s -> (# State# s, a #)
- indexUnliftedArray# :: ArrayArray# -> Int# -> a
- data ArrayException
- class Cast source destination
- castArray :: (Arr arr a, Cast a b) => arr a -> arr b
- castMutableArray :: (Arr arr a, Cast a b) => MArr arr s a -> MArr arr s b
- sizeOf :: Prim a => a -> Int
Arr typeclass re-export
class Arr (arr :: Type -> Type) a Source #
The typeclass that unifies box & unboxed and mutable & immutable array operations.
Most of these functions simply wrap their primitive counterpart. When there are no primitive ones, we fulfilled the semantic with other operations.
One exception is shrinkMutableArr
which only performs closure resizing on PrimArray
, because
currently, RTS only supports that. shrinkMutableArr
won't do anything on other array types.
It's reasonable to trust GHC to specialize & inline these polymorphic functions. They are used across this package and perform identically to their monomorphic counterpart.
newArr, newArrWith, readArr, writeArr, setArr, indexArr, indexArr', indexArrM, freezeArr, thawArr, unsafeFreezeArr, unsafeThawArr, copyArr, copyMutableArr, moveArr, cloneArr, cloneMutableArr, resizeMutableArr, shrinkMutableArr, sameMutableArr, sizeofArr, sizeofMutableArr, sameArr
Instances
type family MArr arr = (mar :: Type -> Type -> Type) | mar -> arr Source #
The mutable version of this array type.
Instances
type MArr PrimArray Source # | |
Defined in Z.Data.Array | |
type MArr SmallArray Source # | |
Defined in Z.Data.Array | |
type MArr Array Source # | |
Defined in Z.Data.Array | |
type MArr (UnliftedArray :: Type -> Type) Source # | |
Defined in Z.Data.Array |
singletonArr :: Arr arr a => a -> arr a Source #
doubletonArr :: Arr arr a => a -> a -> arr a Source #
:: (Arr arr a, HasCallStack) | |
=> arr a | |
-> Int | offset |
-> Int | length |
-> Int | index in new array |
-> (a -> a) | modify function |
-> arr a |
:: Arr arr a | |
=> arr a | |
-> Int | offset |
-> Int | length |
-> Int | insert index in new array |
-> a | element to be inserted |
-> arr a |
Insert an immutable array's element at given index to produce a new array.
Drop an immutable array's element at given index to produce a new array.
RealWorld
is deeply magical. It is primitive, but it is not
unlifted (hence ptrArg
). We never manipulate values of type
RealWorld
; it's only used in the type system, to parameterise State#
.
Boxed array type
Boxed arrays
Instances
Monad Array | |
Functor Array | |
MonadFix Array | |
Defined in Data.Primitive.Array | |
MonadFail Array | |
Defined in Data.Primitive.Array | |
Applicative Array | |
Foldable Array | |
Defined in Data.Primitive.Array fold :: Monoid m => Array m -> m # foldMap :: Monoid m => (a -> m) -> Array a -> m # foldMap' :: Monoid m => (a -> m) -> Array a -> m # foldr :: (a -> b -> b) -> b -> Array a -> b # foldr' :: (a -> b -> b) -> b -> Array a -> b # foldl :: (b -> a -> b) -> b -> Array a -> b # foldl' :: (b -> a -> b) -> b -> Array a -> b # foldr1 :: (a -> a -> a) -> Array a -> a # foldl1 :: (a -> a -> a) -> Array a -> a # elem :: Eq a => a -> Array a -> Bool # maximum :: Ord a => Array a -> a # minimum :: Ord a => Array a -> a # | |
Traversable Array | |
Eq1 Array | Since: primitive-0.6.4.0 |
Ord1 Array | Since: primitive-0.6.4.0 |
Defined in Data.Primitive.Array | |
Read1 Array | Since: primitive-0.6.4.0 |
Defined in Data.Primitive.Array | |
Show1 Array | Since: primitive-0.6.4.0 |
MonadZip Array | |
Alternative Array | |
MonadPlus Array | |
NFData1 Array | |
Defined in Data.Primitive.Array | |
Arr Array a Source # | |
Defined in Z.Data.Array newArr :: (PrimMonad m, PrimState m ~ s) => Int -> m (MArr Array s a) Source # newArrWith :: (PrimMonad m, PrimState m ~ s) => Int -> a -> m (MArr Array s a) Source # readArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> m a Source # writeArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> a -> m () Source # setArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> Int -> a -> m () Source # indexArr :: Array a -> Int -> a Source # indexArr' :: Array a -> Int -> (# a #) Source # indexArrM :: Monad m => Array a -> Int -> m a Source # freezeArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> Int -> m (Array a) Source # thawArr :: (PrimMonad m, PrimState m ~ s) => Array a -> Int -> Int -> m (MArr Array s a) Source # unsafeFreezeArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> m (Array a) Source # unsafeThawArr :: (PrimMonad m, PrimState m ~ s) => Array a -> m (MArr Array s a) Source # copyArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> Array a -> Int -> Int -> m () Source # copyMutableArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> MArr Array s a -> Int -> Int -> m () Source # moveArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> MArr Array s a -> Int -> Int -> m () Source # cloneArr :: Array a -> Int -> Int -> Array a Source # cloneMutableArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> Int -> m (MArr Array s a) Source # resizeMutableArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> m (MArr Array s a) Source # shrinkMutableArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> Int -> m () Source # sameMutableArr :: MArr Array s a -> MArr Array s a -> Bool Source # sizeofArr :: Array a -> Int Source # sizeofMutableArr :: (PrimMonad m, PrimState m ~ s) => MArr Array s a -> m Int Source # | |
Vec Array a Source # | |
IsList (Array a) | |
Eq a => Eq (Array a) | |
Data a => Data (Array a) | |
Defined in Data.Primitive.Array gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Array a -> c (Array a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a) # toConstr :: Array a -> Constr # dataTypeOf :: Array a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a)) # gmapT :: (forall b. Data b => b -> b) -> Array a -> Array a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # | |
Ord a => Ord (Array a) | Lexicographic ordering. Subject to change between major versions. |
Read a => Read (Array a) | |
Show a => Show (Array a) | |
Semigroup (Array a) | Since: primitive-0.6.3.0 |
Monoid (Array a) | |
NFData a => NFData (Array a) | |
Defined in Data.Primitive.Array | |
Print a => Print (Array a) Source # | |
Defined in Z.Data.Text.Print | |
JSON a => JSON (Array a) Source # | |
type MArr Array Source # | |
Defined in Z.Data.Array | |
type IArray Array Source # | |
Defined in Z.Data.Vector.Base | |
type Item (Array a) | |
Defined in Data.Primitive.Array |
data MutableArray s a #
Mutable boxed arrays associated with a primitive state token.
MutableArray | |
|
Instances
Eq (MutableArray s a) | |
Defined in Data.Primitive.Array (==) :: MutableArray s a -> MutableArray s a -> Bool # (/=) :: MutableArray s a -> MutableArray s a -> Bool # | |
(Typeable s, Typeable a) => Data (MutableArray s a) | |
Defined in Data.Primitive.Array gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableArray s a -> c (MutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableArray s a) # toConstr :: MutableArray s a -> Constr # dataTypeOf :: MutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> MutableArray s a -> MutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # |
data SmallArray a #
Instances
data SmallMutableArray s a #
Instances
Eq (SmallMutableArray s a) | |
Defined in Data.Primitive.SmallArray (==) :: SmallMutableArray s a -> SmallMutableArray s a -> Bool # (/=) :: SmallMutableArray s a -> SmallMutableArray s a -> Bool # | |
(Typeable s, Typeable a) => Data (SmallMutableArray s a) | |
Defined in Data.Primitive.SmallArray gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallMutableArray s a -> c (SmallMutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallMutableArray s a) # toConstr :: SmallMutableArray s a -> Constr # dataTypeOf :: SmallMutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallMutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallMutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> SmallMutableArray s a -> SmallMutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallMutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallMutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # |
uninitialized :: a Source #
Bottom value (throw (
)
for new boxed array(UndefinedElement
uninitialized
)Array
, SmallArray
..) initialization.
Primitive array type
Arrays of unboxed elements. This accepts types like Double
, Char
,
Int
, and Word
, as well as their fixed-length variants (Word8
,
Word16
, etc.). Since the elements are unboxed, a PrimArray
is strict
in its elements. This differs from the behavior of Array
, which is lazy
in its elements.
Instances
data MutablePrimArray s a #
Mutable primitive arrays associated with a primitive state token.
These can be written to and read from in a monadic context that supports
sequencing such as IO
or ST
. Typically, a mutable primitive array will
be built and then convert to an immutable primitive array using
unsafeFreezePrimArray
. However, it is also acceptable to simply discard
a mutable primitive array since it lives in managed memory and will be
garbage collected when no longer referenced.
Instances
Eq (MutablePrimArray s a) | |
Defined in Data.Primitive.PrimArray (==) :: MutablePrimArray s a -> MutablePrimArray s a -> Bool # (/=) :: MutablePrimArray s a -> MutablePrimArray s a -> Bool # | |
NFData (MutablePrimArray s a) | |
Defined in Data.Primitive.PrimArray rnf :: MutablePrimArray s a -> () # | |
PrimUnlifted (MutablePrimArray s a) Source # | |
Defined in Z.Data.Array.UnliftedArray writeUnliftedArray# :: MutableArrayArray# s0 -> Int# -> MutablePrimArray s a -> State# s0 -> State# s0 Source # readUnliftedArray# :: MutableArrayArray# s0 -> Int# -> State# s0 -> (# State# s0, MutablePrimArray s a #) Source # indexUnliftedArray# :: ArrayArray# -> Int# -> MutablePrimArray s a Source # |
Class of types supporting primitive array operations. This includes
interfacing with GC-managed memory (functions suffixed with ByteArray#
)
and interfacing with unmanaged memory (functions suffixed with Addr#
).
Endianness is platform-dependent.
Size of values of type a
. The argument is not used.
alignment# :: a -> Int# #
Alignment of values of type a
. The argument is not used.
indexByteArray# :: ByteArray# -> Int# -> a #
Read a value from the array. The offset is in elements of type
a
rather than in bytes.
readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, a #) #
Read a value from the mutable array. The offset is in elements of type
a
rather than in bytes.
writeByteArray# :: MutableByteArray# s -> Int# -> a -> State# s -> State# s #
Write a value to the mutable array. The offset is in elements of type
a
rather than in bytes.
setByteArray# :: MutableByteArray# s -> Int# -> Int# -> a -> State# s -> State# s #
Fill a slice of the mutable array with a value. The offset and length
of the chunk are in elements of type a
rather than in bytes.
indexOffAddr# :: Addr# -> Int# -> a #
Read a value from a memory position given by an address and an offset.
The memory block the address refers to must be immutable. The offset is in
elements of type a
rather than in bytes.
readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, a #) #
Read a value from a memory position given by an address and an offset.
The offset is in elements of type a
rather than in bytes.
writeOffAddr# :: Addr# -> Int# -> a -> State# s -> State# s #
Write a value to a memory position given by an address and an offset.
The offset is in elements of type a
rather than in bytes.
setOffAddr# :: Addr# -> Int# -> Int# -> a -> State# s -> State# s #
Fill a memory block given by an address, an offset and a length.
The offset and length are in elements of type a
rather than in bytes.
Instances
Bound checked array operations
newArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => Int -> m (MArr arr s a) Source #
newArrWith :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => Int -> a -> m (MArr arr s a) Source #
readArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> m a Source #
writeArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> a -> m () Source #
setArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> Int -> a -> m () Source #
freezeArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> Int -> m (arr a) Source #
thawArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => arr a -> Int -> Int -> m (MArr arr s a) Source #
copyArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> arr a -> Int -> Int -> m () Source #
copyMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> MArr arr s a -> Int -> Int -> m () Source #
moveArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> MArr arr s a -> Int -> Int -> m () Source #
cloneMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> Int -> m (MArr arr s a) Source #
resizeMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> m (MArr arr s a) Source #
shrinkMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s, HasCallStack) => MArr arr s a -> Int -> m () Source #
New size should be >= 0, and <= original size.
No bound checked operations
unsafeFreezeArr :: (Arr arr a, PrimMonad m, PrimState m ~ s) => MArr arr s a -> m (arr a) Source #
Convert a mutable array to an immutable one without copying. The array should not be modified after the conversion.
unsafeThawArr :: (Arr arr a, PrimMonad m, PrimState m ~ s) => arr a -> m (MArr arr s a) Source #
Convert a mutable array to an immutable one without copying. The array should not be modified after the conversion.
sameMutableArr :: Arr arr a => MArr arr s a -> MArr arr s a -> Bool Source #
Is two mutable array are reference equal.
sizeofMutableArr :: (Arr arr a, PrimMonad m, PrimState m ~ s) => MArr arr s a -> m Int Source #
Size of the mutable array.
sameArr :: Arr arr a => arr a -> arr a -> Bool Source #
Check whether the two immutable arrays refer to the same memory block
Note that the result of sameArr
may change depending on compiler's optimizations, for example,
let arr = runST ... in arr
may return false if compiler decides to
inline it.sameArr
arr
See https://ghc.haskell.org/trac/ghc/ticket/13908 for more context.
Bound checked primitive array operations
newPinnedPrimArray :: (PrimMonad m, Prim a, HasCallStack) => Int -> m (MutablePrimArray (PrimState m) a) Source #
Create a pinned byte array of the specified size, The garbage collector is guaranteed not to move it.
newAlignedPinnedPrimArray :: (PrimMonad m, Prim a, HasCallStack) => Int -> m (MutablePrimArray (PrimState m) a) Source #
Create a pinned primitive array of the specified size and respect given primitive type's alignment. The garbage collector is guaranteed not to move it.
copyPrimArrayToPtr :: (PrimMonad m, Prim a, HasCallStack) => Ptr a -> PrimArray a -> Int -> Int -> m () Source #
copyMutablePrimArrayToPtr :: (PrimMonad m, Prim a, HasCallStack) => Ptr a -> MutablePrimArray (PrimState m) a -> Int -> Int -> m () Source #
copyPtrToMutablePrimArray :: (PrimMonad m, Prim a, HasCallStack) => MutablePrimArray (PrimState m) a -> Int -> Ptr a -> Int -> m () Source #
No bound checked primitive array operations
primArrayContents :: PrimArray a -> Ptr a #
Yield a pointer to the array's data. This operation is only safe on
pinned prim arrays allocated by newPinnedByteArray
or
newAlignedPinnedByteArray
.
Since: primitive-0.7.1.0
mutablePrimArrayContents :: MutablePrimArray s a -> Ptr a #
Yield a pointer to the array's data. This operation is only safe on
pinned byte arrays allocated by newPinnedByteArray
or
newAlignedPinnedByteArray
.
Since: primitive-0.7.1.0
withPrimArrayContents :: PrimArray a -> (Ptr a -> IO b) -> IO b Source #
Obtain the pointer to the content of an array, and the pointer should only be used during the IO action.
This operation is only safe on pinned primitive arrays (Arrays allocated by newPinnedPrimArray
or
newAlignedPinnedPrimArray
).
Don't pass a forever loop to this function, see #14346.
withMutablePrimArrayContents :: MutablePrimArray RealWorld a -> (Ptr a -> IO b) -> IO b Source #
Obtain the pointer to the content of an mutable array, and the pointer should only be used during the IO action.
This operation is only safe on pinned primitive arrays (Arrays allocated by newPinnedPrimArray
or
newAlignedPinnedPrimArray
).
Don't pass a forever loop to this function, see #14346.
isPrimArrayPinned :: PrimArray a -> Bool #
Check whether or not the byte array is pinned. Pinned primitive arrays cannot
be moved by the garbage collector. It is safe to use primArrayContents
on such byte arrays. This function is only available when compiling with
GHC 8.2 or newer.
Since: primitive-0.7.1.0
isMutablePrimArrayPinned :: MutablePrimArray s a -> Bool #
Check whether or not the mutable primitive array is pinned. This function is only available when compiling with GHC 8.2 or newer.
Since: primitive-0.7.1.0
Unlifted array type
data UnliftedArray a Source #
Array holding PrimUnlifted
values.
Instances
data MutableUnliftedArray s a Source #
Mutable array holding PrimUnlifted
values.
class PrimUnlifted a where Source #
Types with TYPE
UnliftedRep
, which can be stored / retrieved in ArrayArray#
.
writeUnliftedArray# :: MutableArrayArray# s -> Int# -> a -> State# s -> State# s Source #
readUnliftedArray# :: MutableArrayArray# s -> Int# -> State# s -> (# State# s, a #) Source #
indexUnliftedArray# :: ArrayArray# -> Int# -> a Source #
Instances
The ArrayException
type
data ArrayException #
Exceptions generated by array operations
IndexOutOfBounds String | An attempt was made to index an array outside its declared bounds. |
UndefinedElement String | An attempt was made to evaluate an element of an array that had not been initialized. |
Instances
Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
Show ArrayException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception showsPrec :: Int -> ArrayException -> ShowS # show :: ArrayException -> String # showList :: [ArrayException] -> ShowS # | |
Exception ArrayException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception |
Cast between primitive arrays
class Cast source destination Source #
Cast
between primitive types of the same size.
Instances
Cast Double Int64 Source # | |
Cast Double Word64 Source # | |
Cast Float Int32 Source # | |
Cast Float Word32 Source # | |
Cast Int Word Source # | |
Cast Int8 Word8 Source # | |
Cast Int16 Word16 Source # | |
Cast Int32 Float Source # | |
Cast Int32 Word32 Source # | |
Cast Int64 Double Source # | |
Cast Int64 Word64 Source # | |
Cast Word Int Source # | |
Cast Word8 Int8 Source # | |
Cast Word16 Int16 Source # | |
Cast Word32 Float Source # | |
Cast Word32 Int32 Source # | |
Cast Word64 Double Source # | |
Cast Word64 Int64 Source # | |
Coercible a b => Cast a b Source # | |
Defined in Z.Data.Array.Cast |
castMutableArray :: (Arr arr a, Cast a b) => MArr arr s a -> MArr arr s b Source #
Cast between mutable arrays