PyF
PyF is a Haskell library for string interpolation and formatting.
PyF exposes a quasiquoter f
which introduces string interpolation and formatting with a mini language inspired from printf and Python.
Quick Start
>>> import PyF
>>> name = "Dave"
>>> age = 54
>>> [fmt|Person's name is {name}, age is {age}|]
"Person's name is Dave, age is 54"
The formatting mini language can represent:
- Numbers with different representations (fixed point, general representation, binary, hexadecimal, octal)
- Padding, with the choice of padding char, alignment (left, right, around, between sign and number)
- Sign handling, to display or not the
+
for positive number
- Number grouping
- Floating point representation
- The interpolated value can be any Haskell expression.
You will need the extension QuasiQuotes
, enable it with {-# LANGUAGE QuasiQuotes #-}
in top of your source file or with :set -XQuasiQuotes
in your ghci
session. ExtendedDefaultRules
and OverloadedStrings
may be more convenient.
Expression to be formatted are referenced by {expression:formatingOptions}
where formatingOptions
follows the Python format mini-language. It is recommended to read the python documentation, but the Test file as well as this readme contain many examples.
More Examples
Padding
Left <
/ Right >
/ Around ^
padding:
>>> name = "Guillaume"
>>> [fmt|{name:<11}|]
"Guillaume "
>>> [fmt|{name:>11}|]
" Guillaume"
>>> [fmt|{name:|^13}|]
"||Guillaume||"
Padding inside =
the sign
>>> [fmt|{-3:=6}|]
"- 3"
Float rounding
>>> [fmt|{pi:.2}|]
"3.14"
Binary / Octal / Hex representation (with or without prefix using #
)
>>> v = 31
>>> [fmt|Binary: {v:#b}|]
"Binary: 0b11111"
>>> [fmt|Octal: {v:#o}|]
"Octal: 0o37"
>>> [fmt|Octal (no prefix): {v:o}|]
"Octal (no prefix): 37"
>>> [fmt|Hexa (caps and prefix): {v:#X}|]
"Hexa (caps and prefix): 0x1F"
Grouping
Using ,
or _
.
>>> [fmt|{10 ^ 9 - 1:,}|]
"999,999,999"
>>> [fmt|{2 ^ 32 -1:_b}|]
"1111_1111_1111_1111_1111_1111_1111_1111"
Sign handling
Using +
to display the positive sign (if any) or
to display a space instead:
>>> [fmt|{pi:+.3}|]
"+3.142"
>>> [fmt|{-pi:+.3} (Negative number)|]
"-3.142 (Negative number)"
>>> [fmt|{pi: .3}|]
" 3.142"
>>> [fmt|{-pi: .3} (Negative number)|]
"-3.142 (Negative number)"
0
Preceding the width with a 0
enables sign-aware zero-padding, this is equivalent to inside =
padding with a fill char of 0
.
>>> [f{10:010}|]
0000000010
>>> [f{-10:010}|]
-000000010
Sub-expressions
First argument inside the curly braces can be a valid Haskell expression, for example:
>>> [fmt|2pi = {2* pi:.2}|]
2pi = 6.28
>>> [fmt|tail "hello" = {tail "hello":->6}|]
"tail \"hello\" = --ello"
However the expression must not contain }
or :
characters.
Combined
Most options can be combined. This generally leads to totally unreadable format string ;)
>>> [fmt|{pi:~>5.2}|]
"~~3.14"
Multi-line strings
You can ignore a line break with \
if needed. For example:
[fmt|\
- a
- b\
|]
Will returns -a\n-b
. Note how the first and last line breaks are ignored.
Arbitrary value for precision
The precision field can be any haskell expression instead of a fixed number:
>>> [fmt|{pi:.{1+2}}|]
3.142
Output type
PyF aims at extending the string literal syntax. As such, it default to String
type. However, if the OverloadedString
is enabled, PyF will happilly generate IsString t => t
instead. This means that you can use PyF to generate String
, but also Text
and why not ByteString
, with all the caveats known to this extension.
>>> [fmt|hello {pi.2}|] :: String
"hello 3.14"
Custom types
PyF can format three categories of input types:
- Floating. Using the
f
, g
, e
, ... type specifiers. Any type instance of RealFloat
can be formated as such.
- Integral. Using the
d
, b
, x
, o
, ... type specifiers. Any type instance of Integral
can be formated as such.
- String. Using the
s
type specifier. Any type instance of PyFToString
can be formated as such.
See PyF.Class
if you want to create new instances for the PyFToString
class.
By default, if you do not provide any type specifier, PyF uses the PyFClassify
type class to decide if your type must be formated as a Floating, Integral or String.
Caveats
Type inference
Type inference with numeric literals can be unreliable if your variables are too polymorphic. A type annotation or the extension ExtendedDefaultRules
will help.
>>> v = 10 :: Double
>>> [fmt|A float: {v}|]
A float: 10
Error reporting
Template haskell is generally known to give developers a lot of
frustration when it comes to error message, dumping an unreadable
piece of generated code.
However, in PyF, we took great care to provide clear error reporting, this means that:
- Any parsing error on the mini language results in a clear indication of the error, for example:
>>> [fmt|{age:.3d}|]
<interactive>:77:4: error:
• <interactive>:1:8:
|
1 | {age:.3d}
| ^
Type incompatible with precision (.3), use any of {'e', 'E', 'f', 'F', 'g', 'G', 'n', 's', '%'} or remove the precision field.
- Error in variable name are also readable:
>>> [fmt|{toto}|]
<interactive>:78:4: error: Variable not in scope: toto
- However, if the interpolated name is not of a compatible type (or
too polymorphic), you will get an awful error:
>>*> [fmt|{True:d}|]
<interactive>:80:10: error:
• No instance for (Integral Bool)
arising from a use of ‘PyF.Internal.QQ.formatAnyIntegral’
...
- There is also one class of error related to alignement which can be triggered, when using alignement inside sign (i.e.
=
) with string:
*PyF PyF.Internal.QQ> [fmt|{"hello":=10}|]
<interactive>:89:10: error:
• String Cannot be aligned with the inside `=` mode
...
- Finally, if you make any type error inside the expression field, you are on your own:
>>> [fmt|{3 + pi + "hello":10}|]
<interactive>:99:10: error:
• No instance for (Floating [Char]) arising from a use of ‘pi’
...
Custom Delimiters
If {
and }
does not fit your needs, for example if you are formatting a lot of json, you can use custom delimiters. All quasi quoters have a parametric form which accepts custom delimiters. Due to template haskell stage restriction, you must define your custom quasi quoter in an other module.
For example, in MyCustomDelimiter.hs
:
module MyCustomQQ where
import Language.Haskell.TH.Quote
import PyF
myCustomFormatter :: QuasiQuoter
myCustomFormatter = fmtWithDelimiters ('@','!')
Later, in another module:
import MyCustomQQ
-- ...
[myCustomFormatter|pi = @pi:2.f!|]
Escaping still works by doubling the delimiters, @@!!@@!!
will be formatted as @!@!
.
Difference with the Python Syntax
The implementation is unit-tested against the reference python implementation (python 3.6.4) and should match its result. However some formatters are not supported or some (minor) differences can be observed.
Not supported
- Number
n
formatter is not supported. In python this formatter can format a number and use current locale information for decimal part and thousand separator. There is no plan to support that because of the impure interface needed to read the locale.
- Python support sub variables in the formatting options in every places, such as
{expression:.{precision}}
. We only support it for precision
. This is more complexe to setup for others fields.
- Python literal integers accepts binary/octal/hexa/decimal literals, PyF only accept decimal ones, I don't have a plan to support that, if you really need to format a float with a number of digit provided as a binary constant, open an issue.
- Python support adding custom formatters for new types, such as date. This may be really cool, for example
[fmt|{today:%Y-%M-%D}
. I don't know how to support that now.
Difference
- General formatters g and G behaves a bit differently. Precision influence the number of significant digits instead of the number of the magnitude at which the representation changes between fixed and exponential.
- Grouping options allows grouping with an
_
for floating point, python only allows ,
.
- Custom delimiters
Build / test
Should work with stack build; stack test
, and with cabal
and (optionally) nix
:
nix-shell # Optional, if you use nix
cabal new-build
cabal new-test
Library note
PyF.Formatters
exposes two functions to format numbers. They are type-safe (as much as possible) and comes with a combination of formatting options not seen in other formatting libraries:
>>> formatIntegral Binary Plus (Just (20, AlignInside, '~')) (Just (4, ',')) 255
"+~~~~~~~~~~1111,1111"
Conclusion
Don't hesitate to make any suggestion, I'll be more than happy to work on it.