{- | Description: keyword arguments The public interface is exposed in <Data-HList-CommonMain.html#t:Kw CommonMain#Kw> -} module Data.HList.Keyword ( -- * main Kw(..), IsKeyFN, recToKW, -- ** another label type K(..), -- * types for user error ErrReqdArgNotFound, ErrUnexpectedKW, -- * demo -- ** setup data types -- $setup -- $ex2 -- * Implementation details -- $imploutline KWApply(..), KWApply'(..), Arg(..), -- ** producing lists from a function's arguments reflect_fk, ReflectFK, ReflectFK', -- ** collecting arguments KW(..), KW'(..), KWAcc(..), -- ** merging default with supplied arguments KWMerge(..), KWMerge'(..), KWMerge''(..), HDelete, HDelete', -- * original introduction -- $originalIntro -- * todo -- $todo -- * internal for type signature prettiness TaggedToKW, ) where import GHC.TypeLits import Data.HList.FakePrelude import Data.HList.TypeEqO import Data.HList.HListPrelude import Data.HList.HList import Data.HList.Record {- $setup >>> :set -XDataKinds -XFlexibleInstances -XMultiParamTypeClasses >>> :set -XScopedTypeVariables -XOverlappingInstances -XTypeFamilies >>> :set -fcontext-stack=100 We will be using an example inspired by a graphics toolkit -- the area which really benefits from keyword arguments. We first define our labels and useful datatypes >>> data Color = Color >>> data Size = Size >>> data Origin = Origin >>> data RaisedBorder = RaisedBorder The number of arguments each keyword must be specified by an 'IsKeyFN' instance. >>> instance IsKeyFN (Color->a->b) True >>> instance IsKeyFN (Size->a->b) True >>> instance (a ~ (Int,Int)) => IsKeyFN (Origin->a->b) True >>> instance IsKeyFN (RaisedBorder->a->b) True Note that if a keyword is always followed by a certain type, that can be specified above using an instance like the one for Origin. >>> data CommonColor = Red | Green | Blue deriving Show >>> data RGBColor = RGBColor Int Int Int deriving Show and two functions: >>> :{ let make_square Size n Origin (x0,y0) Color (color::CommonColor) = unwords ["Square:", show (n :: Int), "at", show (x0,y0), show color] ++ "\n" :} >>> :{ let make_rect Size (nx,ny) Origin (x0,y0) Color (color::RGBColor) RaisedBorder border = unwords ["Rectangle:", show (nx,ny), "at", show (x0,y0), show color, if border then "raised border" else ""] ++ "\n" :} -} {- $ex2 We are not interested in really drawing squares and rectangles here. Therefore, make_square and make_rect return a String, which we can regard as a ``command'' to be passed to a low-level graphics library. The functions make_square and make_rect are genuine functions and can be used as such. They are not keyword argument functions, yet, but they set the stage. These functions can be considered an `interface' for the keyword argument functions. We should note that the functions are polymorphic: for example, `Size' can be any showable. We must also emphasize the re-use of the labels: The Color of a square is the value of the enumerated type CommonColor. OTH, the color of the rectangle is given as an RGB triple. The sizes of the square and of the rectangle are specified differently too, the same label notwithstanding. Once the user wrote the functions such as make_square and make_rect, he can _automatically_ convert them to their keyword alternatives. This transformation is done by a function 'kw'. The user should pass the positional-argument function (`labeled' as above), and an HList of default values for some of the labels. The latter may be HNil if all keyword arguments are required. The first example (no defaults) >>> kw (make_square .*. HNil) Size (1::Int) Origin (0,10) Color Red :: String "Square: 1 at (0,10) Red\n" we can permute the arguments at wish >>> kw (make_square .*. HNil) Color Red Size (1::Int) Origin (0,10) :: String "Square: 1 at (0,10) Red\n" we can also assign a name to a keyword function, or partially apply it: >>> :{ case kw (make_square .*. HNil) Color Red of f -> "here: " ++ f Origin (0,10) Size (1::Int) :} "here: Square: 1 at (0,10) Red\n" Note that it is necessary to use a monomorphic pattern binding here (lambda or case). One way to get around this is to pass @f@ instead of @kw f@ around: >>> :{ let f = hEnd $ hBuild make_square Color Red in "here: " ++ kw f Origin (0,10) Size (1::Int) :} "here: Square: 1 at (0,10) Red\n" The following is a more interesting example, with the defaults: >>> :{ let addDef f = f .*. Origin .*. (0,10) .*. RaisedBorder .*. True .*. HNil in kw (addDef make_square) Size (1::Int) Color Red ++ kw (addDef make_rect) Color (RGBColor 0 10 255) Size (1.0::Float, 2.0::Float) :} "Square: 1 at (0,10) Red\nRectangle: (1.0,2.0) at (0,10) RGBColor 0 10 255 raised border\n" The argument RaisedBorder is not given, and so the default value is used. Of course, we can override the default: >>> :{ let addDef f = f .*. Origin .*. (0,10) .*. RaisedBorder .*. True .*. HNil in case kw (addDef make_square) Color of sq -> case kw (addDef make_rect) of re -> sq Red Size (1::Int) ++ re Color (RGBColor 0 10 255) RaisedBorder False Size (1.0::Float, 2.0::Float) :} "Square: 1 at (0,10) Red\nRectangle: (1.0,2.0) at (0,10) RGBColor 0 10 255 \n" We have reshuffled a few arguments, just for fun. As you can see, the function `kw make_rect defaults' is polyvariadic indeed. We chose to partially apply 'Color' to the function `kw make_square defaults' -- so that the function `sq' is positional in its first argument, and keyword in the rest. If we omit a required argument, we get a type error: > ] testse1 = let f x = kw make_square HNil Color Red x > ] in "here: " ++ f Origin (0,10) > > Couldn't match `ErrReqdArgNotFound Size' against `[Char]' > Expected type: ErrReqdArgNotFound Size > Inferred type: [Char] ... The error message seems reasonably clear. Likewise we get an error message if we pass to a keyword function an argument it does not expect: > ] testse2 = let f x = kw make_square HNil Color Red x > ] in "here: " ++ f Origin (0,10) Size (1::Int) > ] RaisedBorder False > > No instances for (Fail (ErrUnexpectedKW RaisedBorder), > KWApply [Char] (HCons RaisedBorder (:*: Bool HNil)) [Char]) > arising from use of `f' at ... > In the second argument of `(++)', namely > `f Origin (0,10) Size (1 :: Int) RaisedBorder False' The function 'kw' receives the appropriately labeled function (such as make_square) and the HList with default values. The function 'kw' is polymorphic; the overloading is resolved based on the type of the user function *and* on the type of its continuation. The continuation indicates if a keyword argument is forthcoming, or not. In the latter case, 'kw' checks to see if the supplied defaults can provide the values of the still missing arguments. We see therefore that a function type is more than it may appear -- the type of a function is truly a heterogeneous, type level collection! The function 'kw' traverses that collection, thus performing a limited form of reflection on Haskell functions. -} {- $imploutline One of the key tools of the implementation is 'kwapply', which applies a function to a polymorphic collection of that function's arguments. The order of the arguments in the collection is irrelevant. The contraption kwapply can handle polymorphic functions with arbitrary number of labeled arguments. For example, if we define > f1 Size n = show n > f2 Size n Color m = unwords ["size:", show n, "color:", show m] > f3 Origin x Color m Size n = > unwords ["origin:", show x, "size:", show n, "color:",show m] then we can run > katest1 = kwapply f1 (Size .*. () .*. HNil) > katest11 = kwapply f1 (Size .*. "Large" .*. HNil) > > katest2 = kwapply f2 (Size .*. (1::Int) .*. Color .*. Red .*. HNil) > katest21 = kwapply f2 (Color .*. Red .*. Size .*. (1::Int) .*. HNil) > > katest3 = kwapply f3 (Size .*. (1::Int) .*. Origin .*. (2.0::Float) .*. > Color .*. Red .*. HNil) -} -- | Another key contraption is reflect_fk:: (ReflectFK fn kws) => fn -> Arg kws '[] reflect_fk :: forall fn (kws :: [*]). ReflectFK fn kws => fn -> Arg kws '[] reflect_fk fn _ = forall {k} (arg_types :: k) (arg_values :: [*]). HList arg_values -> Arg arg_types arg_values Arg HList '[] HNil {- ^ that reflects on a user-supplied function. It converts the *type* of a user function to a collection of keywords required by that function. This and the previous contraptions may be used to define an `extended' version of some user function that takes more arguments -- without the need to enumerate all arguments of the original function. We thus infringe on the area of object and module systems. The rest of the implementation is just to convert `kw fn defaults' into the application of kwapply. -} -- * The rest of the implementation {- $impl We should note that all implementation is written in the continuation-passing style (CPS) -- at the term level and especially at the _typeclass level_. One of the reasons is to avoid relying on overlapping instances: we compare types with a predicate `TypeEq x y hbool', obtain the type-level boolean, and dispatch to two non-overlapping instances of an auxiliary, continuation class. One instance handles HTrue, and the other the HFalse alternative. Please see the HList paper for more discussion of this technique. The other, equally important reason for the thorough CPS of the typeclasses is to control the order of evaluation of constraints and their functional dependencies. The sole reason is to produce informative error messages. The order of constraints is irrelevant when all the constraints are satisfied. However, if the user omitted a required keyword, many of the constraints below will fail. If a 'wrong' constraint fails first, we get a totally off-the-wall error message that gives us no clue whatsoever about the problem. By tightly constraining the order via CPS, we are able to force the typechecker to give informative error messages. -} -- * Errors data ErrReqdArgNotFound x data ErrUnexpectedKW x instance IsKeyFN (Label (s :: Symbol) -> a -> b) True {- ^ labels that impose no restriction on the type of the (single) argument which follows >>> let testF (_ :: Label "a") (a :: Int) () = a+1 >>> kw (hBuild testF) (Label :: Label "a") 5 () 6 -} {- | The purpose of this instance is to be able to use the same Symbol (type-level string) at different types. If they are supposed to be the same, then use 'Label' instead of 'K' >>> let kA = K :: forall t. K "a" t >>> let testF (K :: K "a" Int) a1 (K :: K "a" Integer) a2 () = a1-fromIntegral a2 therefore the following options works: >>> kw (hBuild testF) kA (5 :: Int) kA (3 :: Integer) () 2 >>> kw (hBuild testF) (K :: K "a" Integer) 3 (K :: K "a" Int) 5 () 2 But you cannot leave off all @Int@ or @Integer@ annotations. -} instance (r ~ (c -> b)) => IsKeyFN ( (K s c) -> r) True data K s (c :: *) = K -- * The implementation of KWApply class KWApply f arg_values r where kwapply:: f -> HList arg_values -> r instance (r ~ r') => KWApply r '[] r' where kwapply :: r -> HList '[] -> r' kwapply r f HList '[] _ = r f instance (HEq kw kw' flag, KWApply' flag (kw ->a->f') (kw' ': a' ': tail) r) => KWApply (kw ->a->f') (kw' ': a' ': tail) r where kwapply :: (kw -> a -> f') -> HList (kw' : a' : tail) -> r kwapply = forall {k} (flag :: k) f (arg_values :: [*]) r. KWApply' flag f arg_values r => Proxy flag -> f -> HList arg_values -> r kwapply' (forall {k} (t :: k). Proxy t Proxy :: Proxy flag) class KWApply' flag f arg_values r where kwapply':: Proxy flag -> f -> HList arg_values -> r instance (v' ~ v, KWApply f' tail r) => KWApply' True (kw->v->f') (kw ': v' ': tail) r where kwapply' :: Proxy 'True -> (kw -> v -> f') -> HList (kw : v' : tail) -> r kwapply' Proxy 'True _ kw -> v -> f' f (HCons kw kw_ (HCons v' v' HList tail tl)) = forall f (arg_values :: [*]) r. KWApply f arg_values r => f -> HList arg_values -> r kwapply (kw -> v -> f' f kw kw_ v' v') HList tail tl -- | Rotate the arg list ... instance (HAppendListR tail '[kw , v] ~ l', HAppendList tail '[kw, v], KWApply f l' r) => KWApply' False f (kw ': v ': tail) r where kwapply' :: Proxy 'False -> f -> HList (kw : v : tail) -> r kwapply' Proxy 'False _ f f (HCons kw kw_ (HCons v v HList tail tl)) = forall f (arg_values :: [*]) r. KWApply f arg_values r => f -> HList arg_values -> r kwapply f f (forall l1 l2. HAppend l1 l2 => l1 -> l2 -> HAppendR l1 l2 hAppend HList tail tl (kw kw_ forall e l. HExtend e l => e -> l -> HExtendR e l .*. v v forall e l. HExtend e l => e -> l -> HExtendR e l .*. HList '[] HNil)) {- | The datatype Arg below is to maintain the state of keyword accumulation: which keywords we need, and which keyword and values we have already got. arg_types is the phantom HList of keywords that are yet to be satisfied. arg_values is the @HList (kw .*. kw_value .*. etc)@ of already found keywords and their values. -} newtype Arg arg_types arg_values = Arg (HList arg_values) deriving instance Show (HList vals) => Show (Arg tys vals) {- | Reflection on a function: Given a function, return the type list of its keywords >>> :t reflect_fk (undefined::Size->Int->Color->CommonColor->String) reflect_fk (undefined::Size->Int->Color->CommonColor->String) :: Arg '[Size, Color] '[] >>> :t reflect_fk (undefined::Size->Int->()->Int) reflect_fk (undefined::Size->Int->()->Int) :: Arg '[Size] '[] -} class ReflectFK f (kws :: [*]) instance (IsKeyFN f flag, ReflectFK' flag f kws) => ReflectFK f kws class ReflectFK' (flag :: Bool) f kws instance (kkws ~ (kw ': kws), ReflectFK rest kws) => ReflectFK' True (kw->a->rest) kkws instance ('[] ~ nil) => ReflectFK' False f nil -- | The main class: collect and apply the keyword arguments class KW f arg_desc arg_def r where kwdo :: f -> arg_desc -> HList arg_def -> r instance (IsKeyFN r rflag, KW' rflag f arg_desc arg_def r) => KW f arg_desc arg_def r where kwdo :: f -> arg_desc -> HList arg_def -> r kwdo = forall {k} (rflag :: k) f arg_desc (arg_def :: [*]) r. KW' rflag f arg_desc arg_def r => Proxy rflag -> f -> arg_desc -> HList arg_def -> r kw' (forall {k} (t :: k). Proxy t Proxy ::Proxy rflag) class KW' rflag f arg_desc arg_def r where kw' :: Proxy rflag -> f -> arg_desc -> HList arg_def -> r {- | If the continuation r does not promise any more keyword arguments, apply the defaults -} instance KWMerge arg_needed arg_values arg_def f r => KW' False f (Arg arg_needed arg_values) arg_def r where kw' :: Proxy 'False -> f -> Arg arg_needed arg_values -> HList arg_def -> r kw' Proxy 'False _ f f Arg arg_needed arg_values args_given HList arg_def arg_def = forall {k} (arg_needed :: k) (arg_values :: [*]) (arg_def :: [*]) f r. KWMerge arg_needed arg_values arg_def f r => Arg arg_needed arg_values -> HList arg_def -> f -> r kwmerge Arg arg_needed arg_values args_given HList arg_def arg_def f f {- | Otherwise, collect the supplied keyword and its value, and recurse for more: -} instance (KWAcc arg_desc kw a f arg_def r, (kw->a->r) ~ kwar) => KW' True f arg_desc arg_def kwar where kw' :: Proxy 'True -> f -> arg_desc -> HList arg_def -> kwar kw' Proxy 'True _ f f arg_desc arg_desc HList arg_def arg_def kw kw_ a a = forall arg_desc kw a f (arg_def :: [*]) r. KWAcc arg_desc kw a f arg_def r => arg_desc -> kw -> a -> f -> HList arg_def -> r kwaccum arg_desc arg_desc kw kw_ a a f f HList arg_def arg_def {- | Add the needed arguments from arg_def to arg_values and continue with kwapply. That is, we try to satisfy the missing arguments from the defaults. It will be a type error if some required arguments are missing -} class KWMerge arg_needed arg_values arg_def f r where kwmerge:: Arg arg_needed arg_values -> HList arg_def -> f -> r instance KWApply f arg_values r => KWMerge '[] arg_values arg_def f r where kwmerge :: Arg '[] arg_values -> HList arg_def -> f -> r kwmerge (Arg HList arg_values arg_values) HList arg_def _ f f = forall f (arg_values :: [*]) r. KWApply f arg_values r => f -> HList arg_values -> r kwapply f f HList arg_values arg_values instance KWMerge' kw arg_def atail arg_values arg_def f r => KWMerge (kw ': atail) arg_values arg_def f r where kwmerge :: Arg (kw : atail) arg_values -> HList arg_def -> f -> r kwmerge (Arg HList arg_values arg_values) HList arg_def arg_def = forall {k} kw (list :: [*]) (atail :: k) (arg_values :: [*]) (arg_def :: [*]) f r. KWMerge' kw list atail arg_values arg_def f r => kw -> HList list -> Arg atail arg_values -> HList arg_def -> f -> r kwmerge' (forall a. HasCallStack => a undefined :: kw) HList arg_def arg_def ((forall {k} (arg_types :: k) (arg_values :: [*]). HList arg_values -> Arg arg_types arg_values Arg HList arg_values arg_values)::Arg atail arg_values) HList arg_def arg_def class KWMerge' kw list atail arg_values arg_def f r where kwmerge':: kw -> HList list -> (Arg atail arg_values) -> HList arg_def -> f -> r instance (Fail (ErrReqdArgNotFound kw), nff ~ (ErrReqdArgNotFound kw)) => KWMerge' kw '[] atail arg_values arg_def f nff where kwmerge' :: kw -> HList '[] -> Arg atail arg_values -> HList arg_def -> f -> nff kwmerge' = forall a. HasCallStack => a undefined instance (HEq kw kw' flag, KWMerge'' flag kw (kw' ': etc) atail arg_values arg_def f r) => KWMerge' kw (kw' ': etc) atail arg_values arg_def f r where kwmerge' :: kw -> HList (kw' : etc) -> Arg atail arg_values -> HList arg_def -> f -> r kwmerge' = forall {k} (flag :: Bool) kw (list :: [*]) (atail :: k) (arg_values :: [*]) (arg_def :: [*]) f r. KWMerge'' flag kw list atail arg_values arg_def f r => Proxy flag -> kw -> HList list -> Arg atail arg_values -> HList arg_def -> f -> r kwmerge'' (forall {k} (t :: k). Proxy t Proxy :: Proxy flag) class KWMerge'' (flag :: Bool) kw (list :: [*]) atail arg_values arg_def f r where kwmerge'':: Proxy flag -> kw -> HList list -> Arg atail arg_values -> HList arg_def -> f -> r instance KWMerge atail (kw ': v ': arg_values) arg_def f r => KWMerge'' True kw (kw ': v ': tail) atail arg_values arg_def f r where kwmerge'' :: Proxy 'True -> kw -> HList (kw : v : tail) -> Arg atail arg_values -> HList arg_def -> f -> r kwmerge'' Proxy 'True _ kw _ (HCons kw kw_ (HCons v v HList tail _)) (Arg HList arg_values arg_values) = forall {k} (arg_needed :: k) (arg_values :: [*]) (arg_def :: [*]) f r. KWMerge arg_needed arg_values arg_def f r => Arg arg_needed arg_values -> HList arg_def -> f -> r kwmerge ((forall {k} (arg_types :: k) (arg_values :: [*]). HList arg_values -> Arg arg_types arg_values Arg (kw kw_ forall e l. HExtend e l => e -> l -> HExtendR e l .*. v v forall e l. HExtend e l => e -> l -> HExtendR e l .*. HList arg_values arg_values)):: (Arg atail (kw ': v ': arg_values))) instance KWMerge' kw tail atail arg_values arg_def f r => KWMerge'' False kw (kw' ': v' ': tail) atail arg_values arg_def f r where kwmerge'' :: Proxy 'False -> kw -> HList (kw' : v' : tail) -> Arg atail arg_values -> HList arg_def -> f -> r kwmerge'' Proxy 'False _ kw kw_ (HCons kw' _ (HCons v' _ HList tail tl)) = forall {k} kw (list :: [*]) (atail :: k) (arg_values :: [*]) (arg_def :: [*]) f r. KWMerge' kw list atail arg_values arg_def f r => kw -> HList list -> Arg atail arg_values -> HList arg_def -> f -> r kwmerge' kw kw_ HList tail tl -- | Add the real argument to the Arg structure, and continue class KWAcc arg_desc kw a f arg_def r where kwaccum:: arg_desc -> kw -> a -> f -> HList arg_def -> r instance (HDelete kw arg_types arg_types', KW f (Arg arg_types' (kw ': a ': arg_values)) arg_def r) => KWAcc (Arg arg_types arg_values) kw a f arg_def r where kwaccum :: Arg arg_types arg_values -> kw -> a -> f -> HList arg_def -> r kwaccum (Arg HList arg_values arg_values) kw kw_ a a f f = forall f arg_desc (arg_def :: [*]) r. KW f arg_desc arg_def r => f -> arg_desc -> HList arg_def -> r kwdo f f (forall {k} (arg_types :: k) (arg_values :: [*]). HList arg_values -> Arg arg_types arg_values Arg (kw kw_ forall e l. HExtend e l => e -> l -> HExtendR e l .*. a a forall e l. HExtend e l => e -> l -> HExtendR e l .*. HList arg_values arg_values):: Arg arg_types' (kw ': a ': arg_values)) -- | Delete e from l to yield l' The element e must occur in l class HDelete e (l :: [k]) (l' :: [k]) instance (Fail (ErrUnexpectedKW e), r ~ '[]) => HDelete e '[] r instance (HEq e e' flag, HDelete' flag e (e' ': tail) l') => HDelete e (e' ': tail) l' class HDelete' (flag :: Bool) e l l' instance (tail' ~ tail) => HDelete' True e (e ': tail) tail' instance (HDelete e tail tail', e'tail ~ (e' ': tail')) => HDelete' False e (e' ': tail) e'tail {- | @kw@ takes a 'HList' whose first element is a function, and the rest of the elements are default values. A useful trick is to have a final argument @()@ which is not eaten up by a label (A only takes 1 argument). That way when you supply the () it knows there are no more arguments (?). >>> data A = A >>> instance IsKeyFN (A -> a -> b) True >>> let f A a () = a + 1 >>> let f' = f .*. A .*. 1 .*. HNil >>> kw f' A 0 () 1 >>> kw f' () 2 -} class Kw (fn :: *) (arg_def :: [*]) r where kw :: HList (fn ': arg_def) -> r instance (KW' rflag fn akws arg_def r, akws ~ (Arg (kws :: [*]) '[]), ReflectFK' flag fn kws, IsKeyFN r rflag, IsKeyFN fn (flag::Bool)) => Kw fn arg_def r where kw :: HList (fn : arg_def) -> r kw (HCons fn f HList arg_def arg_def) = forall f arg_desc (arg_def :: [*]) r. KW f arg_desc arg_def r => f -> arg_desc -> HList arg_def -> r kwdo fn f akws rfk HList arg_def arg_def :: r where rfk :: akws rfk = forall fn (kws :: [*]). ReflectFK fn kws => fn -> Arg kws '[] reflect_fk fn f :: akws data TaggedToKW = TaggedToKW instance (x ~ Tagged l v, y ~ HList '[Label l, v]) => ApplyAB TaggedToKW x y where applyAB :: TaggedToKW -> x -> y applyAB TaggedToKW _ (Tagged v v) = forall r. HBuild' '[] r => r hBuild forall {k} (l :: k). Label l Label v v {- | convert a 'Record' into a list that can supply default arguments for 'kw' A bit of setup: >>> :set -XQuasiQuotes >>> import Data.HList.RecordPuns >>> let f (_ :: Label "a") a (_ :: Label "b") b () = a `div` b >>> let a = 2; b = 1; f' = f .*. recToKW [pun| a b |] >>> kw f' () 2 >>> kw f' (Label :: Label "a") 10 () 10 -} recToKW :: forall a b. (HMapCxt HList TaggedToKW a b, HConcat b) => Record a -> HList (HConcatR b) recToKW :: forall (a :: [*]) (b :: [*]). (HMapCxt HList TaggedToKW a b, HConcat b) => Record a -> HList (HConcatR b) recToKW (Record HList a r) = forall (xs :: [*]). HConcat xs => HList xs -> HList (HConcatR xs) hConcat (forall {a :: [*]} {b :: [*]} {r :: [*] -> *} {f}. (SameLength' a b, SameLength' b a, HMapAux r f a b) => f -> r a -> r b hMap TaggedToKW TaggedToKW HList a r :: HList b) {- $originalIntro > From oleg-at-okmij.org Fri Aug 13 14:58:35 2004 > To: haskell@haskell.org > Subject: Keyword arguments > From: oleg-at-pobox.com > Message-ID: <20040813215834.F1FF3AB7E@Adric.metnet.navy.mil> > Date: Fri, 13 Aug 2004 14:58:34 -0700 (PDT) > Status: OR We show the Haskell implementation of keyword arguments, which goes well beyond records (e.g., in permitting the re-use of labels). Keyword arguments indeed look just like regular, positional arguments. However, keyword arguments may appear in any order. Furthermore, one may associate defaults with some keywords; the corresponding arguments may then be omitted. It is a type error to omit a required keyword argument. The latter property is in stark contrast with the conventional way of emulating keyword arguments via records. Also in marked contrast with records, keyword labels may be reused throughout the code with no restriction; the same label may be associated with arguments of different types in different functions. Labels of Haskell records may not be re-used. Our solution is essentially equivalent to keyword arguments of DSSSL Scheme or labels of OCaml. Keyword argument functions are naturally polyvariadic: Haskell does support varargs! Keyword argument functions may be polymorphic. As usual, functions with keyword arguments may be partially applied. On the downside, sometimes one has to specify the type of the return value of the function (if the keyword argument function has no signature -- the latter is the norm, see below) -- provided that the compiler cannot figure the return type out on its own. This is usually only the case when we use keyword functions at the top level (GHCi prompt). Our solution requires no special extensions to Haskell and works with the existing Haskell compilers; it is tested on GHC 6.0.1. The overlapping instances extension is not necessary (albeit it is convenient). The gist of our implementation is the realization that the type of a function is a polymorphic collection of its argument types -- a collection that we can traverse. This message thus illustrates a limited form of the reflection on a function. Our implementation is a trivial extension of the strongly-typed polymorphic open records described in <http://homepages.cwi.nl/~ralf/HList/> In fact, the implementation relies on the HList library. To run the code (which this message is), one needs to download the HList library from the above site. The HList paper discusses the issue of labels in some detail. The paper gives three different representations. One of them needs no overlapping instances and is very portable. In this message, we chose a representation that relies on generic type equality and therefore needs overlapping instances as implemented in GHC. Again, this is merely an outcome of our non-deterministic choice. It should be emphasized that other choices are possible, which do not depend on overlapping instances at all. Please see the HList paper for details. -} {- $todo [@better instances for Symbol@] There isn't a pair @(K2 \"Origin\" (Int, Int))@ @(K \"hi\")@ that behaves just like Origin below. something is possible between constraintkinds. See 'Data.HList.FakePrelude.Fun' > instance (a ~ (Int,Int)) => IsKeyFN (Origin->a->b) True [@wildcard/catchall@] like in R. This would be a special keyword for keyword args that didn't match. They would be put in a HList/Record argument like @...@ [@investigate first-classness of varargs@] for whatever reason you can't have @f = kw fn blah@ and then pass more arguments on to fn. This is bad. It used to work (in the ghc6.0 days and probably up to 6.12). Some convenience functions/operators should be added which do the same thing as: > fn `hAppendList` hBuild a b c d e -}