{-# LANGUAGE CPP #-}

{- |
   The HList library

   (C) 2004, Oleg Kiselyov, Ralf Laemmel, Keean Schupke

   Some very basic technology for faking dependent types in Haskell.
-}

module Data.HList.FakePrelude
    (module Data.HList.FakePrelude,
     -- * re-exports
     module Data.Proxy,
     module Data.Tagged,
     Monoid(..),
     Any) where

import Data.Proxy
import Data.Tagged
import GHC.Exts (Constraint,Any)
import GHC.TypeLits
#if __GLASGOW_HASKELL__ >= 800
import qualified GHC.TypeLits as Data.HList.FakePrelude (ErrorMessage((:$$:), (:<>:))) -- XXX check this works?
#endif
import Control.Applicative
#if NEW_TYPE_EQ
import Data.Type.Equality (type (==))
#endif

#if !OLD_TYPEABLE
import Data.Typeable
#endif

#if __GLASGOW_HASKELL__ < 709
import Data.Monoid (Monoid(..))
#endif


-- --------------------------------------------------------------------------
-- * A heterogeneous apply operator

-- | simpler/weaker version where type information only propagates forward
-- with this one. 'applyAB' defined below, is more complicated / verbose to define,
-- but it offers better type inference. Most uses have been converted to
-- 'applyAB', so there is not much that can be done with 'Apply'.
class Apply f a where
  type ApplyR f a :: *
  apply :: f -> a -> ApplyR f a

{- $note

 Polymorphic functions are not first-class in haskell. An example of this
 is:

 > f op = (op (1 :: Double), op (1 :: Int))

 [@RankNTypes@]

 One solution is to enable `-XRankNTypes` and then write a type
 signature which might be `f :: (forall a. Num a => a -> a)`. This
 does not work in the context of HList, since we want to use functions
 that do not necessarily fall into the pattern of (forall a. c a => a -> a).

 [@MultipleArguments@]

 Another solution is to rewrite @op@ to look like

 > f op1 op2 = (op1 (1:: Double), op2 (1 :: Int))

 In some sense this approach works (see HZip), but the result
 is constrained to as many function applications as you are willing to
 write (ex. a function that works for records of six entries would
 look like @hBuild f f f f f f@).


 [@Defunctionalization@]

 Therefore the selected solution is to write an instance of 'ApplyAB' for a data
 type that takes the place of the original function. In other words,

 > data Fn = Fn
 > instance ApplyAB Fn a b where applyAB Fn a = actual_fn a

 Normally you would have been able to pass around the definition actual_fn.

 [@Type inference / Local functional dependencies@]

 Note that @class ApplyAB@ has three parameters and no functional dependencies.
 Instances should be written in the style:

 > instance (int ~ Int, double ~ Double) => ApplyAB Fn int double
 >  where applyAB _ = fromIntegral

 rather than the more natural

 > instance ApplyAB Fn Int Double

 The first instance allows types to be inferred as if we had
 @class ApplyAB a b c | a -> b c@, while the second instance
 only matches if ghc already knows that it needs
 @ApplyAB Fn Int Double@. Since @applyAB Fn :: Int -> Double@
 has a monomorphic type, this trimmed down example does not
 really make sense because @applyAB (fromIntegral :: Int -> Double)@
 is exactly the same. Nontheless, the other uses of @ApplyAB@
 follow this pattern, and the benefits are seen when the type of
 @applyAB Fn@ has at least one type variable.

 Additional explanation can be found
 in <http://okmij.org/ftp/Haskell/typecast.html#local-fd local functional dependencies>


 [@AmbiguousTypes@]

 Note that ghc only allows AllowAmbiguousTypes when a type
 signature is provided. Thus expressions such as:

 > data AddJust = AddJust
 > instance (y ~ Maybe x) => ApplyAB AddJust x y where
 >    applyAB _ x = Just x
 >
 > twoJustsBad = hMap AddJust . hMap AddJust -- ambiguous type

 Are not accepted without a type signature that references the
 intermediate \"b\":

 > twoJusts :: forall r a b c. (HMapCxt r AddJust a b, HMapCxt r AddJust b c) =>
 >        r a -> r c
 > twoJusts a = hMap AddJust (hMap AddJust a :: r b)

 An apply class with functional dependencies

 > class ApplyAB' f a b | f a -> b, f b -> a

 Or with equivalent type families

 > class (GetB f a ~ b, GetA f b ~ a) => ApplyAB' f a b

 would not require an annotation for @twoJusts@. However,
 not all instances of ApplyAB will satisfy those functional
 dependencies, and thus the number of classes would proliferate.
 Furthermore, inference does not have to be in one direction
 only, as the example of 'Data.HList.HList.HMap' shows.

-}

-- | No constraints on result and argument types
class ApplyAB f a b where
  applyAB :: f -> a -> b


{- $fun

 'Fun' can be used instead of writing a new instance of
 'ApplyAB'. Refer to the definition/source for the the most
 concise explanation. A more wordy explanation is given below:

 A type signature needs to be provided on 'Fun' to make it work.
 Depending on the kind of the parameters to 'Fun', a number of
 different results happen.


 [@ex1@]

 A list of kind @[* -> Constraint]@ produces those
 constraints on the argument type:

 >>> :set -XDataKinds
 >>> let plus1f x = if x < 5 then x+1 else 5
 >>> let plus1 = Fun plus1f :: Fun '[Num, Ord] '()
 >>> :t applyAB plus1
 applyAB plus1 :: (Num b, Ord b) => b -> b

 >>> let xs = [1 .. 8]
 >>> map (applyAB plus1) xs == map plus1f xs
 True

 Also note the use of @'()@ to signal that the result
 type is the same as the argument type.


 A single constraint can also be supplied:

 >>> let succ1 = Fun succ :: Fun Enum '()
 >>> :t applyAB succ1
 applyAB succ1 :: Enum b => b -> b


 >>> let just = Fun Just :: Fun '[] Maybe
 >>> :t applyAB just
 applyAB just :: a -> Maybe a


-}
data Fun (cxt :: k1) (getb :: k2)
    = Fun (forall a. FunCxt cxt a => a -> FunApp getb a)

{- | see 'Fun'. The only difference here is that the argument
type is calculated from the result type.

 >>> let rd = Fun' read :: Fun' Read String
 >>> :t applyAB rd
 applyAB rd :: Read b => [Char] -> b

 >>> let fromJust' = Fun' (\(Just a) -> a) :: Fun' '[] Maybe
 >>> :t applyAB fromJust'
 applyAB fromJust' :: Maybe b -> b

Note this use of Fun' means we don't have to get the b out of @Maybe b@,


-}
data Fun' (cxt :: k1) (geta :: k2)
    = Fun' (forall b. FunCxt cxt b => FunApp geta b -> b)


type family FunApp (fns :: k) a

type instance FunApp (fn :: *) a = fn
type instance FunApp (fn :: * -> *) a = fn a
type instance FunApp (fn :: ()) a = a

type family FunCxt (cxts :: k) a :: Constraint
type instance FunCxt (x ': xs) a = (x a, FunCxt xs a)
type instance FunCxt (cxt :: * -> Constraint) a = cxt a
type instance FunCxt '[] a = ()
-- | should there be so many ways to write no constraint?
type instance FunCxt (cxt :: ()) a = ()
type instance FunCxt (cxt :: *) a = (cxt ~ a)

instance (FunCxt cxt a, FunApp getb a ~ b)  => ApplyAB (Fun cxt getb) a b where
    applyAB :: Fun cxt getb -> a -> b
applyAB (Fun forall a. FunCxt cxt a => a -> FunApp getb a
f) a
x = forall a. FunCxt cxt a => a -> FunApp getb a
f a
x

instance (FunCxt cxt b, FunApp geta b ~ a)  => ApplyAB (Fun' cxt geta) a b where
    applyAB :: Fun' cxt geta -> a -> b
applyAB (Fun' forall b. FunCxt cxt b => FunApp geta b -> b
f) a
x = forall b. FunCxt cxt b => FunApp geta b -> b
f a
x




-- ** Simple useful instances of Apply
-- | note this function will only be available at a single type
-- (that is, @hMap succ@ will only work on 'HList' that contain
-- only one type)
instance (x' ~ x, y' ~ y) => ApplyAB (x' -> y') x y where
  applyAB :: (x' -> y') -> x -> y
applyAB x' -> y'
f x
x = x' -> y'
f x
x



{- | print. An alternative implementation could be:

>>> let hPrint = Fun print :: Fun Show (IO ())

This produces:

>>> :t applyAB hPrint
applyAB hPrint :: Show a => a -> IO ()

-}
data HPrint = HPrint

instance (io ~ IO (), Show x) => ApplyAB HPrint x io where
  applyAB :: HPrint -> x -> io
applyAB HPrint
_ x
x = forall a. Show a => a -> IO ()
print x
x



{- | read

>>> applyAB HRead "5.0" :: Double
5.0

-}
data HRead = HRead
instance (String ~ string, Read a) => ApplyAB HRead string a where
    applyAB :: HRead -> string -> a
applyAB HRead
_ string
x = forall a. Read a => String -> a
read string
x

-- | show
data HShow = HShow
instance (String ~ string, Show a) => ApplyAB HShow a string where
    applyAB :: HShow -> a -> string
applyAB HShow
_ a
x = forall a. Show a => a -> String
show a
x





{- | Compose two instances of 'ApplyAB'

>>> applyAB (HComp HRead HShow) (5::Double) :: Double
5.0

-}
data HComp g f = HComp g f -- ^ @g . f@

instance (ApplyAB f a b, ApplyAB g b c) => ApplyAB (HComp g f) a c where
    applyAB :: HComp g f -> a -> c
applyAB ~(HComp g
g f
f) a
x = forall f a b. ApplyAB f a b => f -> a -> b
applyAB g
g (forall f a b. ApplyAB f a b => f -> a -> b
applyAB f
f a
x :: b)


{- | @app Comp (f,g) = g . f@. Works like:

>>> applyAB Comp (succ, pred) 'a'
'a'

>>> applyAB Comp (toEnum :: Int -> Char, fromEnum) 10
10

Note that defaulting will sometimes give you the wrong thing

> used to work (with associated types calculating result/argument types)
> >>> applyAB Comp (fromEnum, toEnum) 'a'
> *** Exception: Prelude.Enum.().toEnum: bad argument

-}
data Comp = Comp

instance (y ~ y', fg ~ (x -> y, y' -> z), r ~ (x -> z)) => ApplyAB Comp fg  r
 where
  applyAB :: Comp -> fg -> r
applyAB Comp
_ (x -> y'
f,y' -> z
g) = y' -> z
g forall b c a. (b -> c) -> (a -> b) -> a -> c
. x -> y'
f

-- | (\(a,b) -> f a >> b)
newtype HSeq x = HSeq x
instance (Monad m, ApplyAB f x fx, fx ~ m (), pair ~ (x,m ()),
          ApplyAB f x (m ()) ) => ApplyAB (HSeq f) pair fx where
  applyAB :: HSeq f -> pair -> fx
applyAB (HSeq f
f) (x
x,m ()
c) = do m () -> m ()
asVoid (forall f a b. ApplyAB f a b => f -> a -> b
applyAB f
f x
x); m ()
c
    where asVoid :: m () -> m ()
          asVoid :: m () -> m ()
asVoid m ()
t = m ()
t



-- | @HJust ()@ is a placeholder for a function that applies the 'HJust' constructor
instance hJustA ~ HJust a => ApplyAB (HJust t) a hJustA where
    applyAB :: HJust t -> a -> hJustA
applyAB HJust t
_ a
a = forall x. x -> HJust x
HJust a
a


-- | 'flip'
data HFlip = HFlip

instance (f1 ~ (a -> b -> c), f2 ~ (b -> a -> c))  => ApplyAB HFlip f1 f2 where
    applyAB :: HFlip -> f1 -> f2
applyAB HFlip
_ = forall a b c. (a -> b -> c) -> b -> a -> c
flip


-- | 'fmap'
newtype HFmap f = HFmap f

instance (x ~ t a,
          y ~ t b,
          Functor t,
          ApplyAB f a b) =>
  ApplyAB (HFmap f) x y where
    applyAB :: HFmap f -> x -> y
applyAB (HFmap f
f) = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall f a b. ApplyAB f a b => f -> a -> b
applyAB f
f)


-- | 'liftA2'
newtype LiftA2 f = LiftA2 f

instance (ApplyAB f (x,y) z,
          mz ~ m z,
          mxy ~ (m x, m y),
          Applicative m) => ApplyAB (LiftA2 f) mxy mz where
    applyAB :: LiftA2 f -> mxy -> mz
applyAB (LiftA2 f
f) mxy
xy = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (forall a b c. ((a, b) -> c) -> a -> b -> c
curry (forall f a b. ApplyAB f a b => f -> a -> b
applyAB f
f)) forall a b c. (a -> b -> c) -> (a, b) -> c
`uncurry` mxy
xy


-- | 'untag'
data HUntag = HUntag
instance (Tagged t x ~ tx) => ApplyAB HUntag tx x where
    applyAB :: HUntag -> tx -> x
applyAB HUntag
_ (Tagged x
x) = x
x


-- --------------------------------------------------------------------------
-- * Proxy
--

-- $note see "Data.Proxy"

-- | A special 'Proxy' for record labels, polykinded
data Label l = Label

labelToProxy :: Label l -> Proxy l
labelToProxy :: forall {k} (l :: k). Label l -> Proxy l
labelToProxy Label l
_ = forall {k} (t :: k). Proxy t
Proxy

class ShowLabel l where
  showLabel :: Label l -> String


-- --------------------------------------------------------------------------

-- * Booleans

{- $boolNote

GHC already lifts booleans, defined as

> data Bool = True | False

to types: Bool becomes kind and True and False (also denoted by
'True and 'False) become nullary type constructors.

The above line is equivalent to

> data HTrue
> data HFalse

> class HBool x
> instance HBool HTrue
> instance HBool HFalse

-}

-- ** Value-level proxies
hTrue  :: Proxy True ; hTrue :: Proxy 'True
hTrue  = forall {k} (t :: k). Proxy t
Proxy
hFalse :: Proxy False; hFalse :: Proxy 'False
hFalse = forall {k} (t :: k). Proxy t
Proxy


-- **  Conjunction

type family HAnd (t1 :: Bool) (t2 :: Bool) :: Bool
type instance HAnd False t  = False
type instance HAnd True  t  = t

-- | `demote' to values
hAnd :: Proxy t1 -> Proxy t2 -> Proxy (HAnd t1 t2)
hAnd :: forall (t1 :: Bool) (t2 :: Bool).
Proxy t1 -> Proxy t2 -> Proxy (HAnd t1 t2)
hAnd Proxy t1
_ Proxy t2
_ = forall {k} (t :: k). Proxy t
Proxy


-- ** Disjunction

type family HOr (t1 :: Bool) (t2 :: Bool) :: Bool
type instance HOr False t    = t
type instance HOr True t     = True

-- | `demote' to values
hOr :: Proxy t1 -> Proxy t2 -> Proxy (HOr t1 t2)
hOr :: forall (t1 :: Bool) (t2 :: Bool).
Proxy t1 -> Proxy t2 -> Proxy (HOr t1 t2)
hOr Proxy t1
_ Proxy t2
_ = forall {k} (t :: k). Proxy t
Proxy

{- $boolHistoricalNote

Compare with the original code based on functional dependencies:

> class (HBool t, HBool t', HBool t'') => HOr t t' t'' | t t' -> t''
>  where
>   hOr :: t -> t' -> t''

> instance HOr HFalse HFalse HFalse
>  where
>   hOr _ _ = hFalse

> instance HOr HTrue HFalse HTrue
>  where
>   hOr _ _ = hTrue

> instance HOr HFalse HTrue HTrue
>  where
>   hOr _ _ = hTrue

> instance HOr HTrue HTrue HTrue
>  where
>   hOr _ _ = hTrue
-}

type family HNot (x :: Bool) :: Bool
type instance HNot True = False
type instance HNot False = True

-- | as compared with 'HNot' this version is injective
class HNotFD (b :: Bool) (nb :: Bool) | b -> nb, nb -> b
instance HNotFD True False
instance HNotFD False True

hNot :: HNotFD a notA => Proxy a -> Proxy notA
hNot :: forall (a :: Bool) (notA :: Bool).
HNotFD a notA =>
Proxy a -> Proxy notA
hNot Proxy a
_ = forall {k} (t :: k). Proxy t
Proxy


class HCond (t :: Bool) x y z | t x y -> z
 where
  hCond :: Proxy t -> x -> y -> z

instance HCond False x y y
 where
  hCond :: Proxy 'False -> x -> y -> y
hCond Proxy 'False
_ x
_ y
y = y
y

instance HCond True x y x
 where
  hCond :: Proxy 'True -> x -> y -> x
hCond Proxy 'True
_ x
x y
_ = x
x


-- ** Boolean equivalence

type family HBoolEQ (t1 :: Bool) (t2 :: Bool) :: Bool
type instance HBoolEQ False False    = True
type instance HBoolEQ False True     = False
type instance HBoolEQ True  False    = False
type instance HBoolEQ True  True     = True

-- We could define all kinds of further Boolean operations.
-- We omit everything what's not needed for the code in the paper.

-- --------------------------------------------------------------------------

-- * Naturals

-- | The data type to be lifted to the type level
data HNat = HZero | HSucc HNat


hZero :: Proxy HZero; hZero :: Proxy 'HZero
hZero = forall {k} (t :: k). Proxy t
Proxy
hSucc :: Proxy (n :: HNat) -> Proxy (HSucc n); hSucc :: forall (n :: HNat). Proxy n -> Proxy ('HSucc n)
hSucc Proxy n
_ = forall {k} (t :: k). Proxy t
Proxy
hPred :: Proxy (HSucc n) -> Proxy n; hPred :: forall (n :: HNat). Proxy ('HSucc n) -> Proxy n
hPred Proxy ('HSucc n)
_ = forall {k} (t :: k). Proxy t
Proxy

class HNat2Integral (n::HNat) where
    hNat2Integral :: Integral i => Proxy n -> i

type family HNat2Nat (n :: HNat) :: Nat
type instance HNat2Nat HZero = 0
type instance HNat2Nat (HSucc n) = 1 + HNat2Nat n

#if MIN_VERSION_base(4,7,0)
{- Instead convert HNat to GHC.TypeLits.'Nat' with 'HNat2Nat' and use functions
from that module to produce the 'Integer' -}
instance KnownNat (HNat2Nat n) => HNat2Integral n where
    hNat2Integral :: forall i. Integral i => Proxy n -> i
hNat2Integral Proxy n
_ = forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (forall {k} (t :: k). Proxy t
Proxy :: Proxy (HNat2Nat n)))
#else
{- doesn't work: gives "No instance for (SingI Nat (1 + (1 + 0)))"
instance SingI (HNat2Nat n) => HNat2Integral n where
    hNat2Integral _ = fromIntegral (fromSing (sing :: Sing (HNat2Nat n)))
-}

-- | a slow (at runtime) implementation for ghc 7.6:
instance HNat2Integral HZero where
    hNat2Integral _ = 0

instance HNat2Integral n => HNat2Integral (HSucc n) where
    hNat2Integral n = hNat2Integral (hPred n) + 1
#endif


class HNats2Integrals (ns :: [HNat]) where
    hNats2Integrals :: Integral i => Proxy ns -> [i]

instance HNats2Integrals '[] where
    hNats2Integrals :: forall i. Integral i => Proxy '[] -> [i]
hNats2Integrals Proxy '[]
_ = []

instance (HNats2Integrals ns,
          HNat2Integral n)
  => HNats2Integrals (n ': ns) where
    hNats2Integrals :: forall i. Integral i => Proxy (n : ns) -> [i]
hNats2Integrals Proxy (n : ns)
_ = forall (n :: HNat) i. (HNat2Integral n, Integral i) => Proxy n -> i
hNat2Integral (forall {k} (t :: k). Proxy t
Proxy :: Proxy n) forall a. a -> [a] -> [a]
:
                        forall (ns :: [HNat]) i.
(HNats2Integrals ns, Integral i) =>
Proxy ns -> [i]
hNats2Integrals (forall {k} (t :: k). Proxy t
Proxy :: Proxy ns)



-- | Equality on natural numbers
-- (eventually to be subsumed by the universal polykinded HEq)
type family HNatEq (t1 :: HNat) (t2 :: HNat) :: Bool
type instance HNatEq HZero HZero          = True
type instance HNatEq HZero (HSucc n)      = False
type instance HNatEq (HSucc n) HZero      = False
type instance HNatEq (HSucc n) (HSucc n') = HNatEq  n n'


-- | Less than

type family HLt (x :: HNat) (y :: HNat) :: Bool

type instance HLt HZero HZero          = False
type instance HLt HZero (HSucc n)      = True
type instance HLt (HSucc n) HZero      = False
type instance HLt (HSucc n) (HSucc n') = HLt  n n'

hLt :: Proxy x -> Proxy y -> Proxy (HLt x y)
hLt :: forall (x :: HNat) (y :: HNat).
Proxy x -> Proxy y -> Proxy (HLt x y)
hLt Proxy x
_ Proxy y
_ = forall {k} (t :: k). Proxy t
Proxy


-- | Less than or equal to
type family HLe (x :: HNat) (y :: HNat) :: Bool

type instance HLe HZero HZero          = True
type instance HLe (HSucc x) y          = HLt x y

hLe :: Proxy x -> Proxy y -> Proxy (HLe x y)
hLe :: forall (x :: HNat) (y :: HNat).
Proxy x -> Proxy y -> Proxy (HLe x y)
hLe Proxy x
_ Proxy y
_ = forall {k} (t :: k). Proxy t
Proxy

-- | @HDiv2 x@ behaves like @x `div` 2@
type family HDiv2 (x :: HNat) :: HNat
type instance HDiv2 HZero = HZero
type instance HDiv2 (HSucc HZero) = HZero
type instance HDiv2 (HSucc (HSucc a)) = HSucc (HDiv2 a)



-- --------------------------------------------------------------------------
-- * Maybies
-- $maybiesNote We cannot use lifted Maybe since the latter are not populated

data    HNothing  = HNothing  deriving Int -> HNothing -> ShowS
[HNothing] -> ShowS
HNothing -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [HNothing] -> ShowS
$cshowList :: [HNothing] -> ShowS
show :: HNothing -> String
$cshow :: HNothing -> String
showsPrec :: Int -> HNothing -> ShowS
$cshowsPrec :: Int -> HNothing -> ShowS
Show
newtype HJust x   = HJust x   deriving Int -> HJust x -> ShowS
forall x. Show x => Int -> HJust x -> ShowS
forall x. Show x => [HJust x] -> ShowS
forall x. Show x => HJust x -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [HJust x] -> ShowS
$cshowList :: forall x. Show x => [HJust x] -> ShowS
show :: HJust x -> String
$cshow :: forall x. Show x => HJust x -> String
showsPrec :: Int -> HJust x -> ShowS
$cshowsPrec :: forall x. Show x => Int -> HJust x -> ShowS
Show


-- --------------------------------------------------------------------------

-- * Polykinded Equality for types
-- | We have to use Functional dependencies for now,
-- for the sake of the generic equality.
class HEq (x :: k) (y :: k) (b :: Bool) | x y -> b

-- | Equality for types that may have different kinds. This definition
-- allows operations on @Record [Tagged \"x\" a, Tagged 2 b]@ to work
-- as expected.
type HEqK (x :: k1) (y :: k2) (b :: Bool) = HEq (Proxy x) (Proxy y) b

#if NEW_TYPE_EQ
-- | Uses @(==) :: * -> * -> Bool@ because
-- there is no polykinded instance of (==),
-- since that one overlaps "more productive"
-- instances that pattern match on types.
instance ((Proxy x == Proxy y) ~ b) => HEq x y b
#endif

hEq :: HEq x y b => x -> y -> Proxy b
hEq :: forall x y (b :: Bool). HEq x y b => x -> y -> Proxy b
hEq x
_ y
_ = forall {k} (t :: k). Proxy t
Proxy


-- | this class generalizes HEq by allowing the choice of @f@ to allow
-- equating only part of x and y
class HEqByFn f => HEqBy (f :: t) (x :: k) (y :: k) (b :: Bool) | f x y -> b




-- | Every instance of this class should have an instance of 'HEqBy'
class HEqByFn f

-- * Arity

type Arity f n = (ArityFwd f n, ArityRev f n)

-- | calculate the number of arguments a function can take
class ArityFwd (f :: *) (n :: HNat) | f -> n


-- | given the number of arguments a function can take, make sure
-- the function type actually matches
class ArityRev (f :: *) (n :: HNat) -- n -> f -- if we had -XDysfunctionalDependencies

instance ArityRev f HZero
instance (xf ~ (x -> f), ArityRev f n) => ArityRev xf (HSucc n)


-- --------------------------------------------------------------------------

-- * Staged equality
-- |
--
--  * Establish type equality statically
--
--  * Establish remaining value-level equality dynamically
--
-- removed: use typeable


-- --------------------------------------------------------------------------
-- * Type-safe cast -- no longer need. We use a a ~ b


-- * Cast

-- | Named after 'Data.Typeable.cast', which behaves the same at runtime.
-- One difference is that there is a HCast instance for every type, while
-- 'Typeable' instances can be missing sometimes.

class HCast x y where
    hCast :: x -> Maybe y

instance (HEq x y b, HCast1 b x y) => HCast x y where
    hCast :: x -> Maybe y
hCast = forall (b :: Bool) x y. HCast1 b x y => Proxy b -> x -> Maybe y
hCast1 (forall {k} (t :: k). Proxy t
Proxy :: Proxy b)

-- | helper for 'HCast'
class HCast1 (b :: Bool) x y where
    hCast1 :: Proxy b -> x -> Maybe y

instance (x ~ y) => HCast1 True x y where
    hCast1 :: Proxy 'True -> x -> Maybe y
hCast1 Proxy 'True
_ x
x = forall a. a -> Maybe a
Just x
x

instance HCast1 False x y where
    hCast1 :: Proxy 'False -> x -> Maybe y
hCast1 Proxy 'False
_ x
_ = forall a. Maybe a
Nothing




-- --------------------------------------------------------------------------

-- * Error messages

{- | A class without instances for explicit failure.

Note that with ghc>=8.0, `x :: TypeError` which is formatted properly.
Otherwise `x` is made of nested (left-associated) promoted tuples.
For example:

> (x ~ '( '( '("the", Int), "is wrong") ) ) :: ((,) Symbol *, Symbol)

Therefore code that works across ghc-7.6 through ghc-8.0 needs to
use ErrText, ErrShowType, :<>:, :$$: to construct the type x.  -}
class Fail (x :: k)

#if __GLASGOW_HASKELL__ >= 800
-- | use the alias ErrText to prevent conflicts with Data.Text
--
-- GHC.TypeLits.:<>: and GHC.TypeLits.:$$: are re-exported
type ErrText x = GHC.TypeLits.Text x
type ErrShowType x = GHC.TypeLits.ShowType x

-- type Fail = TypeError -- another option
instance TypeError x => Fail x
#else

type ErrText x = x
type ErrShowType x = x
type x :<>: y = '(x,y)
type x :$$: y = '(x,y)
infixl 6 :<>:
infixl 5 :$$:
#endif

-- ** Error messages used elsewhere
type FieldNotFound key collection = ErrText "key" :<>: ErrShowType key
      :$$: ErrText "could not be found in" :<>: ErrShowType collection

type ExcessFieldFound key collection = ErrText "found field" :<>: ErrShowType key
      :$$: ErrText "when it should be absent from" :<>: ErrShowType collection

type HNatIndexTooLarge (nat :: HNat) (r :: [k] -> *) (xs :: [k]) =
      ErrText "0-based index" :<>: ErrShowType (HNat2Nat nat) :<>:
      ErrText "is too large for collection"
            :$$: ErrShowType (r xs)
    -- :$$: ErrText "(length: " :<>: ErrShowType (HNat2Nat (HLength collection)) :<>: ErrText " )"
    -- Data.HList.HList.HLength isn't available here

type ExtraField x = ErrText "extra field" :<>: ErrShowType x


#if OLD_TYPEABLE
type TypeablePolyK a = (() :: Constraint)
#else
type TypeablePolyK (a :: k) = Typeable a
#endif

-- * Constraining Lists
-- ** Length

-- | Ensure two lists have the same length. We do case analysis on the
-- first one (hence the type must be known to the type checker).
-- In contrast, the second list may be a type variable.
class SameLength' (es1 :: [k]) (es2 :: [m])
instance (es2 ~ '[]) => SameLength' '[] es2
instance (SameLength' xs ys, es2 ~ (y ': ys)) => SameLength' (x ': xs) es2

{- | symmetrical version of 'SameLength''. Written as a class instead of

 > type SameLength a b = (SameLength' a b, SameLength' b a)

since ghc expands type synonyms, but not classes (and it seems to have the same
result)

-}
class (SameLength' x y, SameLength' y x) =>
        SameLength (x :: [k]) (y :: [m]) where

  {- | @SameLength x y => Equality (r x) (q y) (r x) (q y)@

  used like 'Control.Lens.simple', except it restricts
  the type-level lists involved to have the same length,
  without fixing the type of container or the elements
  in the list.
  -}
  sameLength :: r x `p` f (q y) -> r x `p` f (q y)
  sameLength = forall a. a -> a
id

-- | 'asTypeOf'
asLengthOf :: SameLength x y => r x -> s y -> r x
asLengthOf :: forall {k} {m} (x :: [k]) (y :: [m]) (r :: [k] -> *)
       (s :: [m] -> *).
SameLength x y =>
r x -> s y -> r x
asLengthOf = forall a b. a -> b -> a
const


instance (SameLength' x y, SameLength' y x) => SameLength x y

type family SameLengths (xs :: [[k]]) :: Constraint
type instance SameLengths (x ': y ': ys) = (SameLength x y, SameLengths (y ': ys))
type instance SameLengths '[] = ()
type instance SameLengths '[x] = ()

-- ** Labels

class SameLabels (x :: k) (y :: m)

{- | @sameLabels@ constrains the type of an optic, such that the labels
   (@t@ in @Tagged t a@) are the same. @x@ or @y@ may have more elements
   than the other, in which case the elements at the end
   of the longer list do not have their labels constrained.

   see also 'sameLength'
-}
sameLabels :: SameLabels x y => p (r x) (f (q y)) -> p (r x) (f (q y))
sameLabels :: forall {k} {k} {k} {k} {k} (x :: k) (y :: k) (p :: k -> k -> *)
       (r :: k -> k) (f :: k -> k) (q :: k -> k).
SameLabels x y =>
p (r x) (f (q y)) -> p (r x) (f (q y))
sameLabels = forall a. a -> a
id

-- instances for [*] kind
instance SameLabels '[] '[]
instance SameLabels '[] (x ': xs)
instance SameLabels (x ': xs) '[]
instance (SameLabels x y, SameLabels xs ys) =>
  SameLabels (x ': xs) (y ': ys)


instance (Label t ~ Label t') => SameLabels (Label t) (Tagged t' a)
instance (Label t ~ Label t') => SameLabels (Label t) (Label t')
instance (Label t ~ Label t') => SameLabels (Label t) (t' :: Symbol)

instance SameLabels (Label t) s => SameLabels (t :: Symbol) s
instance SameLabels (Label t) s => SameLabels (Tagged t a) s

-- ** A list has only Tagged values

-- | The 'Record', 'Variant', 'TIP', 'TIC' type constructors only make
-- sense when they are applied to an instance of this class
class HAllTaggedLV (ps :: [*])
instance HAllTaggedLV '[]
instance (HAllTaggedLV xs, x ~ Tagged t v) => HAllTaggedLV (x ': xs)


-- | see Data.HList.Record.'zipTagged'
type family ZipTagged (ts :: [k]) (vs :: [*]) :: [*]
type instance ZipTagged (Label t ': ts) (v ': vs) = Tagged t v ': ZipTagged ts vs
type instance ZipTagged ((t :: Symbol) ': ts) (v ': vs) = Tagged t v ': ZipTagged ts vs
type instance ZipTagged '[] '[] = '[]