{-# OPTIONS_GHC -Wunused-imports #-}
module Agda.TypeChecking.Abstract where
import Control.Monad
import Control.Monad.Except
import Data.Function (on)
import qualified Data.HashMap.Strict as HMap
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.TypeChecking.MetaVars
import Agda.TypeChecking.Monad
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.CheckInternal
import Agda.TypeChecking.Conversion
import Agda.TypeChecking.Constraints
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.Sort
import Agda.TypeChecking.Telescope
import Agda.Utils.Functor
import Agda.Utils.List ( splitExactlyAt, dropEnd )
import Agda.Utils.Impossible
abstractType :: Type -> Term -> Type -> TCM Type
abstractType :: Type -> Term -> Type -> TCM Type
abstractType Type
a Term
v (El Sort' Term
s Term
b) = Sort' Term -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort' Term -> Sort' Term
forall a. AbsTerm a => Term -> a -> a
absTerm Term
v Sort' Term
s) (Term -> Type) -> TCMT IO Term -> TCM Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> Term -> Type -> Term -> TCMT IO Term
abstractTerm Type
a Term
v (Sort' Term -> Type
sort Sort' Term
s) Term
b
piAbstractTerm :: ArgInfo -> Term -> Type -> Type -> TCM Type
piAbstractTerm :: ArgInfo -> Term -> Type -> Type -> TCM Type
piAbstractTerm ArgInfo
info Term
v Type
a Type
b = do
fun <- Dom (String, Type) -> Type -> Type
mkPi (ArgInfo -> Dom (String, Type) -> Dom (String, Type)
forall a. LensArgInfo a => ArgInfo -> a -> a
setArgInfo ArgInfo
info (Dom (String, Type) -> Dom (String, Type))
-> Dom (String, Type) -> Dom (String, Type)
forall a b. (a -> b) -> a -> b
$ (String, Type) -> Dom (String, Type)
forall a. a -> Dom a
defaultDom (String
"w", Type
a)) (Type -> Type) -> TCM Type -> TCM Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> Term -> Type -> TCM Type
abstractType Type
a Term
v Type
b
reportSDoc "tc.abstract" 50 $
sep [ "piAbstract" <+> sep [ prettyTCM v <+> ":", nest 2 $ prettyTCM a ]
, nest 2 $ "from" <+> prettyTCM b
, nest 2 $ "-->" <+> prettyTCM fun ]
reportSDoc "tc.abstract" 70 $
sep [ "piAbstract" <+> sep [ (text . show) v <+> ":", nest 2 $ (text . show) a ]
, nest 2 $ "from" <+> (text . show) b
, nest 2 $ "-->" <+> (text . show) fun ]
return fun
piAbstract :: Arg (Term, EqualityView) -> Type -> TCM Type
piAbstract :: Arg (Term, EqualityView) -> Type -> TCM Type
piAbstract (Arg ArgInfo
info (Term
v, OtherType Type
a)) Type
b = ArgInfo -> Term -> Type -> Type -> TCM Type
piAbstractTerm ArgInfo
info Term
v Type
a Type
b
piAbstract (Arg ArgInfo
info (Term
v, IdiomType Type
a)) Type
b = do
b <- Nat -> Type -> Type
forall a. Subst a => Nat -> a -> a
raise Nat
1 (Type -> Type) -> TCM Type -> TCM Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> Term -> Type -> TCM Type
abstractType Type
a Term
v Type
b
eq <- addContext ("w" :: String, defaultDom a) $ do
eqName <- primEqualityName
eqTy <- defType <$> getConstInfo eqName
TelV eqTel _ <- telView eqTy
tel <- newTelMeta (telFromList $ dropEnd 3 $ telToList eqTel)
let eq = QName -> [Elim] -> Term
Def QName
eqName ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim) -> Args -> [Elim]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply
(Args -> [Elim]) -> Args -> [Elim]
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Arg Term) -> Args -> Args
forall a b. (a -> b) -> [a] -> [b]
map (Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden) Args
tel
Args -> Args -> Args
forall a. [a] -> [a] -> [a]
++ [ Hiding -> Arg Term -> Arg Term
forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden (Arg Term -> Arg Term) -> Arg Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Term -> Arg Term
forall a. a -> Arg a
defaultArg (Term -> Arg Term) -> Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Nat -> Term -> Term
forall a. Subst a => Nat -> a -> a
raise Nat
1 (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Type -> Term
forall t a. Type'' t a -> a
unEl Type
a
, Term -> Arg Term
forall a. a -> Arg a
defaultArg (Nat -> Term -> Term
forall a. Subst a => Nat -> a -> a
raise Nat
1 Term
v)
, Term -> Arg Term
forall a. a -> Arg a
defaultArg (Nat -> Term
var Nat
0)
]
sort <- newSortMeta
return $ El sort eq
pure $ mkPi (setHiding (getHiding info) $ defaultDom ("w", a))
$ mkPi (setHiding NotHidden $ defaultDom ("eq", eq))
$ b
piAbstract (Arg ArgInfo
info (Term
prf, EqualityViewType eqt :: EqualityTypeData
eqt@(EqualityTypeData Sort' Term
_ QName
_ Args
_ (Arg ArgInfo
_ Term
a) Arg Term
v Arg Term
_))) Type
b = do
s <- Term -> TCMT IO (Sort' Term)
forall (m :: * -> *).
(PureTCM m, MonadBlock m, MonadConstraint m) =>
Term -> m (Sort' Term)
sortOf Term
a
let prfTy :: Type
prfTy = EqualityTypeData -> Type
forall a. EqualityUnview a => a -> Type
equalityUnview EqualityTypeData
eqt
vTy = Sort' Term -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort' Term
s Term
a
b <- abstractType prfTy prf b
b <- addContext ("w" :: String, defaultDom prfTy) $
abstractType (raise 1 vTy) (unArg $ raise 1 v) b
return . funType "lhs" vTy . funType "equality" eqTy' . swap01 $ b
where
funType :: String -> Type -> Type -> Type
funType String
str Type
a = Dom (String, Type) -> Type -> Type
mkPi (Dom (String, Type) -> Type -> Type)
-> Dom (String, Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$ ArgInfo -> Dom (String, Type) -> Dom (String, Type)
forall a. LensArgInfo a => ArgInfo -> a -> a
setArgInfo ArgInfo
info (Dom (String, Type) -> Dom (String, Type))
-> Dom (String, Type) -> Dom (String, Type)
forall a b. (a -> b) -> a -> b
$ (String, Type) -> Dom (String, Type)
forall a. a -> Dom a
defaultDom (String
str, Type
a)
eqt1 :: EqualityTypeData
eqt1 :: EqualityTypeData
eqt1 = Nat -> EqualityTypeData -> EqualityTypeData
forall a. Subst a => Nat -> a -> a
raise Nat
1 EqualityTypeData
eqt
eqTy' :: Type
eqTy' :: Type
eqTy' = EqualityTypeData -> Type
forall a. EqualityUnview a => a -> Type
equalityUnview (EqualityTypeData -> Type) -> EqualityTypeData -> Type
forall a b. (a -> b) -> a -> b
$ EqualityTypeData
eqt1{ _eqtLhs = _eqtLhs eqt1 $> var 0 }
class IsPrefixOf a where
isPrefixOf :: a -> a -> Maybe Elims
instance IsPrefixOf Elims where
isPrefixOf :: [Elim] -> [Elim] -> Maybe [Elim]
isPrefixOf [Elim]
us [Elim]
vs = do
(vs1, vs2) <- Nat -> [Elim] -> Maybe ([Elim], [Elim])
forall n a. Integral n => n -> [a] -> Maybe ([a], [a])
splitExactlyAt ([Elim] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Elim]
us) [Elim]
vs
guard $ equalSy us vs1
return vs2
instance IsPrefixOf Args where
isPrefixOf :: Args -> Args -> Maybe [Elim]
isPrefixOf Args
us Args
vs = do
(vs1, vs2) <- Nat -> Args -> Maybe (Args, Args)
forall n a. Integral n => n -> [a] -> Maybe ([a], [a])
splitExactlyAt (Args -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length Args
us) Args
vs
guard $ equalSy us vs1
return $ map Apply vs2
instance IsPrefixOf Term where
isPrefixOf :: Term -> Term -> Maybe [Elim]
isPrefixOf Term
u Term
v =
case (Term
u, Term
v) of
(Var Nat
i [Elim]
us, Var Nat
j [Elim]
vs) | Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
j -> [Elim]
us [Elim] -> [Elim] -> Maybe [Elim]
forall a. IsPrefixOf a => a -> a -> Maybe [Elim]
`isPrefixOf` [Elim]
vs
(Def QName
f [Elim]
us, Def QName
g [Elim]
vs) | QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
g -> [Elim]
us [Elim] -> [Elim] -> Maybe [Elim]
forall a. IsPrefixOf a => a -> a -> Maybe [Elim]
`isPrefixOf` [Elim]
vs
(Con ConHead
c ConInfo
_ [Elim]
us, Con ConHead
d ConInfo
_ [Elim]
vs) | ConHead
c ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
d -> [Elim]
us [Elim] -> [Elim] -> Maybe [Elim]
forall a. IsPrefixOf a => a -> a -> Maybe [Elim]
`isPrefixOf` [Elim]
vs
(MetaV MetaId
x [Elim]
us, MetaV MetaId
y [Elim]
vs) | MetaId
x MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
== MetaId
y -> [Elim]
us [Elim] -> [Elim] -> Maybe [Elim]
forall a. IsPrefixOf a => a -> a -> Maybe [Elim]
`isPrefixOf` [Elim]
vs
(Term
u, Term
v) -> Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Term -> Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Term
u Term
v) Maybe () -> Maybe [Elim] -> Maybe [Elim]
forall a b. Maybe a -> Maybe b -> Maybe b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> [Elim] -> Maybe [Elim]
forall a. a -> Maybe a
forall (m :: * -> *) a. Monad m => a -> m a
return []
abstractTerm :: Type -> Term -> Type -> Term -> TCM Term
abstractTerm :: Type -> Term -> Type -> Term -> TCMT IO Term
abstractTerm Type
a u :: Term
u@Con{} Type
b Term
v = do
String -> Nat -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.abstract" Nat
50 (TCMT IO Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$
[TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCMT IO Doc
"Abstracting"
, Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
u TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":", Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
a ]
, TCMT IO Doc
"over"
, Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":", Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
b ] ]
String -> Nat -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.abstract" Nat
70 (TCMT IO Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$
[TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCMT IO Doc
"Abstracting"
, Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ (String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> (Term -> String) -> Term -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> String
forall a. Show a => a -> String
show) Term
u TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":", Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ (String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> (Type -> String) -> Type -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> String
forall a. Show a => a -> String
show) Type
a ]
, TCMT IO Doc
"over"
, Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ (String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> (Term -> String) -> Term -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> String
forall a. Show a => a -> String
show) Term
v TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":", Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ (String -> TCMT IO Doc
forall (m :: * -> *). Applicative m => String -> m Doc
text (String -> TCMT IO Doc) -> (Type -> String) -> Type -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> String
forall a. Show a => a -> String
show) Type
b ] ]
hole <- ModuleName -> Name -> QName
qualify (ModuleName -> Name -> QName)
-> TCMT IO ModuleName -> TCMT IO (Name -> QName)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TCMT IO ModuleName
forall (m :: * -> *). MonadTCEnv m => m ModuleName
currentModule TCMT IO (Name -> QName) -> TCMT IO Name -> TCM QName
forall a b. TCMT IO (a -> b) -> TCMT IO a -> TCMT IO b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> String -> TCMT IO Name
forall a (m :: * -> *).
(FreshName a, MonadFresh NameId m) =>
a -> m Name
forall (m :: * -> *). MonadFresh NameId m => String -> m Name
freshName_ (String
"hole" :: String)
noMutualBlock $ addConstant' hole defaultArgInfo hole a defaultAxiom
args <- map Apply <$> getContextArgs
let n = [Elim] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Elim]
args
let abstr Type
b Term
v = do
m <- TCMT IO Nat
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Nat
getContextSize
let (a', u') = raise (m - n) (a, u)
case u' `isPrefixOf` v of
Maybe [Elim]
Nothing -> Term -> TCMT IO Term
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
Just [Elim]
es -> do
s <- TCMT IO TCState
forall (m :: * -> *). MonadTCState m => m TCState
getTC
do noConstraints $ equalType a' b
putTC s
return $ Def hole (raise (m - n) args ++ es)
`catchError` \ TCErr
_ -> do
String -> Nat -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.abstract.ill-typed" Nat
50 (TCMT IO Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$
[TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCMT IO Doc
"Skipping ill-typed abstraction"
, Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":", Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
b ] ]
Term -> TCMT IO Term
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
res <- catchError_ (checkInternal' (defaultAction { preAction = abstr }) v CmpLeq b) $ \ TCErr
err -> do
String -> Nat -> TCMT IO Doc -> TCMT IO ()
forall (m :: * -> *).
MonadDebug m =>
String -> Nat -> TCMT IO Doc -> m ()
reportSDoc String
"tc.abstract.ill-typed" Nat
40 (TCMT IO Doc -> TCMT IO ()) -> TCMT IO Doc -> TCMT IO ()
forall a b. (a -> b) -> a -> b
$
TCMT IO Doc
"Skipping typed abstraction over ill-typed term" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<?> (Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<?> (TCMT IO Doc
":" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
b))
Term -> TCMT IO Term
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
reportSDoc "tc.abstract" 50 $ "Resulting abstraction" <?> prettyTCM res
modifySignature $ updateDefinitions $ HMap.delete hole
return $ absTerm (Def hole args) res
abstractTerm Type
_ Term
u Type
_ Term
v = Term -> TCMT IO Term
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> TCMT IO Term) -> Term -> TCMT IO Term
forall a b. (a -> b) -> a -> b
$ Term -> Term -> Term
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u Term
v
class AbsTerm a where
absTerm :: Term -> a -> a
instance AbsTerm Term where
absTerm :: Term -> Term -> Term
absTerm Term
u Term
v | Just [Elim]
es <- Term
u Term -> Term -> Maybe [Elim]
forall a. IsPrefixOf a => a -> a -> Maybe [Elim]
`isPrefixOf` Term
v = Nat -> [Elim] -> Term
Var Nat
0 ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ [Elim] -> [Elim]
forall b. AbsTerm b => b -> b
absT [Elim]
es
| Bool
otherwise =
case Term
v of
Var Nat
i [Elim]
vs -> Nat -> [Elim] -> Term
Var (Nat
i Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ [Elim] -> [Elim]
forall b. AbsTerm b => b -> b
absT [Elim]
vs
Lam ArgInfo
h Abs Term
b -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
h (Abs Term -> Term) -> Abs Term -> Term
forall a b. (a -> b) -> a -> b
$ Abs Term -> Abs Term
forall b. AbsTerm b => b -> b
absT Abs Term
b
Def QName
c [Elim]
vs -> QName -> [Elim] -> Term
Def QName
c ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ [Elim] -> [Elim]
forall b. AbsTerm b => b -> b
absT [Elim]
vs
Con ConHead
c ConInfo
ci [Elim]
vs -> ConHead -> ConInfo -> [Elim] -> Term
Con ConHead
c ConInfo
ci ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ [Elim] -> [Elim]
forall b. AbsTerm b => b -> b
absT [Elim]
vs
Pi Dom Type
a Abs Type
b -> (Dom Type -> Abs Type -> Term) -> (Dom Type, Abs Type) -> Term
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Type -> Term
Pi ((Dom Type, Abs Type) -> Term) -> (Dom Type, Abs Type) -> Term
forall a b. (a -> b) -> a -> b
$ (Dom Type, Abs Type) -> (Dom Type, Abs Type)
forall b. AbsTerm b => b -> b
absT (Dom Type
a, Abs Type
b)
Lit Literal
l -> Literal -> Term
Lit Literal
l
Level Level
l -> Level -> Term
Level (Level -> Term) -> Level -> Term
forall a b. (a -> b) -> a -> b
$ Level -> Level
forall b. AbsTerm b => b -> b
absT Level
l
Sort Sort' Term
s -> Sort' Term -> Term
Sort (Sort' Term -> Term) -> Sort' Term -> Term
forall a b. (a -> b) -> a -> b
$ Sort' Term -> Sort' Term
forall b. AbsTerm b => b -> b
absT Sort' Term
s
MetaV MetaId
m [Elim]
vs -> MetaId -> [Elim] -> Term
MetaV MetaId
m ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ [Elim] -> [Elim]
forall b. AbsTerm b => b -> b
absT [Elim]
vs
DontCare Term
mv -> Term -> Term
DontCare (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Term -> Term
forall b. AbsTerm b => b -> b
absT Term
mv
Dummy String
s [Elim]
es -> String -> [Elim] -> Term
Dummy String
s ([Elim] -> Term) -> [Elim] -> Term
forall a b. (a -> b) -> a -> b
$ [Elim] -> [Elim]
forall b. AbsTerm b => b -> b
absT [Elim]
es
where
absT :: AbsTerm b => b -> b
absT :: forall b. AbsTerm b => b -> b
absT b
x = Term -> b -> b
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u b
x
instance AbsTerm Type where
absTerm :: Term -> Type -> Type
absTerm Term
u (El Sort' Term
s Term
v) = Sort' Term -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Term -> Sort' Term -> Sort' Term
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u Sort' Term
s) (Term -> Term -> Term
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u Term
v)
instance AbsTerm Sort where
absTerm :: Term -> Sort' Term -> Sort' Term
absTerm Term
u = \case
Univ Univ
u Level
n -> Univ -> Level -> Sort' Term
forall t. Univ -> Level' t -> Sort' t
Univ Univ
u (Level -> Sort' Term) -> Level -> Sort' Term
forall a b. (a -> b) -> a -> b
$ Level -> Level
forall b. AbsTerm b => b -> b
absS Level
n
s :: Sort' Term
s@Inf{} -> Sort' Term
s
Sort' Term
SizeUniv -> Sort' Term
forall t. Sort' t
SizeUniv
Sort' Term
LockUniv -> Sort' Term
forall t. Sort' t
LockUniv
Sort' Term
LevelUniv -> Sort' Term
forall t. Sort' t
LevelUniv
Sort' Term
IntervalUniv -> Sort' Term
forall t. Sort' t
IntervalUniv
PiSort Dom' Term Term
a Sort' Term
s1 Abs (Sort' Term)
s2 -> Dom' Term Term -> Sort' Term -> Abs (Sort' Term) -> Sort' Term
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort (Dom' Term Term -> Dom' Term Term
forall b. AbsTerm b => b -> b
absS Dom' Term Term
a) (Sort' Term -> Sort' Term
forall b. AbsTerm b => b -> b
absS Sort' Term
s1) (Abs (Sort' Term) -> Abs (Sort' Term)
forall b. AbsTerm b => b -> b
absS Abs (Sort' Term)
s2)
FunSort Sort' Term
s1 Sort' Term
s2 -> Sort' Term -> Sort' Term -> Sort' Term
forall t. Sort' t -> Sort' t -> Sort' t
FunSort (Sort' Term -> Sort' Term
forall b. AbsTerm b => b -> b
absS Sort' Term
s1) (Sort' Term -> Sort' Term
forall b. AbsTerm b => b -> b
absS Sort' Term
s2)
UnivSort Sort' Term
s -> Sort' Term -> Sort' Term
forall t. Sort' t -> Sort' t
UnivSort (Sort' Term -> Sort' Term) -> Sort' Term -> Sort' Term
forall a b. (a -> b) -> a -> b
$ Sort' Term -> Sort' Term
forall b. AbsTerm b => b -> b
absS Sort' Term
s
MetaS MetaId
x [Elim]
es -> MetaId -> [Elim] -> Sort' Term
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x ([Elim] -> Sort' Term) -> [Elim] -> Sort' Term
forall a b. (a -> b) -> a -> b
$ [Elim] -> [Elim]
forall b. AbsTerm b => b -> b
absS [Elim]
es
DefS QName
d [Elim]
es -> QName -> [Elim] -> Sort' Term
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d ([Elim] -> Sort' Term) -> [Elim] -> Sort' Term
forall a b. (a -> b) -> a -> b
$ [Elim] -> [Elim]
forall b. AbsTerm b => b -> b
absS [Elim]
es
s :: Sort' Term
s@DummyS{} -> Sort' Term
s
where
absS :: AbsTerm b => b -> b
absS :: forall b. AbsTerm b => b -> b
absS b
x = Term -> b -> b
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u b
x
instance AbsTerm Level where
absTerm :: Term -> Level -> Level
absTerm Term
u (Max Integer
n [PlusLevel' Term]
as) = Integer -> [PlusLevel' Term] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
n ([PlusLevel' Term] -> Level) -> [PlusLevel' Term] -> Level
forall a b. (a -> b) -> a -> b
$ Term -> [PlusLevel' Term] -> [PlusLevel' Term]
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u [PlusLevel' Term]
as
instance AbsTerm PlusLevel where
absTerm :: Term -> PlusLevel' Term -> PlusLevel' Term
absTerm Term
u (Plus Integer
n Term
l) = Integer -> Term -> PlusLevel' Term
forall t. Integer -> t -> PlusLevel' t
Plus Integer
n (Term -> PlusLevel' Term) -> Term -> PlusLevel' Term
forall a b. (a -> b) -> a -> b
$ Term -> Term -> Term
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u Term
l
instance AbsTerm a => AbsTerm (Elim' a) where
absTerm :: Term -> Elim' a -> Elim' a
absTerm = (a -> a) -> Elim' a -> Elim' a
forall a b. (a -> b) -> Elim' a -> Elim' b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> a) -> Elim' a -> Elim' a)
-> (Term -> a -> a) -> Term -> Elim' a -> Elim' a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> a -> a
forall a. AbsTerm a => Term -> a -> a
absTerm
instance AbsTerm a => AbsTerm (Arg a) where
absTerm :: Term -> Arg a -> Arg a
absTerm = (a -> a) -> Arg a -> Arg a
forall a b. (a -> b) -> Arg a -> Arg b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> a) -> Arg a -> Arg a)
-> (Term -> a -> a) -> Term -> Arg a -> Arg a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> a -> a
forall a. AbsTerm a => Term -> a -> a
absTerm
instance AbsTerm a => AbsTerm (Dom a) where
absTerm :: Term -> Dom a -> Dom a
absTerm = (a -> a) -> Dom a -> Dom a
forall a b. (a -> b) -> Dom' Term a -> Dom' Term b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> a) -> Dom a -> Dom a)
-> (Term -> a -> a) -> Term -> Dom a -> Dom a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> a -> a
forall a. AbsTerm a => Term -> a -> a
absTerm
instance AbsTerm a => AbsTerm [a] where
absTerm :: Term -> [a] -> [a]
absTerm = (a -> a) -> [a] -> [a]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> a) -> [a] -> [a]) -> (Term -> a -> a) -> Term -> [a] -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> a -> a
forall a. AbsTerm a => Term -> a -> a
absTerm
instance AbsTerm a => AbsTerm (Maybe a) where
absTerm :: Term -> Maybe a -> Maybe a
absTerm = (a -> a) -> Maybe a -> Maybe a
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> a) -> Maybe a -> Maybe a)
-> (Term -> a -> a) -> Term -> Maybe a -> Maybe a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> a -> a
forall a. AbsTerm a => Term -> a -> a
absTerm
instance (TermSubst a, AbsTerm a) => AbsTerm (Abs a) where
absTerm :: Term -> Abs a -> Abs a
absTerm Term
u (NoAbs String
x a
v) = String -> a -> Abs a
forall a. String -> a -> Abs a
NoAbs String
x (a -> Abs a) -> a -> Abs a
forall a b. (a -> b) -> a -> b
$ Term -> a -> a
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u a
v
absTerm Term
u (Abs String
x a
v) = String -> a -> Abs a
forall a. String -> a -> Abs a
Abs String
x (a -> Abs a) -> a -> Abs a
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. TermSubst a => a -> a
swap01 (a -> a) -> a -> a
forall a b. (a -> b) -> a -> b
$ Term -> a -> a
forall a. AbsTerm a => Term -> a -> a
absTerm (Nat -> Term -> Term
forall a. Subst a => Nat -> a -> a
raise Nat
1 Term
u) a
v
instance (AbsTerm a, AbsTerm b) => AbsTerm (a, b) where
absTerm :: Term -> (a, b) -> (a, b)
absTerm Term
u (a
x, b
y) = (Term -> a -> a
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u a
x, Term -> b -> b
forall a. AbsTerm a => Term -> a -> a
absTerm Term
u b
y)
swap01 :: TermSubst a => a -> a
swap01 :: forall a. TermSubst a => a -> a
swap01 = Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Substitution' (SubstArg a) -> a -> a)
-> Substitution' (SubstArg a) -> a -> a
forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
1 Term -> Substitution' Term -> Substitution' Term
forall a. a -> Substitution' a -> Substitution' a
:# Nat -> Substitution' Term -> Substitution' Term
forall a. Nat -> Substitution' a -> Substitution' a
liftS Nat
1 (Nat -> Substitution' Term
forall a. Nat -> Substitution' a
raiseS Nat
1)
class EqualSy a where
equalSy :: a -> a -> Bool
instance EqualSy a => EqualSy [a] where
equalSy :: [a] -> [a] -> Bool
equalSy [a]
us [a]
vs = [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and ([Bool] -> Bool) -> [Bool] -> Bool
forall a b. (a -> b) -> a -> b
$ ([a] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [a]
us Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== [a] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [a]
vs) Bool -> [Bool] -> [Bool]
forall a. a -> [a] -> [a]
: (a -> a -> Bool) -> [a] -> [a] -> [Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith a -> a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy [a]
us [a]
vs
instance EqualSy Term where
equalSy :: Term -> Term -> Bool
equalSy = ((Term, Term) -> Bool) -> Term -> Term -> Bool
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (((Term, Term) -> Bool) -> Term -> Term -> Bool)
-> ((Term, Term) -> Bool) -> Term -> Term -> Bool
forall a b. (a -> b) -> a -> b
$ \case
(Var Nat
i [Elim]
vs, Var Nat
i' [Elim]
vs') -> Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
i' Bool -> Bool -> Bool
&& [Elim] -> [Elim] -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy [Elim]
vs [Elim]
vs'
(Con ConHead
c ConInfo
_ [Elim]
es, Con ConHead
c' ConInfo
_ [Elim]
es') -> ConHead
c ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
c' Bool -> Bool -> Bool
&& [Elim] -> [Elim] -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy [Elim]
es [Elim]
es'
(Def QName
f [Elim]
es, Def QName
f' [Elim]
es') -> QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
f' Bool -> Bool -> Bool
&& [Elim] -> [Elim] -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy [Elim]
es [Elim]
es'
(MetaV MetaId
x [Elim]
es, MetaV MetaId
x' [Elim]
es') -> MetaId
x MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
== MetaId
x' Bool -> Bool -> Bool
&& [Elim] -> [Elim] -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy [Elim]
es [Elim]
es'
(Lit Literal
l , Lit Literal
l' ) -> Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
(Lam ArgInfo
ai Abs Term
b, Lam ArgInfo
ai' Abs Term
b') -> ArgInfo -> ArgInfo -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy ArgInfo
ai ArgInfo
ai' Bool -> Bool -> Bool
&& Abs Term -> Abs Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Abs Term
b Abs Term
b'
(Level Level
l , Level Level
l' ) -> Level -> Level -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Level
l Level
l'
(Sort Sort' Term
s , Sort Sort' Term
s' ) -> Sort' Term -> Sort' Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Sort' Term
s Sort' Term
s'
(Pi Dom Type
a Abs Type
b , Pi Dom Type
a' Abs Type
b' ) -> Dom Type -> Dom Type -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Dom Type
a Dom Type
a' Bool -> Bool -> Bool
&& Abs Type -> Abs Type -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Abs Type
b Abs Type
b'
(DontCare Term
_, DontCare Term
_ ) -> Bool
True
(Dummy{} , Term
_ ) -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
(Term
_ , Dummy{} ) -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
(Term, Term)
_ -> Bool
False
instance EqualSy Level where
equalSy :: Level -> Level -> Bool
equalSy (Max Integer
n [PlusLevel' Term]
vs) (Max Integer
n' [PlusLevel' Term]
vs') = Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
n' Bool -> Bool -> Bool
&& [PlusLevel' Term] -> [PlusLevel' Term] -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy [PlusLevel' Term]
vs [PlusLevel' Term]
vs'
instance EqualSy PlusLevel where
equalSy :: PlusLevel' Term -> PlusLevel' Term -> Bool
equalSy (Plus Integer
n Term
v) (Plus Integer
n' Term
v') = Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
n' Bool -> Bool -> Bool
&& Term -> Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Term
v Term
v'
instance EqualSy Sort where
equalSy :: Sort' Term -> Sort' Term -> Bool
equalSy = ((Sort' Term, Sort' Term) -> Bool)
-> Sort' Term -> Sort' Term -> Bool
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (((Sort' Term, Sort' Term) -> Bool)
-> Sort' Term -> Sort' Term -> Bool)
-> ((Sort' Term, Sort' Term) -> Bool)
-> Sort' Term
-> Sort' Term
-> Bool
forall a b. (a -> b) -> a -> b
$ \case
(Univ Univ
u Level
l , Univ Univ
u' Level
l' ) -> Univ
u Univ -> Univ -> Bool
forall a. Eq a => a -> a -> Bool
== Univ
u' Bool -> Bool -> Bool
&& Level -> Level -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Level
l Level
l'
(Inf Univ
u Integer
m , Inf Univ
u' Integer
n ) -> Univ
u Univ -> Univ -> Bool
forall a. Eq a => a -> a -> Bool
== Univ
u' Bool -> Bool -> Bool
&& Integer
m Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
n
(Sort' Term
SizeUniv , Sort' Term
SizeUniv ) -> Bool
True
(Sort' Term
LevelUniv , Sort' Term
LevelUniv ) -> Bool
True
(PiSort Dom' Term Term
a Sort' Term
b Abs (Sort' Term)
c, PiSort Dom' Term Term
a' Sort' Term
b' Abs (Sort' Term)
c') -> Dom' Term Term -> Dom' Term Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Dom' Term Term
a Dom' Term Term
a' Bool -> Bool -> Bool
&& Sort' Term -> Sort' Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Sort' Term
b Sort' Term
b' Bool -> Bool -> Bool
&& Abs (Sort' Term) -> Abs (Sort' Term) -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Abs (Sort' Term)
c Abs (Sort' Term)
c'
(FunSort Sort' Term
a Sort' Term
b, FunSort Sort' Term
a' Sort' Term
b') -> Sort' Term -> Sort' Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Sort' Term
a Sort' Term
a' Bool -> Bool -> Bool
&& Sort' Term -> Sort' Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Sort' Term
b Sort' Term
b'
(UnivSort Sort' Term
a, UnivSort Sort' Term
a' ) -> Sort' Term -> Sort' Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Sort' Term
a Sort' Term
a'
(MetaS MetaId
x [Elim]
es, MetaS MetaId
x' [Elim]
es') -> MetaId
x MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
== MetaId
x' Bool -> Bool -> Bool
&& [Elim] -> [Elim] -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy [Elim]
es [Elim]
es'
(DefS QName
d [Elim]
es, DefS QName
d' [Elim]
es') -> QName
d QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
d' Bool -> Bool -> Bool
&& [Elim] -> [Elim] -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy [Elim]
es [Elim]
es'
(DummyS{} , Sort' Term
_ ) -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
(Sort' Term
_ , DummyS{} ) -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__
(Sort' Term, Sort' Term)
_ -> Bool
False
instance EqualSy Type where
equalSy :: Type -> Type -> Bool
equalSy = Term -> Term -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy (Term -> Term -> Bool) -> (Type -> Term) -> Type -> Type -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Type -> Term
forall t a. Type'' t a -> a
unEl
instance EqualSy a => EqualSy (Elim' a) where
equalSy :: Elim' a -> Elim' a -> Bool
equalSy = ((Elim' a, Elim' a) -> Bool) -> Elim' a -> Elim' a -> Bool
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (((Elim' a, Elim' a) -> Bool) -> Elim' a -> Elim' a -> Bool)
-> ((Elim' a, Elim' a) -> Bool) -> Elim' a -> Elim' a -> Bool
forall a b. (a -> b) -> a -> b
$ \case
(Proj ProjOrigin
_ QName
f, Proj ProjOrigin
_ QName
f') -> QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
f'
(Apply Arg a
a, Apply Arg a
a') -> Arg a -> Arg a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy Arg a
a Arg a
a'
(IApply a
u a
v a
r, IApply a
u' a
v' a
r') ->
a -> a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy a
u a
u'
Bool -> Bool -> Bool
&& a -> a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy a
v a
v'
Bool -> Bool -> Bool
&& a -> a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy a
r a
r'
(Elim' a, Elim' a)
_ -> Bool
False
instance (Subst a, EqualSy a) => EqualSy (Abs a) where
equalSy :: Abs a -> Abs a -> Bool
equalSy = ((Abs a, Abs a) -> Bool) -> Abs a -> Abs a -> Bool
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (((Abs a, Abs a) -> Bool) -> Abs a -> Abs a -> Bool)
-> ((Abs a, Abs a) -> Bool) -> Abs a -> Abs a -> Bool
forall a b. (a -> b) -> a -> b
$ \case
(NoAbs String
_x a
b, NoAbs String
_x' a
b') -> a -> a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy a
b a
b'
(Abs a
a , Abs a
a' ) -> a -> a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy (Abs a -> a
forall a. Subst a => Abs a -> a
absBody Abs a
a) (Abs a -> a
forall a. Subst a => Abs a -> a
absBody Abs a
a')
instance EqualSy ArgInfo where
equalSy :: ArgInfo -> ArgInfo -> Bool
equalSy (ArgInfo Hiding
h Modality
m Origin
_o FreeVariables
_fv Annotation
a) (ArgInfo Hiding
h' Modality
m' Origin
_o' FreeVariables
_fv' Annotation
a') =
Hiding
h Hiding -> Hiding -> Bool
forall a. Eq a => a -> a -> Bool
== Hiding
h' Bool -> Bool -> Bool
&& Modality
m Modality -> Modality -> Bool
forall a. Eq a => a -> a -> Bool
== Modality
m' Bool -> Bool -> Bool
&& Annotation
a Annotation -> Annotation -> Bool
forall a. Eq a => a -> a -> Bool
== Annotation
a'
instance EqualSy a => EqualSy (Dom a) where
equalSy :: Dom a -> Dom a -> Bool
equalSy d :: Dom a
d@(Dom ArgInfo
ai Maybe NamedName
x Bool
f Maybe Term
_tac a
a) d' :: Dom a
d'@(Dom ArgInfo
ai' Maybe NamedName
x' Bool
f' Maybe Term
_tac' a
a') = [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and
[ Maybe NamedName
x Maybe NamedName -> Maybe NamedName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe NamedName
x'
, Bool
f Bool -> Bool -> Bool
forall a. Eq a => a -> a -> Bool
== Bool
f'
, ArgInfo -> ArgInfo -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy ArgInfo
ai ArgInfo
ai'
, a -> a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy a
a a
a'
]
instance EqualSy a => EqualSy (Arg a) where
equalSy :: Arg a -> Arg a -> Bool
equalSy (Arg (ArgInfo Hiding
h Modality
m Origin
_o FreeVariables
_fv Annotation
a) a
v) (Arg (ArgInfo Hiding
h' Modality
m' Origin
_o' FreeVariables
_fv' Annotation
a') a
v') =
Hiding
h Hiding -> Hiding -> Bool
forall a. Eq a => a -> a -> Bool
== Hiding
h' Bool -> Bool -> Bool
&& (Modality -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant Modality
m Bool -> Bool -> Bool
|| Modality -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant Modality
m' Bool -> Bool -> Bool
|| a -> a -> Bool
forall a. EqualSy a => a -> a -> Bool
equalSy a
v a
v')