{-# OPTIONS_GHC -Wunused-imports #-}

{-# LANGUAGE NondecreasingIndentation #-}

module Agda.TypeChecking.MetaVars where

import Prelude hiding (null)

import Control.Monad        ( foldM, forM, forM_, liftM2, void, guard )
import Control.Monad.Except ( MonadError(..), ExceptT, runExceptT )
import Control.Monad.Trans  ( lift )
import Control.Monad.Trans.Maybe

import qualified Data.IntSet as IntSet
import qualified Data.IntMap as IntMap
import qualified Data.List as List
import qualified Data.Map.Strict as MapS
import qualified Data.Set as Set
import qualified Data.Foldable as Fold
import qualified Data.Traversable as Trav

import Agda.Interaction.Options

import Agda.Syntax.Abstract.Name as A
import Agda.Syntax.Common
import Agda.Syntax.Info ( MetaKind( InstanceMeta, UnificationMeta ), MetaNameSuggestion)
import qualified Agda.Syntax.Info as A
import Agda.Syntax.Internal
import Agda.Syntax.Internal.Generic
import Agda.Syntax.Internal.MetaVars
import Agda.Syntax.Position (getRange, killRange)

import Agda.TypeChecking.Monad
-- import Agda.TypeChecking.Monad.Builtin
-- import Agda.TypeChecking.Monad.Context
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Sort
import Agda.TypeChecking.Substitute
import qualified Agda.TypeChecking.SyntacticEquality as SynEq
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.Constraints
import Agda.TypeChecking.Free
import Agda.TypeChecking.Lock
import Agda.TypeChecking.Level (levelType)
import Agda.TypeChecking.Records
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.EtaContract
import Agda.TypeChecking.SizedTypes (boundedSizeMetaHook, isSizeProblem)
import {-# SOURCE #-} Agda.TypeChecking.CheckInternal
import {-# SOURCE #-} Agda.TypeChecking.Conversion

-- import Agda.TypeChecking.CheckInternal
-- import {-# SOURCE #-} Agda.TypeChecking.CheckInternal (checkInternal)
import Agda.TypeChecking.MetaVars.Occurs

import qualified Agda.Utils.BiMap as BiMap
import Agda.Utils.Function
import Agda.Utils.Lens
import Agda.Utils.List
import Agda.Utils.List1 (List1, pattern (:|))
import qualified Agda.Utils.List1 as List1
import Agda.Utils.Maybe
import Agda.Utils.Monad
import Agda.Utils.Size
import Agda.Utils.Tuple
import Agda.Utils.Permutation
import Agda.Syntax.Common.Pretty (Pretty, prettyShow, render)
import qualified Agda.Utils.ProfileOptions as Profile
import Agda.Utils.Singleton
import qualified Agda.Utils.Graph.TopSort as Graph
import Agda.Utils.VarSet (VarSet)
import qualified Agda.Utils.VarSet as VarSet

import Agda.Utils.Impossible

instance MonadMetaSolver TCM where
  newMeta' :: forall a.
MetaInstantiation
-> Frozen
-> MetaInfo
-> MetaPriority
-> Permutation
-> Judgement a
-> TCM MetaId
newMeta' = MetaInstantiation
-> Frozen
-> MetaInfo
-> MetaPriority
-> Permutation
-> Judgement a
-> TCM MetaId
forall a.
MetaInstantiation
-> Frozen
-> MetaInfo
-> MetaPriority
-> Permutation
-> Judgement a
-> TCM MetaId
newMetaTCM'
  assignV :: CompareDirection -> MetaId -> Args -> Term -> CompareAs -> TCM ()
assignV CompareDirection
dir MetaId
x Args
args Term
v CompareAs
t = CompareDirection -> MetaId -> Elims -> Term -> TCM () -> TCM ()
forall (m :: * -> *).
(MonadMetaSolver m, MonadConstraint m, MonadError TCErr m,
 MonadDebug m, HasOptions m) =>
CompareDirection -> MetaId -> Elims -> Term -> m () -> m ()
assignWrapper CompareDirection
dir MetaId
x ((Arg Term -> Elim) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply Args
args) Term
v (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ CompareDirection -> MetaId -> Args -> Term -> CompareAs -> TCM ()
assign CompareDirection
dir MetaId
x Args
args Term
v CompareAs
t
  assignTerm' :: MonadMetaSolver (TCMT IO) =>
MetaId -> [Arg [Char]] -> Term -> TCM ()
assignTerm' = MetaId -> [Arg [Char]] -> Term -> TCM ()
assignTermTCM'
  etaExpandMeta :: [MetaClass] -> MetaId -> TCM ()
etaExpandMeta = [MetaClass] -> MetaId -> TCM ()
etaExpandMetaTCM
  updateMetaVar :: MetaId -> (MetaVariable -> MetaVariable) -> TCM ()
updateMetaVar = HasCallStack => MetaId -> (MetaVariable -> MetaVariable) -> TCM ()
MetaId -> (MetaVariable -> MetaVariable) -> TCM ()
updateMetaVarTCM

  -- Right now we roll back the full state when aborting.
  -- TODO: only roll back the metavariables
  speculateMetas :: TCM () -> TCM KeepMetas -> TCM ()
speculateMetas TCM ()
fallback TCM KeepMetas
m = do
    (a, s) <- TCM KeepMetas -> TCM (KeepMetas, TCState)
forall a. TCM a -> TCM (a, TCState)
localTCStateSaving TCM KeepMetas
m
    case a of
      KeepMetas
KeepMetas     -> TCState -> TCM ()
forall (m :: * -> *). MonadTCState m => TCState -> m ()
putTC TCState
s
      KeepMetas
RollBackMetas -> TCM ()
fallback

-- | Find position of a value in a list.
--   Used to change metavar argument indices during assignment.
--
--   @reverse@ is necessary because we are directly abstracting over the list.
--
findIdx :: Eq a => [a] -> a -> Maybe Int
findIdx :: forall a. Eq a => [a] -> a -> Maybe Nat
findIdx [a]
vs a
v = a -> [a] -> Maybe Nat
forall a. Eq a => a -> [a] -> Maybe Nat
List.elemIndex a
v ([a] -> [a]
forall a. [a] -> [a]
reverse [a]
vs)

-- | Does the given local meta-variable have a twin meta-variable?

hasTwinMeta :: MetaId -> TCM Bool
hasTwinMeta :: MetaId -> TCM Bool
hasTwinMeta MetaId
x = do
    m <- MetaId -> TCMT IO MetaVariable
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
x
    return $ isJust $ mvTwin m

-- | Check whether a meta variable is a place holder for a blocked term.
isBlockedTerm :: MetaId -> TCM Bool
isBlockedTerm :: MetaId -> TCM Bool
isBlockedTerm MetaId
x = do
    [Char] -> Nat -> [Char] -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> [Char] -> m ()
reportSLn [Char]
"tc.meta.blocked" Nat
12 ([Char] -> TCM ()) -> [Char] -> TCM ()
forall a b. (a -> b) -> a -> b
$ [Char]
"is " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ MetaId -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow MetaId
x [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" a blocked term? "
    i <- MetaId -> TCMT IO MetaInstantiation
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m MetaInstantiation
lookupMetaInstantiation MetaId
x
    let r = case MetaInstantiation
i of
            BlockedConst{}                 -> Bool
True
            PostponedTypeCheckingProblem{} -> Bool
True
            InstV{}                        -> Bool
False
            OpenMeta{}                     -> Bool
False
    reportSLn "tc.meta.blocked" 12 $
      if r then "  yes, because " ++ prettyShow i else "  no"
    return r

isEtaExpandable :: [MetaClass] -> MetaId -> TCM Bool
isEtaExpandable :: [MetaClass] -> MetaId -> TCM Bool
isEtaExpandable [MetaClass]
classes MetaId
x = do
    i <- MetaId -> TCMT IO MetaInstantiation
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m MetaInstantiation
lookupMetaInstantiation MetaId
x
    return $ case i of
      OpenMeta MetaKind
UnificationMeta       -> Bool
True
      OpenMeta MetaKind
InstanceMeta          -> MetaClass
Records MetaClass -> [MetaClass] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem` [MetaClass]
classes
      InstV{}                        -> Bool
False
      BlockedConst{}                 -> Bool
False
      PostponedTypeCheckingProblem{} -> Bool
False

-- * Performing the assignment

-- | Performing the meta variable assignment.
--
--   The instantiation should not be an 'InstV' and the 'MetaId'
--   should point to something 'Open' or a 'BlockedConst'.
--   Further, the meta variable may not be 'Frozen'.
assignTerm :: MonadMetaSolver m => MetaId -> [Arg ArgName] -> Term -> m ()
assignTerm :: forall (m :: * -> *).
MonadMetaSolver m =>
MetaId -> [Arg [Char]] -> Term -> m ()
assignTerm MetaId
x [Arg [Char]]
tel Term
v = do
     -- verify (new) invariants
    m Bool -> m () -> m ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
whenM (MetaId -> m Bool
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m Bool
isFrozen MetaId
x) m ()
forall a. HasCallStack => a
__IMPOSSIBLE__
    MetaId -> [Arg [Char]] -> Term -> m ()
forall (m :: * -> *).
(MonadMetaSolver m, MonadMetaSolver m) =>
MetaId -> [Arg [Char]] -> Term -> m ()
assignTerm' MetaId
x [Arg [Char]]
tel Term
v

-- | Skip frozen check.  Used for eta expanding frozen metas.
assignTermTCM' :: MetaId -> [Arg ArgName] -> Term -> TCM ()
assignTermTCM' :: MetaId -> [Arg [Char]] -> Term -> TCM ()
assignTermTCM' MetaId
x [Arg [Char]]
tel Term
v = do
    [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
70 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
      [ TCMT IO Doc
"assignTerm" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => MetaId -> m Doc
prettyTCM MetaId
x TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
" := " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v
      , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"tel =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Semigroup (m Doc), Foldable t) =>
t (m Doc) -> m Doc
prettyList_ ((Arg [Char] -> TCMT IO Doc) -> [Arg [Char]] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map ([Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char] -> TCMT IO Doc)
-> (Arg [Char] -> [Char]) -> Arg [Char] -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg [Char] -> [Char]
forall e. Arg e -> e
unArg) [Arg [Char]]
tel)
      ]
     -- verify (new) invariants
    TCM Bool -> TCM () -> TCM ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
whenM (Bool -> Bool
not (Bool -> Bool) -> TCM Bool -> TCM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (TCEnv -> Bool) -> TCM Bool
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> Bool
envAssignMetas) TCM ()
forall a. HasCallStack => a
__IMPOSSIBLE__

    ProfileOption -> TCM () -> TCM ()
forall (m :: * -> *). MonadDebug m => ProfileOption -> m () -> m ()
whenProfile ProfileOption
Profile.Metas (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ TCM () -> TCM ()
forall a. TCM a -> TCM a
forall (tcm :: * -> *) a. MonadTCM tcm => TCM a -> tcm a
liftTCM (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return () {-tickMax "max-open-metas" . (fromIntegral . size) =<< getOpenMetas-}
    HasCallStack => MetaId -> (MetaVariable -> MetaVariable) -> TCM ()
MetaId -> (MetaVariable -> MetaVariable) -> TCM ()
updateMetaVarTCM MetaId
x ((MetaVariable -> MetaVariable) -> TCM ())
-> (MetaVariable -> MetaVariable) -> TCM ()
forall a b. (a -> b) -> a -> b
$ \ MetaVariable
mv ->
      MetaVariable
mv { mvInstantiation = InstV $ Instantiation
             { instTel = tel
             , instBody = v
             -- Andreas, 2022-04-28, issue #5875:
             -- Can't killRange the meta-solution, since this will destroy
             -- ranges of termination errors (and potentially other passes
             -- that run on internal syntax)!
             -- , instBody = killRange v
             }
         }
    MetaId -> TCM ()
forall (m :: * -> *). MonadMetaSolver m => MetaId -> m ()
etaExpandListeners MetaId
x
    MetaId -> TCM ()
forall (m :: * -> *). MonadMetaSolver m => MetaId -> m ()
wakeupConstraints MetaId
x
    [Char] -> Nat -> [Char] -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> [Char] -> m ()
reportSLn [Char]
"tc.meta.assign" Nat
20 ([Char] -> TCM ()) -> [Char] -> TCM ()
forall a b. (a -> b) -> a -> b
$ [Char]
"completed assignment of " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ MetaId -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow MetaId
x

-- * Creating meta variables.

-- | Create a sort meta that cannot be instantiated with 'Inf' (Setω).
newSortMetaBelowInf :: TCM Sort
newSortMetaBelowInf :: TCM Sort
newSortMetaBelowInf = do
  x <- TCM Sort
forall (m :: * -> *). MonadMetaSolver m => m Sort
newSortMeta
  hasBiggerSort x
  return x

{-# SPECIALIZE newSortMeta :: TCM Sort #-}
-- | Create a sort meta that may be instantiated with 'Inf' (Setω).
newSortMeta :: MonadMetaSolver m => m Sort
newSortMeta :: forall (m :: * -> *). MonadMetaSolver m => m Sort
newSortMeta =
  m Bool -> m Sort -> m Sort -> m Sort
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM m Bool
forall (m :: * -> *). HasOptions m => m Bool
hasUniversePolymorphism (Args -> m Sort
forall (m :: * -> *). MonadMetaSolver m => Args -> m Sort
newSortMetaCtx (Args -> m Sort) -> m Args -> m Sort
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< m Args
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs)
  -- else (no universe polymorphism)
  (m Sort -> m Sort) -> m Sort -> m Sort
forall a b. (a -> b) -> a -> b
$ do i   <- m MetaInfo
forall (m :: * -> *). (MonadTCEnv m, ReadTCState m) => m MetaInfo
createMetaInfo
       let j = () -> Type -> Judgement ()
forall a. a -> Type -> Judgement a
IsSort () Type
HasCallStack => Type
__DUMMY_TYPE__
       x   <- newMeta Instantiable i normalMetaPriority (idP 0) j
       reportSDoc "tc.meta.new" 50 $
         "new sort meta" <+> prettyTCM x
       return $ MetaS x []

-- | Create a sort meta that may be instantiated with 'Inf' (Setω).
newSortMetaCtx :: MonadMetaSolver m => Args -> m Sort
newSortMetaCtx :: forall (m :: * -> *). MonadMetaSolver m => Args -> m Sort
newSortMetaCtx Args
vs = do
    i   <- m MetaInfo
forall (m :: * -> *). (MonadTCEnv m, ReadTCState m) => m MetaInfo
createMetaInfo
    tel <- getContextTelescope
    let t = Tele (Dom Type) -> Type -> Type
telePi_ Tele (Dom Type)
tel Type
HasCallStack => Type
__DUMMY_TYPE__
    x   <- newMeta Instantiable i normalMetaPriority (idP $ size tel) $ IsSort () t
    reportSDoc "tc.meta.new" 50 $
      "new sort meta" <+> prettyTCM x <+> ":" <+> prettyTCM t
    return $ MetaS x $ map Apply vs

newTypeMeta' :: Comparison -> Sort -> TCM Type
newTypeMeta' :: Comparison -> Sort -> TCM Type
newTypeMeta' Comparison
cmp Sort
s = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s (Term -> Type)
-> ((MetaId, Term) -> Term) -> (MetaId, Term) -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (MetaId, Term) -> Term
forall a b. (a, b) -> b
snd ((MetaId, Term) -> Type) -> TCMT IO (MetaId, Term) -> TCM Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> RunMetaOccursCheck -> Comparison -> Type -> TCMT IO (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta RunMetaOccursCheck
RunMetaOccursCheck Comparison
cmp (Sort -> Type
sort Sort
s)

newTypeMeta :: Sort -> TCM Type
newTypeMeta :: Sort -> TCM Type
newTypeMeta = Comparison -> Sort -> TCM Type
newTypeMeta' Comparison
CmpLeq

newTypeMeta_ ::  TCM Type
newTypeMeta_ :: TCM Type
newTypeMeta_  = Comparison -> Sort -> TCM Type
newTypeMeta' Comparison
CmpEq (Sort -> TCM Type) -> TCM Sort -> TCM Type
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (TCM Sort -> TCM Sort
forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
workOnTypes (TCM Sort -> TCM Sort) -> TCM Sort -> TCM Sort
forall a b. (a -> b) -> a -> b
$ TCM Sort
forall (m :: * -> *). MonadMetaSolver m => m Sort
newSortMeta)
-- TODO: (this could be made work with new uni-poly)
-- Andreas, 2011-04-27: If a type meta gets solved, than we do not have to check
-- that it has a sort.  The sort comes from the solution.
-- newTypeMeta_  = newTypeMeta Inf

{-# SPECIALIZE newLevelMeta :: TCM Level #-}
newLevelMeta :: MonadMetaSolver m => m Level
newLevelMeta :: forall (m :: * -> *). MonadMetaSolver m => m Level
newLevelMeta = do
  (x, v) <- RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta RunMetaOccursCheck
RunMetaOccursCheck Comparison
CmpEq (Type -> m (MetaId, Term)) -> m Type -> m (MetaId, Term)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< m Type
forall (m :: * -> *). (HasBuiltins m, MonadTCError m) => m Type
levelType
  return $ case v of
    Level Level
l    -> Level
l
    Term
_          -> Term -> Level
forall t. t -> Level' t
atomicLevel Term
v

{-# SPECIALIZE newInstanceMeta :: MetaNameSuggestion -> Type -> TCM (MetaId, Term) #-}
-- | @newInstanceMeta s t cands@ creates a new instance metavariable
--   of type the output type of @t@ with name suggestion @s@.
newInstanceMeta
  :: MonadMetaSolver m
  => MetaNameSuggestion -> Type -> m (MetaId, Term)
newInstanceMeta :: forall (m :: * -> *).
MonadMetaSolver m =>
[Char] -> Type -> m (MetaId, Term)
newInstanceMeta [Char]
s Type
t = do
  vs  <- m Args
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
  ctx <- getContextTelescope
  newInstanceMetaCtx s (telePi_ ctx t) vs

newInstanceMetaCtx
  :: MonadMetaSolver m
  => MetaNameSuggestion -> Type -> Args -> m (MetaId, Term)
newInstanceMetaCtx :: forall (m :: * -> *).
MonadMetaSolver m =>
[Char] -> Type -> Args -> m (MetaId, Term)
newInstanceMetaCtx [Char]
s Type
t Args
vs = do
  [Char] -> Nat -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.new" Nat
50 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep
    [ TCMT IO Doc
"new instance meta:"
    , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ Args -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Args -> m Doc
prettyTCM Args
vs TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
"|-"
    ]
  -- Andreas, 2017-10-04, issue #2753: no metaOccurs check for instance metas
  i0 <- RunMetaOccursCheck -> m MetaInfo
forall (m :: * -> *).
(MonadTCEnv m, ReadTCState m) =>
RunMetaOccursCheck -> m MetaInfo
createMetaInfo' RunMetaOccursCheck
DontRunMetaOccursCheck
  let i = MetaInfo
i0 { miNameSuggestion = s }
  TelV tel _ <- telView t
  let perm = Nat -> Permutation
idP (Tele (Dom Type) -> Nat
forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel)
  x <- newMeta' (OpenMeta InstanceMeta) Instantiable i normalMetaPriority perm (HasType () CmpLeq t)
  reportSDoc "tc.meta.new" 50 $ fsep
    [ nest 2 $ pretty x <+> ":" <+> prettyTCM t
    ]
  let c = MetaId -> Maybe [Candidate] -> Constraint
FindInstance MetaId
x Maybe [Candidate]
forall a. Maybe a
Nothing
  addAwakeConstraint alwaysUnblock c
  etaExpandMetaSafe x
  return (x, MetaV x $ map Apply vs)

-- | Create a new value meta with specific dependencies, possibly η-expanding in the process.
newNamedValueMeta :: MonadMetaSolver m => RunMetaOccursCheck -> MetaNameSuggestion -> Comparison -> Type -> m (MetaId, Term)
newNamedValueMeta :: forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck
-> [Char] -> Comparison -> Type -> m (MetaId, Term)
newNamedValueMeta RunMetaOccursCheck
b [Char]
s Comparison
cmp Type
t = do
  (x, v) <- RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta RunMetaOccursCheck
b Comparison
cmp Type
t
  setMetaNameSuggestion x s
  return (x, v)

-- | Create a new value meta with specific dependencies without η-expanding.
newNamedValueMeta' :: MonadMetaSolver m => RunMetaOccursCheck -> MetaNameSuggestion -> Comparison -> Type -> m (MetaId, Term)
newNamedValueMeta' :: forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck
-> [Char] -> Comparison -> Type -> m (MetaId, Term)
newNamedValueMeta' RunMetaOccursCheck
b [Char]
s Comparison
cmp Type
t = do
  (x, v) <- RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta' RunMetaOccursCheck
b Comparison
cmp Type
t
  setMetaNameSuggestion x s
  return (x, v)

{-# SPECIALIZE newValueMetaOfKind :: A.MetaInfo -> RunMetaOccursCheck -> Comparison -> Type -> TCM (MetaId, Term) #-}
newValueMetaOfKind :: MonadMetaSolver m
  => A.MetaInfo
  -> RunMetaOccursCheck  -- ^ Ignored for instance metas.
  -> Comparison          -- ^ Ignored for instance metas.
  -> Type
  -> m (MetaId, Term)
newValueMetaOfKind :: forall (m :: * -> *).
MonadMetaSolver m =>
MetaInfo
-> RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMetaOfKind MetaInfo
info = case MetaInfo -> MetaKind
A.metaKind MetaInfo
info of
  MetaKind
UnificationMeta -> RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta
  MetaKind
InstanceMeta -> \ RunMetaOccursCheck
_run Comparison
_cmp -> [Char] -> Type -> m (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
[Char] -> Type -> m (MetaId, Term)
newInstanceMeta (MetaInfo -> [Char]
A.metaNameSuggestion MetaInfo
info)

{-# SPECIALIZE newValueMeta :: RunMetaOccursCheck -> Comparison -> Type -> TCM (MetaId, Term) #-}
-- | Create a new metavariable, possibly η-expanding in the process.
newValueMeta :: MonadMetaSolver m => RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta :: forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta RunMetaOccursCheck
b Comparison
cmp Type
t = do
  vs  <- m Args
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
  tel <- getContextTelescope
  newValueMetaCtx Instantiable b cmp t tel (idP $ size tel) vs

newValueMetaCtx
  :: MonadMetaSolver m
  => Frozen -> RunMetaOccursCheck -> Comparison -> Type -> Telescope -> Permutation -> Args -> m (MetaId, Term)
newValueMetaCtx :: forall (m :: * -> *).
MonadMetaSolver m =>
Frozen
-> RunMetaOccursCheck
-> Comparison
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m (MetaId, Term)
newValueMetaCtx Frozen
frozen RunMetaOccursCheck
b Comparison
cmp Type
t Tele (Dom Type)
tel Permutation
perm Args
ctx =
  (Term -> m Term) -> (MetaId, Term) -> m (MetaId, Term)
forall (m :: * -> *) b d a.
Functor m =>
(b -> m d) -> (a, b) -> m (a, d)
mapSndM Term -> m Term
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull ((MetaId, Term) -> m (MetaId, Term))
-> m (MetaId, Term) -> m (MetaId, Term)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Frozen
-> RunMetaOccursCheck
-> Comparison
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
Frozen
-> RunMetaOccursCheck
-> Comparison
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m (MetaId, Term)
newValueMetaCtx' Frozen
frozen RunMetaOccursCheck
b Comparison
cmp Type
t Tele (Dom Type)
tel Permutation
perm Args
ctx

{-# SPECIALIZE newValueMeta' :: RunMetaOccursCheck -> Comparison -> Type -> TCM (MetaId, Term) #-}
-- | Create a new value meta without η-expanding.
newValueMeta'
  :: MonadMetaSolver m
  => RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta' :: forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta' RunMetaOccursCheck
b Comparison
cmp Type
t = do
  vs  <- m Args
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
  tel <- getContextTelescope
  newValueMetaCtx' Instantiable b cmp t tel (idP $ size tel) vs

newValueMetaCtx'
  :: MonadMetaSolver m
  => Frozen -> RunMetaOccursCheck -> Comparison -> Type -> Telescope -> Permutation -> Args -> m (MetaId, Term)
newValueMetaCtx' :: forall (m :: * -> *).
MonadMetaSolver m =>
Frozen
-> RunMetaOccursCheck
-> Comparison
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m (MetaId, Term)
newValueMetaCtx' Frozen
frozen RunMetaOccursCheck
b Comparison
cmp Type
a Tele (Dom Type)
tel Permutation
perm Args
vs = do
  i <- RunMetaOccursCheck -> m MetaInfo
forall (m :: * -> *).
(MonadTCEnv m, ReadTCState m) =>
RunMetaOccursCheck -> m MetaInfo
createMetaInfo' RunMetaOccursCheck
b
  let t     = Tele (Dom Type) -> Type -> Type
telePi_ Tele (Dom Type)
tel Type
a
  x <- newMeta frozen i normalMetaPriority perm (HasType () cmp t)
  modality <- currentModality
  reportSDoc "tc.meta.new" 50 $ fsep
    [ text $ "new meta (" ++ show (i ^. lensIsAbstract) ++ "):"
    , nest 2 $ prettyTCM vs <+> "|-"
    , nest 2 $ pretty x <+> ":" <+> pretty modality <+> prettyTCM t
    ]
  etaExpandMetaSafe x
  -- Andreas, 2012-09-24: for Metas X : Size< u add constraint X+1 <= u
  let u = MetaId -> Elims -> Term
MetaV MetaId
x (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply Args
vs
  boundedSizeMetaHook u tel a
  return (x, u)

newTelMeta :: MonadMetaSolver m => Telescope -> m Args
newTelMeta :: forall (m :: * -> *).
MonadMetaSolver m =>
Tele (Dom Type) -> m Args
newTelMeta Tele (Dom Type)
tel = Type -> m Args
forall (m :: * -> *). MonadMetaSolver m => Type -> m Args
newArgsMeta (Tele (Dom Type) -> Type -> Type
forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
tel (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$ Type
HasCallStack => Type
__DUMMY_TYPE__)

type Condition = Dom Type -> Abs Type -> Bool

trueCondition :: Condition
trueCondition :: Condition
trueCondition Dom Type
_ Abs Type
_ = Bool
True

{-# SPECIALIZE newArgsMeta :: Type -> TCM Args #-}
newArgsMeta :: MonadMetaSolver m => Type -> m Args
newArgsMeta :: forall (m :: * -> *). MonadMetaSolver m => Type -> m Args
newArgsMeta = Condition -> Type -> m Args
forall (m :: * -> *).
MonadMetaSolver m =>
Condition -> Type -> m Args
newArgsMeta' Condition
trueCondition

{-# SPECIALIZE newArgsMeta' :: Condition -> Type -> TCM Args #-}
newArgsMeta' :: MonadMetaSolver m => Condition -> Type -> m Args
newArgsMeta' :: forall (m :: * -> *).
MonadMetaSolver m =>
Condition -> Type -> m Args
newArgsMeta' Condition
condition Type
t = do
  args <- m Args
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
  tel  <- getContextTelescope
  newArgsMetaCtx' Instantiable condition t tel (idP $ size tel) args

newArgsMetaCtx :: Type -> Telescope -> Permutation -> Args -> TCM Args
newArgsMetaCtx :: Type -> Tele (Dom Type) -> Permutation -> Args -> TCM Args
newArgsMetaCtx = Frozen
-> Condition
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> TCM Args
forall (m :: * -> *).
MonadMetaSolver m =>
Frozen
-> Condition
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m Args
newArgsMetaCtx' Frozen
Instantiable Condition
trueCondition

newArgsMetaCtx''
  :: MonadMetaSolver m
  => MetaNameSuggestion -> Frozen -> Condition -> Type -> Telescope -> Permutation -> Args -> m Args
newArgsMetaCtx'' :: forall (m :: * -> *).
MonadMetaSolver m =>
[Char]
-> Frozen
-> Condition
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m Args
newArgsMetaCtx'' [Char]
pref Frozen
frozen Condition
condition (El Sort
s Term
tm) Tele (Dom Type)
tel Permutation
perm Args
ctx = do
  tm <- Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Term
tm
  case tm of
    Pi dom :: Dom Type
dom@(Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
info, unDom :: forall t e. Dom' t e -> e
unDom = Type
a}) Abs Type
codom | Condition
condition Dom Type
dom Abs Type
codom -> do
      let mod :: Modality
mod  = ArgInfo -> Modality
forall a. LensModality a => a -> Modality
getModality ArgInfo
info
          -- Issue #3031: It's not enough to applyModalityToContext, since most (all?)
          -- of the context lives in tel. Don't forget the arguments in ctx.
          tel' :: Tele (Dom Type)
tel' = ListTel -> Tele (Dom Type)
telFromList (ListTel -> Tele (Dom Type)) -> ListTel -> Tele (Dom Type)
forall a b. (a -> b) -> a -> b
$
                 (Dom ([Char], Type) -> Dom ([Char], Type)) -> ListTel -> ListTel
forall a b. (a -> b) -> [a] -> [b]
map (Modality
mod Modality -> Dom ([Char], Type) -> Dom ([Char], Type)
forall a. LensModality a => Modality -> a -> a
`inverseApplyModalityButNotQuantity`) (ListTel -> ListTel) -> ListTel -> ListTel
forall a b. (a -> b) -> a -> b
$
                 Tele (Dom Type) -> ListTel
forall t. Tele (Dom t) -> [Dom ([Char], t)]
telToList Tele (Dom Type)
tel
          ctx' :: Args
ctx' = (Arg Term -> Arg Term) -> Args -> Args
forall a b. (a -> b) -> [a] -> [b]
map (Modality
mod Modality -> Arg Term -> Arg Term
forall a. LensModality a => Modality -> a -> a
`inverseApplyModalityButNotQuantity`) Args
ctx
      (m, u) <- ArgInfo -> m (MetaId, Term) -> m (MetaId, Term)
forall (tcm :: * -> *) m a.
(MonadTCEnv tcm, LensModality m) =>
m -> tcm a -> tcm a
applyModalityToContext ArgInfo
info (m (MetaId, Term) -> m (MetaId, Term))
-> m (MetaId, Term) -> m (MetaId, Term)
forall a b. (a -> b) -> a -> b
$
                 Frozen
-> RunMetaOccursCheck
-> Comparison
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
Frozen
-> RunMetaOccursCheck
-> Comparison
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m (MetaId, Term)
newValueMetaCtx Frozen
frozen RunMetaOccursCheck
RunMetaOccursCheck Comparison
CmpLeq Type
a Tele (Dom Type)
tel' Permutation
perm Args
ctx'
      -- Jesper, 2021-05-05: When creating a metavariable from a
      -- generalizable variable, we must set the modality at which it
      -- will be generalized.  Don't do this for other metavariables,
      -- as they should keep the defaul modality (see #5363).
      whenM ((== YesGeneralizeVar) <$> viewTC eGeneralizeMetas) $
        setMetaGeneralizableArgInfo m $ hideOrKeepInstance info
      setMetaNameSuggestion m (suffixNameSuggestion pref (absName codom))
      args <- newArgsMetaCtx'' pref frozen condition (codom `absApp` u) tel perm ctx
      return $ Arg info u : args
    Term
_  -> Args -> m Args
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return []

newArgsMetaCtx'
  :: MonadMetaSolver m
  => Frozen -> Condition -> Type -> Telescope -> Permutation -> Args -> m Args
newArgsMetaCtx' :: forall (m :: * -> *).
MonadMetaSolver m =>
Frozen
-> Condition
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m Args
newArgsMetaCtx' = [Char]
-> Frozen
-> Condition
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m Args
forall (m :: * -> *).
MonadMetaSolver m =>
[Char]
-> Frozen
-> Condition
-> Type
-> Tele (Dom Type)
-> Permutation
-> Args
-> m Args
newArgsMetaCtx'' [Char]
forall a. Monoid a => a
mempty

-- | Create a metavariable of record type. This is actually one metavariable
--   for each field.
newRecordMeta :: QName -> Args -> TCM Term
newRecordMeta :: QName -> Args -> TCM Term
newRecordMeta QName
r Args
pars = do
  args <- TCM Args
forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
  tel  <- getContextTelescope
  newRecordMetaCtx mempty Instantiable r pars tel (idP $ size tel) args

newRecordMetaCtx
  :: MetaNameSuggestion
  -- ^ Name suggestion to be used as a /prefix/ of the name suggestions
  -- for the metas that represent each field
  -> Frozen  -- ^ Should the meta be created frozen?
  -> QName   -- ^ Name of record type
  -> Args    -- ^ Parameters of record type.
  -> Telescope -> Permutation -> Args -> TCM Term
newRecordMetaCtx :: [Char]
-> Frozen
-> QName
-> Args
-> Tele (Dom Type)
-> Permutation
-> Args
-> TCM Term
newRecordMetaCtx [Char]
pref Frozen
frozen QName
r Args
pars Tele (Dom Type)
tel Permutation
perm Args
ctx = do
  rdef   <- QName -> TCMT IO RecordData
forall (m :: * -> *).
(HasConstInfo m, ReadTCState m, MonadError TCErr m) =>
QName -> m RecordData
getRecordDef QName
r
  let con = KillRangeT ConHead
forall a. KillRange a => KillRangeT a
killRange KillRangeT ConHead -> KillRangeT ConHead
forall a b. (a -> b) -> a -> b
$ RecordData -> ConHead
_recConHead RecordData
rdef
  -- Get the record field types as telescope.
  let ftel = Tele (Dom Type) -> Args -> Tele (Dom Type)
forall t. Apply t => t -> Args -> t
apply (RecordData -> Tele (Dom Type)
_recTel RecordData
rdef) Args
pars
  fields <- newArgsMetaCtx'' pref frozen trueCondition
              (telePi_ ftel __DUMMY_TYPE__) tel perm ctx
  return $ Con con ConOSystem (map Apply fields)

newQuestionMark :: InteractionId -> Comparison -> Type -> TCM (MetaId, Term)
newQuestionMark :: InteractionId -> Comparison -> Type -> TCMT IO (MetaId, Term)
newQuestionMark InteractionId
ii Comparison
cmp = (Comparison -> Type -> TCMT IO (MetaId, Term))
-> InteractionId -> Comparison -> Type -> TCMT IO (MetaId, Term)
newQuestionMark' (RunMetaOccursCheck -> Comparison -> Type -> TCMT IO (MetaId, Term)
forall (m :: * -> *).
MonadMetaSolver m =>
RunMetaOccursCheck -> Comparison -> Type -> m (MetaId, Term)
newValueMeta' RunMetaOccursCheck
RunMetaOccursCheck) InteractionId
ii Comparison
cmp


-- Since we are type-checking some code twice, e.g., record declarations
-- for the sake of the record constructor type and then again for the sake
-- of the record module (issue #434), we may encounter an interaction point
-- for which we already have a meta.  In this case, we want to reuse the meta.
-- Otherwise we get two meta for one interaction point which are not connected,
-- and e.g. Agda might solve one in some way
-- and the user the other in some other way...
--
-- New reference: Andreas, 2021-07-21, issues #5478 and #5463
-- Old reference: Andreas, 2016-07-29, issue 1720-2
-- See also: issue #2257
newQuestionMark'
  :: (Comparison -> Type -> TCM (MetaId, Term))
  -> InteractionId -> Comparison -> Type -> TCM (MetaId, Term)
newQuestionMark' :: (Comparison -> Type -> TCMT IO (MetaId, Term))
-> InteractionId -> Comparison -> Type -> TCMT IO (MetaId, Term)
newQuestionMark' Comparison -> Type -> TCMT IO (MetaId, Term)
new InteractionId
ii Comparison
cmp Type
t = InteractionId -> TCMT IO (Maybe MetaId)
forall (m :: * -> *).
ReadTCState m =>
InteractionId -> m (Maybe MetaId)
lookupInteractionMeta InteractionId
ii TCMT IO (Maybe MetaId)
-> (Maybe MetaId -> TCMT IO (MetaId, Term))
-> TCMT IO (MetaId, Term)
forall a b. TCMT IO a -> (a -> TCMT IO b) -> TCMT IO b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case

  -- Case: new meta.
  Maybe MetaId
Nothing -> do
    -- Do not run check for recursive occurrence of meta in definitions,
    -- because we want to give the recursive solution interactively (Issue 589)
    (x, m) <- Comparison -> Type -> TCMT IO (MetaId, Term)
new Comparison
cmp Type
t
    connectInteractionPoint ii x
    return (x, m)

  -- Case: existing meta.
  Just MetaId
x -> do
    -- Get the context Γ in which the meta was created.
    MetaVar
      { mvInfo = MetaInfo{ miClosRange = Closure{ clEnv = TCEnv{ envContext = gamma }}}
      , mvPermutation = p
      } <- MetaVariable -> Maybe MetaVariable -> MetaVariable
forall a. a -> Maybe a -> a
fromMaybe MetaVariable
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe MetaVariable -> MetaVariable)
-> TCMT IO (Maybe MetaVariable) -> TCMT IO MetaVariable
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> TCMT IO (Maybe MetaVariable)
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m (Maybe MetaVariable)
lookupLocalMeta' MetaId
x
    -- Get the current context Δ.
    delta <- getContext
    -- A bit hazardous:
    -- we base our decisions on the names of the context entries.
    -- Ideally, Agda would organize contexts in ancestry trees
    -- with substitutions to move between parent and child.
    let glen = Context -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length Context
gamma
    let dlen = Context -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length Context
delta
    let gxs  = (Dom (Name, Type) -> Name) -> Context -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map ((Name, Type) -> Name
forall a b. (a, b) -> a
fst ((Name, Type) -> Name)
-> (Dom (Name, Type) -> (Name, Type)) -> Dom (Name, Type) -> Name
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom (Name, Type) -> (Name, Type)
forall t e. Dom' t e -> e
unDom) Context
gamma
    let dxs  = (Dom (Name, Type) -> Name) -> Context -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map ((Name, Type) -> Name
forall a b. (a, b) -> a
fst ((Name, Type) -> Name)
-> (Dom (Name, Type) -> (Name, Type)) -> Dom (Name, Type) -> Name
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom (Name, Type) -> (Name, Type)
forall t e. Dom' t e -> e
unDom) Context
delta
    reportSDoc "tc.interaction" 20 $ vcat
      [ "reusing meta"
      , nest 2 $ "creation context:" <+> pretty gxs
      , nest 2 $ "reusage  context:" <+> pretty dxs
      ]

    -- When checking a record declaration (e.g. Σ), creation context Γ
    -- might be of the forms Γ₀,Γ₁ or Γ₀,fst,Γ₁ or Γ₀,fst,snd,Γ₁ whereas
    -- Δ is of the form Γ₀,r,Γ₁,{Δ₂} for record variable r.
    -- So first find the record variable in Δ.
    rev_args <- case List.findIndex nameIsRecordName dxs of

      -- Case: no record variable in the context.
      -- Test whether Δ is an extension of Γ.
      Maybe Nat
Nothing -> do
        Bool -> TCM () -> TCM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless ([Name]
gxs [Name] -> [Name] -> Bool
forall a. Eq a => [a] -> [a] -> Bool
`List.isSuffixOf` [Name]
dxs) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
          [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"impossible" Nat
10 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
            [ TCMT IO Doc
"expecting meta-creation context"
            , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [Name] -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty [Name]
gxs
            , TCMT IO Doc
"to be a suffix of the meta-reuse context"
            , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [Name] -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty [Name]
dxs
            ]
          [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"impossible" Nat
70 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
            [ TCMT IO Doc
"expecting meta-creation context"
            , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ ([Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char] -> TCMT IO Doc)
-> ([Name] -> [Char]) -> [Name] -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Name] -> [Char]
forall a. Show a => a -> [Char]
show) [Name]
gxs
            , TCMT IO Doc
"to be a suffix of the meta-reuse context"
            , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ ([Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char] -> TCMT IO Doc)
-> ([Name] -> [Char]) -> [Name] -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Name] -> [Char]
forall a. Show a => a -> [Char]
show) [Name]
dxs
            ]
          TCM ()
forall a. HasCallStack => a
__IMPOSSIBLE__
        -- Apply the meta to |Γ| arguments from Δ.
        [Term] -> TCMT IO [Term]
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ([Term] -> TCMT IO [Term]) -> [Term] -> TCMT IO [Term]
forall a b. (a -> b) -> a -> b
$ (Nat -> Term) -> [Nat] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Nat -> Term
var [Nat
dlen Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
glen .. Nat
dlen Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1]

      -- Case: record variable in the context.
      Just Nat
k -> do
        -- Verify that the contexts relate as expected.
        let g0len :: Nat
g0len = [Name] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Name]
dxs Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
k Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
        -- Find out the Δ₂ and Γ₁ parts.
        -- However, as they do not share common ancestry, the @nameId@s differ,
        -- so we consider only the original concrete names.
        -- This is a bit risky... blame goes to #434.
        let gys :: [Name]
gys = (Name -> Name) -> [Name] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map Name -> Name
nameCanonical [Name]
gxs
        let dys :: [Name]
dys = (Name -> Name) -> [Name] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map Name -> Name
nameCanonical [Name]
dxs
        let (Nat
d2len, Nat
g1len) = [Name] -> [Name] -> (Nat, Nat)
forall a. Eq a => [a] -> [a] -> (Nat, Nat)
findOverlap (Nat -> [Name] -> [Name]
forall a. Nat -> [a] -> [a]
take Nat
k [Name]
dys) [Name]
gys
        [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.interaction" Nat
30 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat ([TCMT IO Doc] -> TCMT IO Doc) -> [TCMT IO Doc] -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ (TCMT IO Doc -> TCMT IO Doc) -> [TCMT IO Doc] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2)
          [ TCMT IO Doc
"glen  =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Nat -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Nat
glen
          , TCMT IO Doc
"g0len =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Nat -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Nat
g0len
          , TCMT IO Doc
"g1len =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Nat -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Nat
g1len
          , TCMT IO Doc
"d2len =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Nat -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Nat
d2len
          ]
        -- The Γ₀ part should match.
        Bool -> TCM () -> TCM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Nat -> [Name] -> [Name]
forall a. Nat -> [a] -> [a]
drop (Nat
glen Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
g0len) [Name]
gxs [Name] -> [Name] -> Bool
forall a. Eq a => a -> a -> Bool
== Nat -> [Name] -> [Name]
forall a. Nat -> [a] -> [a]
drop (Nat
k Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) [Name]
dxs) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
          [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"impossible" Nat
10 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
            [ TCMT IO Doc
"expecting meta-creation context (with fields instead of record var)"
            , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [Name] -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty [Name]
gxs
            , TCMT IO Doc
"to share ancestry (suffix) with the meta-reuse context (with record var)"
            , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [Name] -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty [Name]
dxs
            ]
          TCM ()
forall a. HasCallStack => a
__IMPOSSIBLE__
        -- The Γ₁ part should match.
        Bool -> TCM () -> TCM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless ( ([Name] -> [Name] -> Bool
forall a. Eq a => a -> a -> Bool
(==) ([Name] -> [Name] -> Bool)
-> ([Name] -> [Name]) -> [Name] -> [Name] -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Nat -> [Name] -> [Name]
forall a. Nat -> [a] -> [a]
take Nat
g1len) [Name]
gys (Nat -> [Name] -> [Name]
forall a. Nat -> [a] -> [a]
drop Nat
d2len [Name]
dys) ) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
          [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"impossible" Nat
10 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
            [ TCMT IO Doc
"expecting meta-creation context (with fields instead of record var)"
            , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [Name] -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty [Name]
gxs
            , TCMT IO Doc
"to be an expansion of the meta-reuse context (with record var)"
            , Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ [Name] -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty [Name]
dxs
            ]
          TCM ()
forall a. HasCallStack => a
__IMPOSSIBLE__
        let ([Term]
vs1, Term
v : [Term]
vs0) = Nat -> [Term] -> ([Term], [Term])
forall a. Nat -> [a] -> ([a], [a])
splitAt Nat
g1len ([Term] -> ([Term], [Term])) -> [Term] -> ([Term], [Term])
forall a b. (a -> b) -> a -> b
$ (Nat -> Term) -> [Nat] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Nat -> Term
var [Nat
d2len..Nat
dlenNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1]
        -- We need to expand the record var @v@ into the correct number of fields.
        let numFields :: Nat
numFields = Nat
glen Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
g1len Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
g0len
        if Nat
numFields Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
<= Nat
0 then [Term] -> TCMT IO [Term]
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ([Term] -> TCMT IO [Term]) -> [Term] -> TCMT IO [Term]
forall a b. (a -> b) -> a -> b
$ [Term]
vs1 [Term] -> [Term] -> [Term]
forall a. [a] -> [a] -> [a]
++ [Term]
vs0 else do
          -- Get the record type.
          let t :: Type
t = (Name, Type) -> Type
forall a b. (a, b) -> b
snd ((Name, Type) -> Type)
-> (Maybe (Dom (Name, Type)) -> (Name, Type))
-> Maybe (Dom (Name, Type))
-> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom (Name, Type) -> (Name, Type)
forall t e. Dom' t e -> e
unDom (Dom (Name, Type) -> (Name, Type))
-> (Maybe (Dom (Name, Type)) -> Dom (Name, Type))
-> Maybe (Dom (Name, Type))
-> (Name, Type)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom (Name, Type) -> Maybe (Dom (Name, Type)) -> Dom (Name, Type)
forall a. a -> Maybe a -> a
fromMaybe Dom (Name, Type)
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe (Dom (Name, Type)) -> Type)
-> Maybe (Dom (Name, Type)) -> Type
forall a b. (a -> b) -> a -> b
$ Context
delta Context -> Nat -> Maybe (Dom (Name, Type))
forall a. [a] -> Nat -> Maybe a
!!! Nat
k
          -- Get the record field names.
          fs <- Type -> TCM [Dom QName]
getRecordTypeFields Type
t
          -- Field arguments to the original meta are projections from the record var.
          let vfs = (Dom QName -> Term) -> [Dom QName] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map ((\ QName
x -> Term
v Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` [ProjOrigin -> QName -> Elim
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
ProjSystem QName
x]) (QName -> Term) -> (Dom QName -> QName) -> Dom QName -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom QName -> QName
forall t e. Dom' t e -> e
unDom) [Dom QName]
fs
          -- These are the final args to the original meta:
          return $ vs1 ++ reverse (take numFields vfs) ++ vs0

    -- Use ArgInfo from Γ.
    let args = Args -> Args
forall a. [a] -> [a]
reverse (Args -> Args) -> Args -> Args
forall a b. (a -> b) -> a -> b
$ (Term -> Arg (Name, Type) -> Arg Term)
-> [Term] -> [Arg (Name, Type)] -> Args
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Term -> Arg (Name, Type) -> Arg Term
forall a b. a -> Arg b -> Arg a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
(<$) [Term]
rev_args ([Arg (Name, Type)] -> Args) -> [Arg (Name, Type)] -> Args
forall a b. (a -> b) -> a -> b
$ (Dom (Name, Type) -> Arg (Name, Type))
-> Context -> [Arg (Name, Type)]
forall a b. (a -> b) -> [a] -> [b]
map Dom (Name, Type) -> Arg (Name, Type)
forall t a. Dom' t a -> Arg a
argFromDom Context
gamma
    -- Take the permutation into account (see TC.Monad.MetaVars.getMetaContextArgs).
    let vs = Permutation -> Args -> Args
forall a. Permutation -> [a] -> [a]
permute (Nat -> Permutation -> Permutation
takeP (Args -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length Args
args) Permutation
p) Args
args
    reportSDoc "tc.interaction" 20 $ vcat
      [ "meta reuse arguments:" <+> prettyTCM vs ]
    return (x, MetaV x $ map Apply vs)

{-# SPECIALIZE blockTerm :: Type -> TCM Term -> TCM Term #-}
-- | Construct a blocked constant if there are constraints.
blockTerm
  :: (MonadMetaSolver m, MonadConstraint m, MonadFresh Nat m, MonadFresh ProblemId m)
  => Type -> m Term -> m Term
blockTerm :: forall (m :: * -> *).
(MonadMetaSolver m, MonadConstraint m, MonadFresh Nat m,
 MonadFresh ProblemId m) =>
Type -> m Term -> m Term
blockTerm Type
t m Term
blocker = do
  (pid, v) <- m Term -> m (ProblemId, Term)
forall (m :: * -> *) a.
(MonadFresh ProblemId m, MonadConstraint m) =>
m a -> m (ProblemId, a)
newProblem m Term
blocker
  blockTermOnProblem t v pid

{-# SPECIALIZE blockTermOnProblem :: Type -> Term -> ProblemId -> TCM Term #-}
blockTermOnProblem
  :: (MonadMetaSolver m, MonadFresh Nat m)
  => Type -> Term -> ProblemId -> m Term
blockTermOnProblem :: forall (m :: * -> *).
(MonadMetaSolver m, MonadFresh Nat m) =>
Type -> Term -> ProblemId -> m Term
blockTermOnProblem Type
t Term
v ProblemId
pid = do
  -- Andreas, 2012-09-27 do not block on unsolved size constraints
  solved <- ProblemId -> m Bool
forall (m :: * -> *).
(MonadTCEnv m, ReadTCState m) =>
ProblemId -> m Bool
isProblemSolved ProblemId
pid
  ifM (return solved `or2M` isSizeProblem pid)
      (v <$ reportSLn "tc.meta.blocked" 20 ("Not blocking because " ++ show pid ++ " is " ++
                                            if solved then "solved" else "a size problem")) $ do
    i   <- createMetaInfo
    es  <- map Apply <$> getContextArgs
    tel <- getContextTelescope
    x   <- newMeta' (BlockedConst $ abstract tel v)
                    Instantiable
                    i
                    lowMetaPriority
                    (idP $ size tel)
                    (HasType () CmpLeq $ telePi_ tel t)
                    -- we don't instantiate blocked terms
    inTopContext $ addConstraint (unblockOnProblem pid) (UnBlock x)
    reportSDoc "tc.meta.blocked" 20 $ vcat
      [ "blocked" <+> prettyTCM x <+> ":=" <+> inTopContext
        (prettyTCM $ abstract tel v)
      , "     by" <+> (prettyTCM =<< getConstraintsForProblem pid)
      ]
    inst <- isInstantiatedMeta x
    if inst
      then instantiate (MetaV x es)
      else do
        -- We don't return the blocked term instead create a fresh metavariable
        -- that we compare against the blocked term once it's unblocked. This way
        -- blocked terms can be instantiated before they are unblocked, thus making
        -- constraint solving a bit more robust against instantiation order.
        -- Andreas, 2015-05-22: DontRunMetaOccursCheck to avoid Issue585-17.
        (m', v) <- newValueMeta DontRunMetaOccursCheck CmpLeq t
        reportSDoc "tc.meta.blocked" 30
          $   "setting twin of"
          <+> prettyTCM m'
          <+> "to be"
          <+> prettyTCM x
        updateMetaVar m' (\MetaVariable
mv -> MetaVariable
mv { mvTwin = Just x })
        i   <- fresh
        -- This constraint is woken up when unblocking, so it doesn't need a problem id.
        cmp <- buildProblemConstraint_ (unblockOnMeta x) (ValueCmp CmpEq (AsTermsOf t) v (MetaV x es))
        reportSDoc "tc.constr.add" 20 $ "adding constraint" <+> prettyTCM cmp
        listenToMeta (CheckConstraint i cmp) x
        return v

{-# SPECIALIZE blockTypeOnProblem :: Type -> ProblemId -> TCM Type #-}
blockTypeOnProblem
  :: (MonadMetaSolver m, MonadFresh Nat m)
  => Type -> ProblemId -> m Type
blockTypeOnProblem :: forall (m :: * -> *).
(MonadMetaSolver m, MonadFresh Nat m) =>
Type -> ProblemId -> m Type
blockTypeOnProblem (El Sort
s Term
a) ProblemId
pid = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
s (Term -> Type) -> m Term -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> Term -> ProblemId -> m Term
forall (m :: * -> *).
(MonadMetaSolver m, MonadFresh Nat m) =>
Type -> Term -> ProblemId -> m Term
blockTermOnProblem (Sort -> Type
sort Sort
s) Term
a ProblemId
pid

-- | @unblockedTester t@ returns a 'Blocker' for @t@.
--
--   Auxiliary function used when creating a postponed type checking problem.
unblockedTester :: Type -> TCM Blocker
unblockedTester :: Type -> TCM Blocker
unblockedTester Type
t = Type
-> (Blocker -> Type -> TCM Blocker)
-> (NotBlocked -> Type -> TCM Blocker)
-> TCM Blocker
forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked Type
t (\ Blocker
b Type
_ -> Blocker -> TCM Blocker
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocker
b) (\ NotBlocked
_ Type
_ -> Blocker -> TCM Blocker
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocker
alwaysUnblock)

-- | Create a postponed type checking problem @e : t@ that waits for type @t@
--   to unblock (become instantiated or its constraints resolved).
postponeTypeCheckingProblem_ :: TypeCheckingProblem -> TCM Term
postponeTypeCheckingProblem_ :: TypeCheckingProblem -> TCM Term
postponeTypeCheckingProblem_ TypeCheckingProblem
p = do
  TypeCheckingProblem -> Blocker -> TCM Term
postponeTypeCheckingProblem TypeCheckingProblem
p (Blocker -> TCM Term) -> TCM Blocker -> TCM Term
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< TypeCheckingProblem -> TCM Blocker
unblock TypeCheckingProblem
p
  where
    unblock :: TypeCheckingProblem -> TCM Blocker
unblock (CheckExpr Comparison
_ Expr
_ Type
t)         = Type -> TCM Blocker
unblockedTester Type
t
    unblock (CheckArgs Comparison
_ ExpandHidden
_ Range
_ [NamedArg Expr]
_ Type
t Type
_ ArgsCheckState CheckedTarget -> TCM Term
_) = Type -> TCM Blocker
unblockedTester Type
t  -- The type of the head of the application.
    unblock (CheckProjAppToKnownPrincipalArg Comparison
_ Expr
_ ProjOrigin
_ List1 QName
_ [NamedArg Expr]
_ Type
_ Nat
_ Term
_ Type
t PrincipalArgTypeMetas
_) = Type -> TCM Blocker
unblockedTester Type
t -- The type of the principal argument
    unblock (CheckLambda Comparison
_ Arg (List1 (WithHiding Name), Maybe Type)
_ Expr
_ Type
t)     = Type -> TCM Blocker
unblockedTester Type
t
    unblock (DoQuoteTerm Comparison
_ Term
_ Type
_)       = TCM Blocker
forall a. HasCallStack => a
__IMPOSSIBLE__     -- also quoteTerm problems

-- | Create a postponed type checking problem @e : t@ that waits for conditon
--   @unblock@.  A new meta is created in the current context that has as
--   instantiation the postponed type checking problem.  An 'UnBlock' constraint
--   is added for this meta, which links to this meta.
postponeTypeCheckingProblem :: TypeCheckingProblem -> Blocker -> TCM Term
postponeTypeCheckingProblem :: TypeCheckingProblem -> Blocker -> TCM Term
postponeTypeCheckingProblem TypeCheckingProblem
p Blocker
unblock | Blocker
unblock Blocker -> Blocker -> Bool
forall a. Eq a => a -> a -> Bool
== Blocker
alwaysUnblock = do
  [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"impossible" Nat
2 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Postponed without blocker:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<?> TypeCheckingProblem -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => TypeCheckingProblem -> m Doc
prettyTCM TypeCheckingProblem
p
  TCM Term
forall a. HasCallStack => a
__IMPOSSIBLE__
postponeTypeCheckingProblem TypeCheckingProblem
p Blocker
unblock = do
  i   <- RunMetaOccursCheck -> TCMT IO MetaInfo
forall (m :: * -> *).
(MonadTCEnv m, ReadTCState m) =>
RunMetaOccursCheck -> m MetaInfo
createMetaInfo' RunMetaOccursCheck
DontRunMetaOccursCheck
  tel <- getContextTelescope
  cl  <- buildClosure p
  let t = TypeCheckingProblem -> Type
problemType TypeCheckingProblem
p
  m   <- newMeta' (PostponedTypeCheckingProblem cl)
                  Instantiable i normalMetaPriority (idP (size tel))
         $ HasType () CmpLeq $ telePi_ tel t
  inTopContext $ reportSDoc "tc.meta.postponed" 20 $ vcat
    [ "new meta" <+> prettyTCM m <+> ":" <+> prettyTCM (telePi_ tel t)
    , "for postponed typechecking problem" <+> prettyTCM p
    ]

  -- Create the meta that we actually return
  -- Andreas, 2012-03-15
  -- This is an alias to the pptc meta, in order to allow pruning (issue 468)
  -- and instantiation.
  -- Since this meta's solution comes from user code, we do not need
  -- to run the extended occurs check (metaOccurs) to exclude
  -- non-terminating solutions.
  es  <- map Apply <$> getContextArgs
  (_, v) <- newValueMeta DontRunMetaOccursCheck CmpLeq t
  cmp <- buildProblemConstraint_ (unblockOnMeta m) (ValueCmp CmpEq (AsTermsOf t) v (MetaV m es))
  reportSDoc "tc.constr.add" 20 $ "adding constraint" <+> prettyTCM cmp
  i   <- liftTCM fresh
  listenToMeta (CheckConstraint i cmp) m
  addConstraint unblock (UnBlock m)
  return v

-- | Type of the term that is produced by solving the 'TypeCheckingProblem'.
problemType :: TypeCheckingProblem -> Type
problemType :: TypeCheckingProblem -> Type
problemType (CheckExpr Comparison
_ Expr
_ Type
t         ) = Type
t
problemType (CheckArgs Comparison
_ ExpandHidden
_ Range
_ [NamedArg Expr]
_ Type
_ Type
t ArgsCheckState CheckedTarget -> TCM Term
_ ) = Type
t  -- The target type of the application.
problemType (CheckProjAppToKnownPrincipalArg Comparison
_ Expr
_ ProjOrigin
_ List1 QName
_ [NamedArg Expr]
_ Type
t Nat
_ Term
_ Type
_ PrincipalArgTypeMetas
_) = Type
t -- The target type of the application
problemType (CheckLambda Comparison
_ Arg (List1 (WithHiding Name), Maybe Type)
_ Expr
_ Type
t     ) = Type
t
problemType (DoQuoteTerm Comparison
_ Term
_ Type
t)        = Type
t

-- | Eta-expand a local meta-variable, if it is of the specified kind.
--   Don't do anything if the meta-variable is a blocked term.
etaExpandMetaTCM :: [MetaClass] -> MetaId -> TCM ()
etaExpandMetaTCM :: [MetaClass] -> MetaId -> TCM ()
etaExpandMetaTCM [MetaClass]
kinds MetaId
m = TCM Bool -> TCM () -> TCM ()
forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
whenM ((Bool -> Bool
not (Bool -> Bool) -> TCM Bool -> TCM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> TCM Bool
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m Bool
isFrozen MetaId
m) TCM Bool -> TCM Bool -> TCM Bool
forall (m :: * -> *). Monad m => m Bool -> m Bool -> m Bool
`and2M` (TCEnv -> Bool) -> TCM Bool
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> Bool
envAssignMetas TCM Bool -> TCM Bool -> TCM Bool
forall (m :: * -> *). Monad m => m Bool -> m Bool -> m Bool
`and2M` [MetaClass] -> MetaId -> TCM Bool
isEtaExpandable [MetaClass]
kinds MetaId
m) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
  [Char] -> Nat -> [Char] -> TCM () -> TCM ()
forall a. [Char] -> Nat -> [Char] -> TCMT IO a -> TCMT IO a
forall (m :: * -> *) a.
MonadDebug m =>
[Char] -> Nat -> [Char] -> m a -> m a
verboseBracket [Char]
"tc.meta.eta" Nat
20 ([Char]
"etaExpandMeta " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ MetaId -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow MetaId
m) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
    let waitFor :: Blocker -> TCM ()
waitFor Blocker
b = do
          [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.eta" Nat
20 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
            TCMT IO Doc
"postponing eta-expansion of meta variable" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>
              MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => MetaId -> m Doc
prettyTCM MetaId
m TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>
              TCMT IO Doc
"which is blocked by" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Blocker -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Blocker -> m Doc
prettyTCM Blocker
b
          (MetaId -> TCM ()) -> Set MetaId -> TCM ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (Listener -> MetaId -> TCM ()
forall (m :: * -> *).
MonadMetaSolver m =>
Listener -> MetaId -> m ()
listenToMeta (MetaId -> Listener
EtaExpand MetaId
m)) (Set MetaId -> TCM ()) -> Set MetaId -> TCM ()
forall a b. (a -> b) -> a -> b
$ Blocker -> Set MetaId
allBlockingMetas Blocker
b
        dontExpand :: TCM ()
dontExpand = do
          [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.eta" Nat
20 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
            TCMT IO Doc
"we do not expand meta variable" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => MetaId -> m Doc
prettyTCM MetaId
m TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>
              [Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char]
"(requested was expansion of " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [MetaClass] -> [Char]
forall a. Show a => a -> [Char]
show [MetaClass]
kinds [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
")")
    meta <- MetaId -> TCMT IO MetaVariable
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
m
    case mvJudgement meta of
      IsSort{} -> TCM ()
dontExpand
      HasType MetaId
_ Comparison
cmp Type
a -> do

        [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.eta" Nat
40 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
          [ [Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text [Char]
"considering eta-expansion at type "
          , Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
a
          , [Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text [Char]
" raw: "
          , Type -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
a
          ]

        TelV tel b <- Type -> TCMT IO (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
a
        reportSDoc "tc.meta.eta" 40 $ sep
          [ text "considering eta-expansion at type"
          , addContext tel (prettyTCM b)
          , text "under telescope"
          , prettyTCM tel
          ]

        -- Eta expanding metas with a domFinite will just make sure
        -- they go unsolved: conversion will compare them at the
        -- different cases for the domain, so it will not find the
        -- solution for the whole meta.
        if any domIsFinite (flattenTel tel) then dontExpand else do

        -- Issue #3774: continue with the right context for b
        addContext tel $ do

        -- if the target type @b@ of @m@ is a meta variable @x@ itself
        -- (@NonBlocked (MetaV{})@),
        -- or it is blocked by a meta-variable @x@ (@Blocked@), we cannot
        -- eta expand now, we have to postpone this.  Once @x@ is
        -- instantiated, we can continue eta-expanding m.  This is realized
        -- by adding @m@ to the listeners of @x@.
        ifBlocked (unEl b) (\ Blocker
x Term
_ -> Blocker -> TCM ()
waitFor Blocker
x) $ \ NotBlocked
_ Term
t -> case Term
t of
          lvl :: Term
lvl@(Def QName
r Elims
es) ->
            TCM Bool -> TCM () -> TCM () -> TCM ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> TCM Bool
forall (m :: * -> *). HasConstInfo m => QName -> m Bool
isEtaRecord QName
r) {- then -} (do
              let ps :: Args
ps = Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
              let expand :: TCM ()
expand = do
                    u <- MetaVariable -> TCM Term -> TCM Term
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
MetaVariable -> m a -> m a
withMetaInfo' MetaVariable
meta (TCM Term -> TCM Term) -> TCM Term -> TCM Term
forall a b. (a -> b) -> a -> b
$
                      [Char]
-> Frozen
-> QName
-> Args
-> Tele (Dom Type)
-> Permutation
-> Args
-> TCM Term
newRecordMetaCtx (MetaInfo -> [Char]
miNameSuggestion (MetaVariable -> MetaInfo
mvInfo MetaVariable
meta))
                        (MetaVariable -> Frozen
mvFrozen MetaVariable
meta) QName
r Args
ps Tele (Dom Type)
tel (Nat -> Permutation
idP (Nat -> Permutation) -> Nat -> Permutation
forall a b. (a -> b) -> a -> b
$ Tele (Dom Type) -> Nat
forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel) (Args -> TCM Term) -> Args -> TCM Term
forall a b. (a -> b) -> a -> b
$ Tele (Dom Type) -> Args
forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
tel
                    -- Andreas, 2019-03-18, AIM XXIX, issue #3597
                    -- When meta is frozen instantiate it with in-turn frozen metas.
                    inTopContext $ do
                      reportSDoc "tc.meta.eta" 15 $ sep
                          [ "eta expanding: " <+> pretty m <+> " --> "
                          , nest 2 $ prettyTCM u
                          ]
                      -- Andreas, 2012-03-29: No need for occurrence check etc.
                      -- we directly assign the solution for the meta
                      -- 2012-05-23: We also bypass the check for frozen.
                      noConstraints $ assignTerm' m (telToArgs tel) u  -- should never produce any constraints
              if MetaClass
Records MetaClass -> [MetaClass] -> Bool
forall a. Eq a => a -> [a] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [MetaClass]
kinds then
                TCM ()
expand
               else if (MetaClass
SingletonRecords MetaClass -> [MetaClass] -> Bool
forall a. Eq a => a -> [a] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [MetaClass]
kinds) then
                (Blocker -> TCM ()) -> TCM () -> TCM ()
forall a. (Blocker -> TCMT IO a) -> TCMT IO a -> TCMT IO a
forall (m :: * -> *) a.
MonadBlock m =>
(Blocker -> m a) -> m a -> m a
catchPatternErr (\Blocker
x -> Blocker -> TCM ()
waitFor Blocker
x) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
                 TCM Bool -> TCM () -> TCM () -> TCM ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (QName -> Args -> TCM Bool
forall (m :: * -> *).
(PureTCM m, MonadBlock m) =>
QName -> Args -> m Bool
isSingletonRecord QName
r Args
ps) TCM ()
expand TCM ()
dontExpand
                else TCM ()
dontExpand
            ) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ {- else -} TCM Bool -> TCM () -> TCM () -> TCM ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM ([TCM Bool] -> TCM Bool
forall (f :: * -> *) (m :: * -> *).
(Foldable f, Monad m) =>
f (m Bool) -> m Bool
andM [ Bool -> TCM Bool
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> TCM Bool) -> Bool -> TCM Bool
forall a b. (a -> b) -> a -> b
$ MetaClass
Levels MetaClass -> [MetaClass] -> Bool
forall a. Eq a => a -> [a] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [MetaClass]
kinds
                            , TCM Bool
forall (m :: * -> *). HasOptions m => m Bool
typeInType
                            , (Term -> Maybe Term
forall a. a -> Maybe a
Just Term
lvl Maybe Term -> Maybe Term -> Bool
forall a. Eq a => a -> a -> Bool
==) (Maybe Term -> Bool) -> TCMT IO (Maybe Term) -> TCM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> BuiltinId -> TCMT IO (Maybe Term)
forall (m :: * -> *). HasBuiltins m => BuiltinId -> m (Maybe Term)
getBuiltin' BuiltinId
builtinLevel
                            ]) (do
              [Char] -> Nat -> [Char] -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> [Char] -> m ()
reportSLn [Char]
"tc.meta.eta" Nat
20 ([Char] -> TCM ()) -> [Char] -> TCM ()
forall a b. (a -> b) -> a -> b
$ [Char]
"Expanding level meta to 0 (type-in-type)"
              -- Andreas, 2012-03-30: No need for occurrence check etc.
              -- we directly assign the solution for the meta
              TCM () -> TCM ()
forall (m :: * -> *) a.
(MonadConstraint m, MonadWarning m, MonadError TCErr m,
 MonadFresh ProblemId m) =>
m a -> m a
noConstraints (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ MetaId -> [Arg [Char]] -> Term -> TCM ()
forall (m :: * -> *).
MonadMetaSolver m =>
MetaId -> [Arg [Char]] -> Term -> m ()
assignTerm MetaId
m (Tele (Dom Type) -> [Arg [Char]]
forall a. TelToArgs a => a -> [Arg [Char]]
telToArgs Tele (Dom Type)
tel) (Term -> TCM ()) -> Term -> TCM ()
forall a b. (a -> b) -> a -> b
$ Level -> Term
Level (Level -> Term) -> Level -> Term
forall a b. (a -> b) -> a -> b
$ Integer -> Level
ClosedLevel Integer
0
           ) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ {- else -} TCM ()
dontExpand
          Term
_ -> TCM ()
dontExpand

-- | Eta expand blocking metavariables of record type, and reduce the
-- blocked thing.

etaExpandBlocked :: (MonadReduce m, MonadMetaSolver m, IsMeta t, Reduce t)
                 => Blocked t -> m (Blocked t)
etaExpandBlocked :: forall (m :: * -> *) t.
(MonadReduce m, MonadMetaSolver m, IsMeta t, Reduce t) =>
Blocked t -> m (Blocked t)
etaExpandBlocked t :: Blocked t
t@NotBlocked{} = Blocked t -> m (Blocked t)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocked t
t
etaExpandBlocked t :: Blocked t
t@(Blocked Blocker
_ t
v) | Just{} <- t -> Maybe MetaId
forall a. IsMeta a => a -> Maybe MetaId
isMeta t
v = Blocked t -> m (Blocked t)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocked t
t
etaExpandBlocked (Blocked Blocker
b t
t)  = do
  [Char] -> Nat -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.eta" Nat
30 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Eta expanding blockers" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Blocker -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Blocker
b
  (MetaId -> m ()) -> Set MetaId -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ ([MetaClass] -> MetaId -> m ()
forall (m :: * -> *).
MonadMetaSolver m =>
[MetaClass] -> MetaId -> m ()
etaExpandMeta [MetaClass
Records]) (Set MetaId -> m ()) -> Set MetaId -> m ()
forall a b. (a -> b) -> a -> b
$ Blocker -> Set MetaId
allBlockingMetas Blocker
b
  t <- t -> m (Blocked t)
forall a (m :: * -> *).
(Reduce a, MonadReduce m) =>
a -> m (Blocked a)
reduceB t
t
  case t of
    Blocked Blocker
b' t
_ | Blocker
b Blocker -> Blocker -> Bool
forall a. Eq a => a -> a -> Bool
/= Blocker
b' -> Blocked t -> m (Blocked t)
forall (m :: * -> *) t.
(MonadReduce m, MonadMetaSolver m, IsMeta t, Reduce t) =>
Blocked t -> m (Blocked t)
etaExpandBlocked Blocked t
t
    Blocked t
_                      -> Blocked t -> m (Blocked t)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Blocked t
t

{-# SPECIALIZE assignWrapper :: CompareDirection -> MetaId -> Elims -> Term -> TCM () -> TCM () #-}
assignWrapper :: (MonadMetaSolver m, MonadConstraint m, MonadError TCErr m, MonadDebug m, HasOptions m)
              => CompareDirection -> MetaId -> Elims -> Term -> m () -> m ()
assignWrapper :: forall (m :: * -> *).
(MonadMetaSolver m, MonadConstraint m, MonadError TCErr m,
 MonadDebug m, HasOptions m) =>
CompareDirection -> MetaId -> Elims -> Term -> m () -> m ()
assignWrapper CompareDirection
dir MetaId
x Elims
es Term
v m ()
doAssign = do
  m Bool -> m () -> m () -> m ()
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifNotM ((TCEnv -> Bool) -> m Bool
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> Bool
envAssignMetas) m ()
forall {b}. m b
dontAssign (m () -> m ()) -> m () -> m ()
forall a b. (a -> b) -> a -> b
$ {- else -} do
    [Char] -> Nat -> TCMT IO Doc -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
10 (TCMT IO Doc -> m ()) -> TCMT IO Doc -> m ()
forall a b. (a -> b) -> a -> b
$ do
      TCMT IO Doc
"term" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM (MetaId -> Elims -> Term
MetaV MetaId
x Elims
es) TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char]
":" [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ CompareDirection -> [Char]
forall a. Pretty a => a -> [Char]
prettyShow CompareDirection
dir) TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v
    m () -> m ()
forall (m :: * -> *) a. MonadTCEnv m => m a -> m a
nowSolvingConstraints m ()
doAssign m () -> m () -> m ()
forall e (m :: * -> *) a. MonadError e m => m a -> m () -> m a
`finally` m ()
forall (m :: * -> *). MonadConstraint m => m ()
solveAwakeConstraints

  where dontAssign :: m b
dontAssign = do
          [Char] -> Nat -> [Char] -> m ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> [Char] -> m ()
reportSLn [Char]
"tc.meta.assign" Nat
10 [Char]
"don't assign metas"
          Blocker -> m b
forall a. Blocker -> m a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
alwaysUnblock  -- retry again when we are allowed to instantiate metas

-- | Miller pattern unification:
--
--   @assign dir x vs v a@ solves problem @x vs <=(dir) v : a@ for meta @x@
--   if @vs@ are distinct variables (linearity check)
--   and @v@ depends only on these variables
--   and does not contain @x@ itself (occurs check).
--
--   This is the basic story, but we have added some features:
--
--   1. Pruning.
--   2. Benign cases of non-linearity.
--   3. @vs@ may contain record patterns.
--
--   For a reference to some of these extensions, read
--   Andreas Abel and Brigitte Pientka's TLCA 2011 paper.

assign :: CompareDirection -> MetaId -> Args -> Term -> CompareAs -> TCM ()
assign :: CompareDirection -> MetaId -> Args -> Term -> CompareAs -> TCM ()
assign CompareDirection
dir MetaId
x Args
args Term
v CompareAs
target = Blocker -> TCM () -> TCM ()
forall (m :: * -> *) a.
(PureTCM m, MonadBlock m) =>
Blocker -> m a -> m a
addOrUnblocker (MetaId -> Blocker
unblockOnMeta MetaId
x) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do

  mvar <- MetaId -> TCMT IO MetaVariable
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
x  -- information associated with meta x
  let t = Judgement MetaId -> Type
forall a. Judgement a -> Type
jMetaType (Judgement MetaId -> Type) -> Judgement MetaId -> Type
forall a b. (a -> b) -> a -> b
$ MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mvar

  -- Andreas, 2011-05-20 TODO!
  -- full normalization  (which also happens during occurs check)
  -- is too expensive! (see Issue 415)
  -- need to do something cheaper, especially if
  -- we are dealing with a Miller pattern that can be solved
  -- immediately!
  -- Ulf, 2011-08-25 DONE!
  -- Just instantiating the top-level meta, which is cheaper. The occurs
  -- check will first try without unfolding any definitions (treating
  -- arguments to definitions as flexible), if that fails it tries again
  -- with full unfolding.
  reportSDoc "tc.meta.assign" 25 $ "v = " <+> prettyTCM v
  v <- instantiate v
  reportSDoc "tc.meta.assign" 25 $ "v = " <+> prettyTCM v
  reportSDoc "tc.meta.assign" 45 $
    "MetaVars.assign: assigning meta " <+> prettyTCM (MetaV x []) <+>
    " with args " <+> prettyList_ (map (prettyTCM . unArg) args) <+>
    " to " <+> prettyTCM v
  reportSDoc "tc.meta.assign" 45 $
    "MetaVars.assign: type of meta: " <+> prettyTCM t

  reportSDoc "tc.meta.assign" 75 $
    text "MetaVars.assign: assigning meta  " <> pretty x <> text "  with args  " <> pretty args <> text "  to  " <> pretty v

  let
    boundary Term
v = do
      cubical <- TCMT IO (Maybe Cubical)
forall (m :: * -> *). HasOptions m => m (Maybe Cubical)
cubicalOption
      isip <- isInteractionMetaB x args
      case (,) <$> cubical <*> isip of
        Just (Cubical
_, (MetaId
x, InteractionId
ip, Args
args)) -> CompareDirection
-> MetaId -> InteractionId -> Args -> Term -> CompareAs -> TCM ()
tryAddBoundary CompareDirection
dir MetaId
x InteractionId
ip Args
args Term
v CompareAs
target
        Maybe (Cubical, (MetaId, InteractionId, Args))
_ -> () -> TCM ()
forall a. a -> TCMT IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()

  case (v, mvJudgement mvar) of
      (Sort Sort
s, HasType{}) -> Sort -> TCM ()
hasBiggerSort Sort
s
      (Term, Judgement MetaId)
_                   -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()

  -- Jesper, 2019-09-13: When --no-sort-comparison is enabled,
  -- we equate the sort of the solution with the sort of the
  -- metavariable, in order to solve metavariables in sorts.
  -- Jesper, 2020-04-22: We do this before any of the other steps
  -- because comparing the sorts might lead to some metavariables
  -- being solved, which can help with pruning (see #4615).
  -- Jesper, 2020-08-25: --no-sort-comparison is now the default
  -- behaviour.
  --
  -- Under most circumstances, the conversion checker guarantees that
  -- the solution for the meta has the correct type, so there is no
  -- need to check anything. However, there are two circumstances in
  -- which we do need to check the type of the solution:
  --
  -- 1. When comparing two types they are not guaranteed to have the
  --    same sort.
  --
  -- 2. When --cumulativity is enabled the same can happen when
  --    comparing two terms at a sort type.

  cumulativity <- optCumulativity <$> pragmaOptions

  let checkSolutionSort Comparison
cmp Sort
s Term
v = do
        s' <- Term -> TCM Sort
forall (m :: * -> *).
(PureTCM m, MonadBlock m, MonadConstraint m) =>
Term -> m Sort
sortOf Term
v
        reportSDoc "tc.meta.assign" 40 $
          "Instantiating sort" <+> prettyTCM s <+>
          "to sort" <+> prettyTCM s' <+> "of solution" <+> prettyTCM v
        traceCall (CheckMetaSolution (getRange mvar) x (sort s) v) $
          compareSort cmp s' s

  case (target , mvJudgement mvar) of
    -- Case 1 (comparing term to meta as types)
    (AsTypes{}   , HasType MetaId
_ Comparison
cmp0 Type
t) -> do
        let cmp :: Comparison
cmp   = if Bool
cumulativity then Comparison
cmp0 else Comparison
CmpEq
            abort :: TCMT IO Empty
abort = Blocker -> TCMT IO Empty
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Blocker -> TCMT IO Empty) -> TCM Blocker -> TCMT IO Empty
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Blocker -> TCM Blocker
forall (m :: * -> *). PureTCM m => Blocker -> m Blocker
updateBlocker (Type -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Type
t) -- TODO: make piApplyM' compute unblocker
        t' <- TCMT IO Empty -> Type -> Args -> TCM Type
forall a (m :: * -> *).
(PiApplyM a, MonadReduce m, HasBuiltins m) =>
m Empty -> Type -> a -> m Type
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
m Empty -> Type -> Args -> m Type
piApplyM' TCMT IO Empty
abort Type
t Args
args
        s <- shouldBeSort t'
        checkSolutionSort cmp s v

    -- Case 2 (comparing term to type-level meta as terms, with --cumulativity)
    (AsTermsOf{} , HasType MetaId
_ Comparison
cmp Type
t)
      | Bool
cumulativity -> do
          let abort :: TCMT IO Empty
abort = Blocker -> TCMT IO Empty
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Blocker -> TCMT IO Empty) -> TCM Blocker -> TCMT IO Empty
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Blocker -> TCM Blocker
forall (m :: * -> *). PureTCM m => Blocker -> m Blocker
updateBlocker (Type -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Type
t)
          t' <- TCMT IO Empty -> Type -> Args -> TCM Type
forall a (m :: * -> *).
(PiApplyM a, MonadReduce m, HasBuiltins m) =>
m Empty -> Type -> a -> m Type
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
m Empty -> Type -> Args -> m Type
piApplyM' TCMT IO Empty
abort Type
t Args
args
          TelV tel t'' <- telView t'
          addContext tel $ ifNotSort t'' (return ()) $ \Sort
s -> do
            let v' :: Term
v' = Nat -> Term -> Term
forall a. Subst a => Nat -> a -> a
raise (Tele (Dom Type) -> Nat
forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel) Term
v Term -> Args -> Term
forall t. Apply t => t -> Args -> t
`apply` Tele (Dom Type) -> Args
forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
tel
            Comparison -> Sort -> Term -> TCM ()
checkSolutionSort Comparison
cmp Sort
s Term
v'

    (AsTypes{}   , IsSort{}       ) -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    (AsTermsOf{} , Judgement MetaId
_              ) -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    (AsSizes{}   , Judgement MetaId
_              ) -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()  -- TODO: should we do something similar for sizes?



  -- We don't instantiate frozen mvars
  when (mvFrozen mvar == Frozen) $ do
    reportSLn "tc.meta.assign" 25 $ "aborting: meta is frozen!"
    -- IApplyConfluence can contribute boundary conditions to frozen metas
    boundary v
    patternViolation neverUnblock

  -- We never get blocked terms here anymore. TODO: we actually do. why?
  whenM (isBlockedTerm x) $ do
    reportSLn "tc.meta.assign" 25 $ "aborting: meta is a blocked term!"
    patternViolation (unblockOnMeta x)

  -- Andreas, 2010-10-15 I want to see whether rhs is blocked
  reportSLn "tc.meta.assign" 50 $ "MetaVars.assign: I want to see whether rhs is blocked"
  reportSDoc "tc.meta.assign" 25 $ do
    v0 <- reduceB v
    case v0 of
      Blocked Blocker
m0 Term
_ -> TCMT IO Doc
"r.h.s. blocked on:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Blocker -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Blocker -> m Doc
prettyTCM Blocker
m0
      NotBlocked{} -> TCMT IO Doc
"r.h.s. not blocked"
  reportSDoc "tc.meta.assign" 25 $ "v = " <+> prettyTCM v

  -- Turn the assignment problem @_X args >= SizeLt u@ into
  -- @_X args = SizeLt (_Y args@ and constraint
  -- @_Y args >= u@.
  subtypingForSizeLt dir x mvar t args v $ \ Term
v -> do

    [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
25 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"v = " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v
    [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign.proj" Nat
45 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
      cxt <- TCMT IO (Tele (Dom Type))
forall (m :: * -> *).
(Applicative m, MonadTCEnv m) =>
m (Tele (Dom Type))
getContextTelescope
      vcat
        [ "context before projection expansion"
        , nest 2 $ inTopContext $ prettyTCM cxt
        ]

    -- Normalise and eta contract the arguments to the meta. These are
    -- usually small, and simplifying might let us instantiate more metas.
    -- Also, try to expand away projected vars in meta args.

    Args
-> (Term, CompareAs)
-> (Args -> (Term, CompareAs) -> TCM ())
-> TCM ()
forall a b c.
(Pretty a, PrettyTCM a, NoProjectedVar a, ReduceAndEtaContract a,
 PrettyTCM b, TermSubst b) =>
a -> b -> (a -> b -> TCM c) -> TCM c
expandProjectedVars Args
args (Term
v, CompareAs
target) ((Args -> (Term, CompareAs) -> TCM ()) -> TCM ())
-> (Args -> (Term, CompareAs) -> TCM ()) -> TCM ()
forall a b. (a -> b) -> a -> b
$ \ Args
args (Term
v, CompareAs
target) -> do

      [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign.proj" Nat
45 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
        cxt <- TCMT IO (Tele (Dom Type))
forall (m :: * -> *).
(Applicative m, MonadTCEnv m) =>
m (Tele (Dom Type))
getContextTelescope
        vcat
          [ "context after projection expansion"
          , nest 2 $ inTopContext $ prettyTCM cxt
          ]

      -- Andreas, 2019-11-16, issue #4159:
      -- We would like to save the work we put into expanding projected variables.
      -- However, the Conversion checker speculatively tries some assignment
      -- in some places (e.g. shortcut) and relies on an exception to be thrown
      -- to try other alternatives next.
      -- If we catch the exception here, this (brittle) mechanism will be broken.
      -- Maybe one possibility would be to rethrow the exception with the
      -- new constraint.  Then, further up, it could be decided whether
      -- to discard the new constraint and do something different,
      -- or add the new constraint when postponing.

      -- BEGIN attempt #4159
      -- let constraint = case v of
      --       -- Sort s -> dirToCmp SortCmp dir (MetaS x $ map Apply args) s
      --       _      -> dirToCmp (\ cmp -> ValueCmp cmp target) dir (MetaV x $ map Apply args) v
      -- reportSDoc "tc.meta.assign.catch" 40 $ sep
      --   [ "assign: catching constraint:"
      --   , prettyTCM constraint
      --   ]
      -- -- reportSDoc "tc.meta.assign.catch" 60 $ sep
      -- --   [ "assign: catching constraint:"
      -- --   , pretty constraint
      -- --   ]
      -- reportSDoc "tc.meta.assign.catch" 80 $ sep
      --   [ "assign: catching constraint (raw):"
      --   , (text . show) constraint
      --   ]
      -- catchConstraint constraint $ do
      -- END attempt #4159


      -- Andreas, 2011-04-21 do the occurs check first
      -- e.g. _1 x (suc x) = suc (_2 x y)
      -- even though the lhs is not a pattern, we can prune the y from _2

      let
                vars :: VarMap
vars        = Args -> VarMap
forall a c t. (IsVarSet a c, Singleton Nat c, Free t) => t -> c
freeVars Args
args
                relVL :: [Nat]
relVL       = (VarOcc -> Bool) -> VarMap -> [Nat]
filterVarMapToList VarOcc -> Bool
forall a. LensRelevance a => a -> Bool
isRelevant  VarMap
vars
                nonstrictVL :: [Nat]
nonstrictVL = (VarOcc -> Bool) -> VarMap -> [Nat]
filterVarMapToList VarOcc -> Bool
forall a. LensRelevance a => a -> Bool
isNonStrict VarMap
vars
                irrVL :: [Nat]
irrVL       = (VarOcc -> Bool) -> VarMap -> [Nat]
filterVarMapToList ((Bool -> Bool -> Bool)
-> (VarOcc -> Bool) -> (VarOcc -> Bool) -> VarOcc -> Bool
forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 Bool -> Bool -> Bool
(&&) VarOcc -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant VarOcc -> Bool
forall o a. LensFlexRig o a => o -> Bool
isUnguarded) VarMap
vars
            -- Andreas, 2011-10-06 only irrelevant vars that are direct
            -- arguments to the meta, hence, can be abstracted over, may
            -- appear on the rhs.  (test/fail/Issue483b)
            -- Update 2011-03-27: Also irr. vars under record constructors.
            -- Andreas, 2019-06-25:  The reason is that when solving
            -- @X args = v@ we drop all irrelevant arguments that
            -- are not variables (after flattening of record constructors).
            -- (See isVarOrIrrelevant in inverseSubst.)
            -- Thus, the occurs-check needs to ensure only these variables
            -- are mentioned on the rhs.
            -- In the terminology of free variable analysis, the retained
            -- irrelevant variables are exactly the Unguarded ones.
            -- Jesper, 2019-10-15: This is actually wrong since it
            -- will lead to pruning of metas that should not be
            -- pruned, see #4136.

      [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
20 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$
          let pr :: Term -> m Doc
pr (Var Nat
n []) = [Char] -> m Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text (Nat -> [Char]
forall a. Show a => a -> [Char]
show Nat
n)
              pr (Def QName
c []) = QName -> m Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => QName -> m Doc
prettyTCM QName
c
              pr Term
_          = m Doc
".."
          in [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
               [ TCMT IO Doc
"mvar args:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep ((Arg Term -> TCMT IO Doc) -> Args -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> TCMT IO Doc
forall {m :: * -> *}.
(MonadFresh NameId m, MonadInteractionPoints m,
 MonadStConcreteNames m, PureTCM m, IsString (m Doc), Null (m Doc),
 Semigroup (m Doc)) =>
Term -> m Doc
pr (Term -> TCMT IO Doc)
-> (Arg Term -> Term) -> Arg Term -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg Term -> Term
forall e. Arg e -> e
unArg) Args
args)
               , TCMT IO Doc
"fvars lhs (rel):" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep ((Nat -> TCMT IO Doc) -> [Nat] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map ([Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char] -> TCMT IO Doc) -> (Nat -> [Char]) -> Nat -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Nat -> [Char]
forall a. Show a => a -> [Char]
show) [Nat]
relVL)
               , TCMT IO Doc
"fvars lhs (nonstrict):" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep ((Nat -> TCMT IO Doc) -> [Nat] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map ([Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char] -> TCMT IO Doc) -> (Nat -> [Char]) -> Nat -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Nat -> [Char]
forall a. Show a => a -> [Char]
show) [Nat]
nonstrictVL)
               , TCMT IO Doc
"fvars lhs (irr):" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep ((Nat -> TCMT IO Doc) -> [Nat] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map ([Char] -> TCMT IO Doc
forall (m :: * -> *). Applicative m => [Char] -> m Doc
text ([Char] -> TCMT IO Doc) -> (Nat -> [Char]) -> Nat -> TCMT IO Doc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Nat -> [Char]
forall a. Show a => a -> [Char]
show) [Nat]
irrVL)
               ]

      -- Check that the x doesn't occur in the right hand side.
      -- Prune mvars on rhs such that they can only depend on lhs vars.
      -- Herein, distinguish relevant and irrelevant vars,
      -- since when abstracting irrelevant lhs vars, they may only occur
      -- irrelevantly on rhs.
      -- v <- liftTCM $ occursCheck x (relVL, nonstrictVL, irrVL) v
      v <- TCM Term -> TCM Term
forall a. TCM a -> TCM a
forall (tcm :: * -> *) a. MonadTCM tcm => TCM a -> tcm a
liftTCM (TCM Term -> TCM Term) -> TCM Term -> TCM Term
forall a b. (a -> b) -> a -> b
$ MetaId -> VarMap -> Term -> TCM Term
occursCheck MetaId
x VarMap
vars Term
v

      reportSLn "tc.meta.assign" 15 "passed occursCheck"
      reportSDoc "tc.meta.assign" 25 $ "v = " <+> prettyTCM v
      verboseS "tc.meta.assign" 30 $ do
        let n = Term -> Nat
forall a. TermSize a => a -> Nat
termSize Term
v
        when (n > 200) $ reportSDoc "tc.meta.assign" 30 $
          sep [ "size" <+> text (show n)
--              , nest 2 $ "type" <+> prettyTCM t
              , nest 2 $ "term" <+> prettyTCM v
              ]

      -- Check linearity of @ids@
      -- Andreas, 2010-09-24: Herein, ignore the variables which are not
      -- free in v
      -- Ulf, 2011-09-22: we need to respect irrelevant vars as well, otherwise
      -- we'll build solutions where the irrelevant terms are not valid
      let fvs = Term -> VarSet
forall t. Free t => t -> VarSet
allFreeVars Term
v
      reportSDoc "tc.meta.assign" 20 $
        "fvars rhs:" <+> sep (map (text . show) $ VarSet.toList fvs)

      -- Check that the arguments are variables
      mids <- do
        res <- runExceptT $ inverseSubst' (const False) args
        case res of
          -- all args are variables
          Right [(Nat, Term)]
ids -> do
            [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
60 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$
              TCMT IO Doc
"inverseSubst returns:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep (((Nat, Term) -> TCMT IO Doc) -> [(Nat, Term)] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Nat, Term) -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty [(Nat, Term)]
ids)
            [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
50 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$
              TCMT IO Doc
"inverseSubst returns:" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep (((Nat, Term) -> TCMT IO Doc) -> [(Nat, Term)] -> [TCMT IO Doc]
forall a b. (a -> b) -> [a] -> [b]
map (Nat, Term) -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => (Nat, Term) -> m Doc
prettyTCM [(Nat, Term)]
ids)
            let boundVars :: VarSet
boundVars = [Nat] -> VarSet
VarSet.fromList ([Nat] -> VarSet) -> [Nat] -> VarSet
forall a b. (a -> b) -> a -> b
$ ((Nat, Term) -> Nat) -> [(Nat, Term)] -> [Nat]
forall a b. (a -> b) -> [a] -> [b]
map (Nat, Term) -> Nat
forall a b. (a, b) -> a
fst [(Nat, Term)]
ids
            if VarSet
fvs VarSet -> VarSet -> Bool
`VarSet.isSubsetOf` VarSet
boundVars
              then Maybe [(Nat, Term)] -> TCMT IO (Maybe [(Nat, Term)])
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe [(Nat, Term)] -> TCMT IO (Maybe [(Nat, Term)]))
-> Maybe [(Nat, Term)] -> TCMT IO (Maybe [(Nat, Term)])
forall a b. (a -> b) -> a -> b
$ [(Nat, Term)] -> Maybe [(Nat, Term)]
forall a. a -> Maybe a
Just [(Nat, Term)]
ids
              else Maybe [(Nat, Term)] -> TCMT IO (Maybe [(Nat, Term)])
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe [(Nat, Term)]
forall a. Maybe a
Nothing
          -- we have proper values as arguments which could be cased on
          -- here, we cannot prune, since offending vars could be eliminated
          Left (CantInvert Term
tm) -> Maybe [(Nat, Term)]
forall a. Maybe a
Nothing Maybe [(Nat, Term)] -> TCM () -> TCMT IO (Maybe [(Nat, Term)])
forall a b. a -> TCMT IO b -> TCMT IO a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Term -> TCM ()
boundary Term
v
          -- we have non-variables, but these are not eliminateable
          Left InvertExcept
NeutralArg  -> [(Nat, Term)] -> Maybe [(Nat, Term)]
forall a. a -> Maybe a
Just ([(Nat, Term)] -> Maybe [(Nat, Term)])
-> TCMT IO [(Nat, Term)] -> TCMT IO (Maybe [(Nat, Term)])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> Args -> VarSet -> TCMT IO [(Nat, Term)]
forall a. MetaId -> Args -> VarSet -> TCM a
attemptPruning MetaId
x Args
args VarSet
fvs
          -- we have a projected variable which could not be eta-expanded away:
          -- same as neutral
          Left ProjVar{}   -> [(Nat, Term)] -> Maybe [(Nat, Term)]
forall a. a -> Maybe a
Just ([(Nat, Term)] -> Maybe [(Nat, Term)])
-> TCMT IO [(Nat, Term)] -> TCMT IO (Maybe [(Nat, Term)])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> Args -> VarSet -> TCMT IO [(Nat, Term)]
forall a. MetaId -> Args -> VarSet -> TCM a
attemptPruning MetaId
x Args
args VarSet
fvs

      case mids of  -- vv Ulf 2014-07-13: actually not needed after all: attemptInertRHSImprovement x args v
        Maybe [(Nat, Term)]
Nothing  -> Blocker -> TCM ()
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Blocker -> TCM ()) -> TCM Blocker -> TCM ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Blocker -> TCM Blocker
forall (m :: * -> *). PureTCM m => Blocker -> m Blocker
updateBlocker (Term -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Term
v)  -- TODO: more precise
        Just [(Nat, Term)]
ids -> do
          -- Check linearity
          ids <- do
            res <- ExceptT () (TCMT IO) [(Nat, Term)] -> TCM (Either () [(Nat, Term)])
forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT (ExceptT () (TCMT IO) [(Nat, Term)]
 -> TCM (Either () [(Nat, Term)]))
-> ExceptT () (TCMT IO) [(Nat, Term)]
-> TCM (Either () [(Nat, Term)])
forall a b. (a -> b) -> a -> b
$ [(Nat, Term)] -> ExceptT () (TCMT IO) [(Nat, Term)]
checkLinearity {- (`VarSet.member` fvs) -} [(Nat, Term)]
ids
            case res of
              -- case: linear
              Right [(Nat, Term)]
ids -> [(Nat, Term)] -> TCMT IO [(Nat, Term)]
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return [(Nat, Term)]
ids
              -- case: non-linear variables that could possibly be pruned
              -- If pruning fails we need to unblock on any meta in the rhs, since they might get
              -- rid of the dependency on the non-linear variable. TODO: be more precise (all metas
              -- using non-linear variables need to be solved).
              Left ()   -> do
                block <- Blocker -> TCM Blocker
forall (m :: * -> *). PureTCM m => Blocker -> m Blocker
updateBlocker (Blocker -> TCM Blocker) -> Blocker -> TCM Blocker
forall a b. (a -> b) -> a -> b
$ Term -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Term
v
                addOrUnblocker block $ attemptPruning x args fvs

          -- Check ids is time respecting.
          () <- do
            let idvars = ((Nat, Term) -> (Nat, VarSet)) -> [(Nat, Term)] -> [(Nat, VarSet)]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> VarSet) -> (Nat, Term) -> (Nat, VarSet)
forall b d a. (b -> d) -> (a, b) -> (a, d)
mapSnd Term -> VarSet
forall t. Free t => t -> VarSet
allFreeVars) [(Nat, Term)]
ids
            -- earlierThan α v := v "arrives" before α
            let earlierThan a
l a
j = a
j a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> a
l
            TelV tel' _ <- telViewUpToPath (length args) t
            forM_ ids $ \(Nat
i,Term
u) -> do
              d <- Nat -> TCMT IO (Dom (Name, Type))
forall (m :: * -> *).
(MonadFail m, MonadTCEnv m) =>
Nat -> m (Dom (Name, Type))
lookupBV Nat
i
              case getLock (getArgInfo d) of
                Lock
IsNotLock -> () -> TCM ()
forall a. a -> TCMT IO a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ()
                IsLock{} -> do
                let us :: VarSet
us = [VarSet] -> VarSet
forall (f :: * -> *). Foldable f => f VarSet -> VarSet
IntSet.unions ([VarSet] -> VarSet) -> [VarSet] -> VarSet
forall a b. (a -> b) -> a -> b
$ ((Nat, VarSet) -> VarSet) -> [(Nat, VarSet)] -> [VarSet]
forall a b. (a -> b) -> [a] -> [b]
map (Nat, VarSet) -> VarSet
forall a b. (a, b) -> b
snd ([(Nat, VarSet)] -> [VarSet]) -> [(Nat, VarSet)] -> [VarSet]
forall a b. (a -> b) -> a -> b
$ ((Nat, VarSet) -> Bool) -> [(Nat, VarSet)] -> [(Nat, VarSet)]
forall a. (a -> Bool) -> [a] -> [a]
filter (Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
earlierThan Nat
i (Nat -> Bool) -> ((Nat, VarSet) -> Nat) -> (Nat, VarSet) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Nat, VarSet) -> Nat
forall a b. (a, b) -> a
fst) [(Nat, VarSet)]
idvars
                -- us Earlier than u
                Tele (Dom Type) -> TCM () -> TCM ()
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Tele (Dom Type) -> m a -> m a
addContext Tele (Dom Type)
tel' (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ Term -> VarSet -> TCM ()
checkEarlierThan Term
u VarSet
us
                  TCM () -> (TCErr -> TCM ()) -> TCM ()
forall a. TCMT IO a -> (TCErr -> TCMT IO a) -> TCMT IO a
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \case
                     TypeError{} -> Blocker -> TCM ()
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (MetaId -> Blocker
unblockOnMeta MetaId
x) -- If the earlier check hard-fails we need to
                     TCErr
err         -> TCErr -> TCM ()
forall a. TCErr -> TCMT IO a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err                     -- solve this meta in some other way.

          let n = Args -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length Args
args
          TelV tel' _ <- telViewUpToPath n t

          -- Check subtyping constraints on the context variables.

          -- Intuition: suppose @_X : (x : A) → B@, then to turn
          --   @
          --     Γ(x : A') ⊢ _X x =?= v : B'@
          --   @
          -- into
          --   @
          --     Γ ⊢ _X =?= λ x → v
          --   @
          -- we need to check that @A <: A'@ (due to contravariance).
          let sigma = [Term] -> Substitution
forall a. DeBruijn a => [a] -> Substitution' a
parallelS ([Term] -> Substitution) -> [Term] -> Substitution
forall a b. (a -> b) -> a -> b
$ [Term] -> [Term]
forall a. [a] -> [a]
reverse ([Term] -> [Term]) -> [Term] -> [Term]
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Term) -> Args -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Term
forall e. Arg e -> e
unArg Args
args
          hasSubtyping <- optCumulativity <$> pragmaOptions
          when hasSubtyping $ forM_ ids $ \(Nat
i , Term
u) -> do
            -- @u@ is a (projected) variable, so we can infer its type
            a  <- Substitution' (SubstArg Type) -> Type -> Type
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Type)
sigma (Type -> Type) -> TCM Type -> TCM Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tele (Dom Type) -> TCM Type -> TCM Type
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Tele (Dom Type) -> m a -> m a
addContext Tele (Dom Type)
tel' (Term -> TCM Type
forall (m :: * -> *). MonadCheckInternal m => Term -> m Type
infer Term
u)
            a' <- typeOfBV i
            checkSubtypeIsEqual a' a
              `catchError` \case
                TypeError{} -> Blocker -> TCM ()
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (MetaId -> Blocker
unblockOnMeta MetaId
x) -- If the subtype check hard-fails we need to
                TCErr
err         -> TCErr -> TCM ()
forall a. TCErr -> TCMT IO a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err                     -- solve this meta in some other way.

          -- Solve.
          m <- getContextSize
          assignMeta' m x t n ids v
  where
    -- Try to remove meta arguments from lhs that mention variables not occurring on rhs.
    attemptPruning
      :: MetaId  -- Meta-variable (lhs)
      -> Args    -- Meta arguments (lhs)
      -> FVs     -- Variables occuring on the rhs
      -> TCM a
    attemptPruning :: forall a. MetaId -> Args -> VarSet -> TCM a
attemptPruning MetaId
x Args
args VarSet
fvs = do
      -- non-linear lhs: we cannot solve, but prune
      killResult <- MetaId -> Args -> (Nat -> Bool) -> TCMT IO PruneResult
forall (m :: * -> *).
(PureTCM m, MonadMetaSolver m) =>
MetaId -> Args -> (Nat -> Bool) -> m PruneResult
prune MetaId
x Args
args ((Nat -> Bool) -> TCMT IO PruneResult)
-> (Nat -> Bool) -> TCMT IO PruneResult
forall a b. (a -> b) -> a -> b
$ (Nat -> VarSet -> Bool
`VarSet.member` VarSet
fvs)
      let success = PruneResult
killResult PruneResult -> [PruneResult] -> Bool
forall a. Eq a => a -> [a] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [PruneResult
PrunedSomething,PruneResult
PrunedEverything]
      reportSDoc "tc.meta.assign" 10 $
        "pruning" <+> prettyTCM x <+> do text $ if success then "succeeded" else "failed"
      blocker <- if
        | success   -> return alwaysUnblock  -- If pruning succeeded we want to retry right away
        | otherwise -> unblockOnAnyMetaIn . MetaV x . map Apply <$> instantiateFull args
             -- TODO: could be more precise: only unblock on metas
             --       applied to offending variables
      patternViolation blocker

-- | Is the given metavariable application secretly an interaction point
-- application? Ugly.
isInteractionMetaB
  :: forall m. (ReadTCState m, MonadReduce m, MonadPretty m)
  => MetaId
  -> Args
  -> m (Maybe (MetaId, InteractionId, Args))
isInteractionMetaB :: forall (m :: * -> *).
(ReadTCState m, MonadReduce m, MonadPretty m) =>
MetaId -> Args -> m (Maybe (MetaId, InteractionId, Args))
isInteractionMetaB MetaId
mid Args
args =
  MaybeT m (MetaId, InteractionId, Args)
-> m (Maybe (MetaId, InteractionId, Args))
forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT (MaybeT m (MetaId, InteractionId, Args)
 -> m (Maybe (MetaId, InteractionId, Args)))
-> MaybeT m (MetaId, InteractionId, Args)
-> m (Maybe (MetaId, InteractionId, Args))
forall a b. (a -> b) -> a -> b
$ MetaId -> Args -> MaybeT m (MetaId, InteractionId, Args)
forall {m :: * -> *} {c}.
ReadTCState m =>
MetaId -> c -> MaybeT m (MetaId, InteractionId, c)
here MetaId
mid Args
args MaybeT m (MetaId, InteractionId, Args)
-> MaybeT m (MetaId, InteractionId, Args)
-> MaybeT m (MetaId, InteractionId, Args)
forall a. MaybeT m a -> MaybeT m a -> MaybeT m a
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` do
    -- If the meta isn't literally an interaction point it might still
    -- be instantiable to an interaction point, as long as we ignore
    -- blocking
    m Term -> MaybeT m Term
forall (m :: * -> *) a. Monad m => m a -> MaybeT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Term -> m Term
instantiateBlockingFull (MetaId -> Elims -> Term
MetaV MetaId
mid (Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim) -> Args -> Elims
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Args
args))) MaybeT m Term
-> (Term -> MaybeT m (MetaId, InteractionId, Args))
-> MaybeT m (MetaId, InteractionId, Args)
forall a b. MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Term -> MaybeT m (MetaId, InteractionId, Args)
there
  where
    here :: MetaId -> c -> MaybeT m (MetaId, InteractionId, c)
here MetaId
mid c
args = do
      iid <- m (Maybe InteractionId) -> MaybeT m InteractionId
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (MetaId -> m (Maybe InteractionId)
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m (Maybe InteractionId)
isInteractionMeta MetaId
mid)
      pure (mid, iid, args)

    instantiateBlockingFull :: Term -> m Term
instantiateBlockingFull = Lens' TCState Bool -> (Bool -> Bool) -> m Term -> m Term
forall a b. Lens' TCState a -> (a -> a) -> m b -> m b
forall (m :: * -> *) a b.
ReadTCState m =>
Lens' TCState a -> (a -> a) -> m b -> m b
locallyTCState (Bool -> f Bool) -> TCState -> f TCState
Lens' TCState Bool
stInstantiateBlocking (Bool -> Bool -> Bool
forall a b. a -> b -> a
const Bool
True) (m Term -> m Term) -> (Term -> m Term) -> Term -> m Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> m Term
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull

    there :: Term -> MaybeT m (MetaId, InteractionId, Args)
    there :: Term -> MaybeT m (MetaId, InteractionId, Args)
there (MetaV MetaId
m Elims
args) = do
      iid  <- m (Maybe InteractionId) -> MaybeT m InteractionId
forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (MetaId -> m (Maybe InteractionId)
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m (Maybe InteractionId)
isInteractionMeta MetaId
m)
      args <- MaybeT (pure (allApplyElims args))
      pure (m, iid, args)
    -- It might be the case that the inner meta (the interaction point)
    -- exists in a larger context, so instantiating the outer meta (the
    -- original argument) will produce lambdas.
    --
    -- Since the boundary code runs in the inner, larger context, we can
    -- peel off the lambdas without running afoul of the scope.
    there (Lam ArgInfo
_ Abs Term
as) = Term -> MaybeT m (MetaId, InteractionId, Args)
there (Abs Term -> SubstArg Term -> Term
forall a. Subst a => Abs a -> SubstArg a -> a
absApp Abs Term
as (Nat -> Term
var Nat
0))
    there Term
_ = MaybeT m (MetaId, InteractionId, Args)
forall a. MaybeT m a
forall (m :: * -> *) a. MonadPlus m => m a
mzero

{- UNUSED
-- | When faced with @_X us == D vs@ for an inert D we can solve this by
--   @_X xs := D _Ys@ with new constraints @_Yi us == vi@. This is important
--   for instance arguments, where knowing the head D might enable progress.
attemptInertRHSImprovement :: MetaId -> Args -> Term -> TCM ()
attemptInertRHSImprovement m args v = do
  reportSDoc "tc.meta.inert" 30 $ vcat
    [ "attempting inert rhs improvement"
    , nest 2 $ sep [ prettyTCM (MetaV m $ map Apply args) <+> "=="
                   , prettyTCM v ] ]
  -- Check that the right-hand side has the form D vs, for some inert constant D.
  -- Returns the type of D and a function to build an application of D.
  (a, mkRHS) <- ensureInert v
  -- Check that all arguments to the meta are neutral and does not have head D.
  -- If there are non-neutral arguments there could be solutions to the meta
  -- that computes over these arguments. If D is an argument to the meta we get
  -- multiple solutions (for instance: _M Nat == Nat can be solved by both
  -- _M := \ x -> x and _M := \ x -> Nat).
  mapM_ (ensureNeutral (mkRHS []) . unArg) args
  tel <- theTel <$> (telView =<< getMetaType m)
  -- When attempting shortcut meta solutions, metas aren't necessarily fully
  -- eta expanded. If this is the case we skip inert improvement.
  when (length args < size tel) $ do
    reportSDoc "tc.meta.inert" 30 $ "not fully applied"
    patternViolation
  -- Solve the meta with _M := \ xs -> D (_Y1 xs) .. (_Yn xs), for fresh metas
  -- _Yi.
  metaArgs <- inTopContext $ addContext tel $ newArgsMeta a
  let varArgs = map Apply $ reverse $ zipWith (\i a -> var i <$ a) [0..] (reverse args)
      sol     = mkRHS metaArgs
      argTel  = map ("x" <$) args
  reportSDoc "tc.meta.inert" 30 $ nest 2 $ vcat
    [ "a       =" <+> prettyTCM a
    , "tel     =" <+> prettyTCM tel
    , "metas   =" <+> prettyList (map prettyTCM metaArgs)
    , "sol     =" <+> prettyTCM sol
    ]
  assignTerm m argTel sol
  patternViolation  -- throwing a pattern violation here lets the constraint
                    -- machinery worry about restarting the comparison.
  where
    ensureInert :: Term -> TCM (Type, Args -> Term)
    ensureInert v = do
      let notInert = do
            reportSDoc "tc.meta.inert" 30 $ nest 2 $ "not inert:" <+> prettyTCM v
            patternViolation
          toArgs elims =
            case allApplyElims elims of
              Nothing -> do
                reportSDoc "tc.meta.inert" 30 $ nest 2 $ "can't do projections from inert"
                patternViolation
              Just args -> return args
      case v of
        Var x elims -> (, Var x . map Apply) <$> typeOfBV x
        Con c ci args  -> notInert -- (, Con c ci) <$> defType <$> getConstInfo (conName c)
        Def f elims -> do
          def <- getConstInfo f
          let good = return (defType def, Def f . map Apply)
          case theDef def of
            Axiom{}       -> good
            Datatype{}    -> good
            Record{}      -> good
            Function{}    -> notInert
            Primitive{}   -> notInert
            Constructor{} -> __IMPOSSIBLE__

        Pi{}       -> notInert -- this is actually inert but improving doesn't buy us anything for Pi
        Lam{}      -> notInert
        Sort{}     -> notInert
        Lit{}      -> notInert
        Level{}    -> notInert
        MetaV{}    -> notInert
        DontCare{} -> notInert

    ensureNeutral :: Term -> Term -> TCM ()
    ensureNeutral rhs v = do
      b <- reduceB v
      let notNeutral v = do
            reportSDoc "tc.meta.inert" 30 $ nest 2 $ "not neutral:" <+> prettyTCM v
            patternViolation
          checkRHS arg
            | arg == rhs = do
              reportSDoc "tc.meta.inert" 30 $ nest 2 $ "argument shares head with RHS:" <+> prettyTCM arg
              patternViolation
            | otherwise  = return ()
      case b of
        Blocked{}      -> notNeutral v
        NotBlocked r v ->                      -- Andrea(s) 2014-12-06 can r be useful?
          case v of
            Var x _    -> checkRHS (Var x [])
            Def f _    -> checkRHS (Def f [])
            Pi{}       -> return ()
            Sort{}     -> return ()
            Level{}    -> return ()
            Lit{}      -> notNeutral v
            DontCare{} -> notNeutral v
            Con{}      -> notNeutral v
            Lam{}      -> notNeutral v
            MetaV{}    -> __IMPOSSIBLE__
-- END UNUSED -}

-- | @assignMeta m x t ids u@ solves @x ids = u@ for meta @x@ of type @t@,
--   where term @u@ lives in a context of length @m@.
--   Precondition: @ids@ is linear.
assignMeta :: Int -> MetaId -> Type -> [Int] -> Term -> TCM ()
assignMeta :: Nat -> MetaId -> Type -> [Nat] -> Term -> TCM ()
assignMeta Nat
m MetaId
x Type
t [Nat]
ids Term
v = do
  let n :: Nat
n    = [Nat] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Nat]
ids
      cand :: [(Nat, Term)]
cand = [(Nat, Term)] -> [(Nat, Term)]
forall a. Ord a => [a] -> [a]
List.sort ([(Nat, Term)] -> [(Nat, Term)]) -> [(Nat, Term)] -> [(Nat, Term)]
forall a b. (a -> b) -> a -> b
$ [Nat] -> [Term] -> [(Nat, Term)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Nat]
ids ([Term] -> [(Nat, Term)]) -> [Term] -> [(Nat, Term)]
forall a b. (a -> b) -> a -> b
$ (Nat -> Term) -> [Nat] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Nat -> Term
var ([Nat] -> [Term]) -> [Nat] -> [Term]
forall a b. (a -> b) -> a -> b
$ Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom Nat
n
  Nat -> MetaId -> Type -> Nat -> [(Nat, Term)] -> Term -> TCM ()
assignMeta' Nat
m MetaId
x Type
t Nat
n [(Nat, Term)]
cand Term
v

-- | @assignMeta' m x t ids u@ solves @x = [ids]u@ for meta @x@ of type @t@,
--   where term @u@ lives in a context of length @m@,
--   and @ids@ is a partial substitution.
assignMeta' :: Int -> MetaId -> Type -> Int -> SubstCand -> Term -> TCM ()
assignMeta' :: Nat -> MetaId -> Type -> Nat -> [(Nat, Term)] -> Term -> TCM ()
assignMeta' Nat
m MetaId
x Type
t Nat
n [(Nat, Term)]
ids Term
v = do
  -- we are linear, so we can solve!
  [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
25 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$
      TCMT IO Doc
"preparing to instantiate: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v

  -- Rename the variables in v to make it suitable for abstraction over ids.
  -- Basically, if
  --   Γ   = a b c d e
  --   ids = d b e
  -- then
  --   v' = (λ a b c d e. v) _ 1 _ 2 0
  --
  -- Andreas, 2013-10-25 Solve using substitutions:
  -- Convert assocList @ids@ (which is sorted) into substitution,
  -- filling in __IMPOSSIBLE__ for the missing terms, e.g.
  -- [(0,0),(1,2),(3,1)] --> [0, 2, __IMP__, 1, __IMP__]
  -- ALT 1: O(m * size ids), serves as specification
  -- let ivs = [fromMaybe __IMPOSSIBLE__ $ lookup i ids | i <- [0..m-1]]
  -- ALT 2: O(m)
  let assocToList :: Nat -> [(Nat, Term)] -> [Maybe Term]
assocToList Nat
i = \case
        [(Nat, Term)]
_           | Nat
i Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
>= Nat
m -> []
        ((Nat
j,Term
u) : [(Nat, Term)]
l) | Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
j -> Term -> Maybe Term
forall a. a -> Maybe a
Just Term
u  Maybe Term -> [Maybe Term] -> [Maybe Term]
forall a. a -> [a] -> [a]
: Nat -> [(Nat, Term)] -> [Maybe Term]
assocToList (Nat
i Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) [(Nat, Term)]
l
        [(Nat, Term)]
l                    -> Maybe Term
forall a. Maybe a
Nothing Maybe Term -> [Maybe Term] -> [Maybe Term]
forall a. a -> [a] -> [a]
: Nat -> [(Nat, Term)] -> [Maybe Term]
assocToList (Nat
i Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) [(Nat, Term)]
l
      ivs :: [Maybe Term]
ivs = Nat -> [(Nat, Term)] -> [Maybe Term]
assocToList Nat
0 [(Nat, Term)]
ids
      rho :: Substitution
rho = Impossible -> [Maybe Term] -> Substitution -> Substitution
forall a.
DeBruijn a =>
Impossible -> [Maybe a] -> Substitution' a -> Substitution' a
prependS Impossible
HasCallStack => Impossible
impossible [Maybe Term]
ivs (Substitution -> Substitution) -> Substitution -> Substitution
forall a b. (a -> b) -> a -> b
$ Nat -> Substitution
forall a. Nat -> Substitution' a
raiseS Nat
n
      v' :: Term
v'  = Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
rho Term
v

  -- Metas are top-level so we do the assignment at top-level.
  TCM () -> TCM ()
forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
    -- Andreas, 2011-04-18 to work with irrelevant parameters
    -- we need to construct tel' from the type of the meta variable
    -- (no longer from ids which may not be the complete variable list
    -- any more)
    [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
15 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"type of meta =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
t

    (telv@(TelV tel' a), bs) <- Nat -> Type -> TCMT IO (TelV Type, Boundary)
forall (m :: * -> *).
PureTCM m =>
Nat -> Type -> m (TelV Type, Boundary)
telViewUpToPathBoundary Nat
n Type
t
    reportSDoc "tc.meta.assign" 30 $ "tel'  =" <+> prettyTCM tel'
    reportSDoc "tc.meta.assign" 30 $ "#args =" <+> text (show n)
    -- Andreas, 2013-09-17 (AIM XVIII): if t does not provide enough
    -- types for the arguments, it might be blocked by a meta;
    -- then we give up. (Issue 903)
    when (size tel' < n) $ do
      a <- abortIfBlocked a
      reportSDoc "impossible" 10 $ "not enough pis, but not blocked?" <?> pretty a
      __IMPOSSIBLE__   -- If we get here it was _not_ blocked by a meta!

    -- Perform the assignment (and wake constraints).

    let vsol = Tele (Dom Type) -> Term -> Term
forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
tel' Term
v'

    -- Andreas, 2013-10-25 double check solution before assigning
    whenM (optDoubleCheck  <$> pragmaOptions) $ do
      m <- lookupLocalMeta x
      reportSDoc "tc.meta.check" 30 $ "double checking solution"
      catchConstraint (CheckMetaInst x) $
        addContext tel' $ checkSolutionForMeta x m v' a

    reportSDoc "tc.meta.assign" 10 $
      "solving" <+> prettyTCM x <+> ":=" <+> prettyTCM vsol

    v' <- blockOnBoundary telv bs v'

    assignTerm x (telToArgs tel') v'
  where
    blockOnBoundary :: TelView -> Boundary -> Term -> TCM Term
    blockOnBoundary :: TelV Type -> Boundary -> Term -> TCM Term
blockOnBoundary TelV Type
telv         [] Term
v = Term -> TCM Term
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
    blockOnBoundary (TelV Tele (Dom Type)
tel Type
t) Boundary
bs Term
v = Tele (Dom Type) -> TCM Term -> TCM Term
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Tele (Dom Type) -> m a -> m a
addContext Tele (Dom Type)
tel (TCM Term -> TCM Term) -> TCM Term -> TCM Term
forall a b. (a -> b) -> a -> b
$
      Type -> TCM Term -> TCM Term
forall (m :: * -> *).
(MonadMetaSolver m, MonadConstraint m, MonadFresh Nat m,
 MonadFresh ProblemId m) =>
Type -> m Term -> m Term
blockTerm Type
t (TCM Term -> TCM Term) -> TCM Term -> TCM Term
forall a b. (a -> b) -> a -> b
$ do
        neg <- TCM Term
forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primINeg
        forM_ bs $ \ (Term
r,(Term
x,Term
y)) -> do
          Term -> Type -> Term -> Term -> TCM ()
forall (m :: * -> *).
MonadConversion m =>
Term -> Type -> Term -> Term -> m ()
equalTermOnFace (Term
neg Term -> Term -> Term
forall t. Apply t => t -> Term -> t
`apply1` Term
r) Type
t Term
x Term
v
          Term -> Type -> Term -> Term -> TCM ()
forall (m :: * -> *).
MonadConversion m =>
Term -> Type -> Term -> Term -> m ()
equalTermOnFace Term
r  Type
t Term
y Term
v
        return v

-- | Check that the instantiation of the given metavariable fits the
--   type of the metavariable. If the metavariable is not yet
--   instantiated, add a constraint to check the instantiation later.
checkMetaInst :: MetaId -> TCM ()
checkMetaInst :: MetaId -> TCM ()
checkMetaInst MetaId
x = do
  m <- MetaId -> TCMT IO MetaVariable
forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
x
  let postpone = Blocker -> Constraint -> TCM ()
forall (m :: * -> *).
MonadConstraint m =>
Blocker -> Constraint -> m ()
addConstraint (MetaId -> Blocker
unblockOnMeta MetaId
x) (Constraint -> TCM ()) -> Constraint -> TCM ()
forall a b. (a -> b) -> a -> b
$ MetaId -> Constraint
CheckMetaInst MetaId
x
  case mvInstantiation m of
    BlockedConst{} -> TCM ()
postpone
    PostponedTypeCheckingProblem{} -> TCM ()
postpone
    OpenMeta{} -> TCM ()
postpone
    InstV Instantiation
inst -> do
      let n :: Nat
n = [Arg [Char]] -> Nat
forall a. Sized a => a -> Nat
size (Instantiation -> [Arg [Char]]
instTel Instantiation
inst)
          t :: Type
t = Judgement MetaId -> Type
forall a. Judgement a -> Type
jMetaType (Judgement MetaId -> Type) -> Judgement MetaId -> Type
forall a b. (a -> b) -> a -> b
$ MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
m
      (telv@(TelV tel a),bs) <- Nat -> Type -> TCMT IO (TelV Type, Boundary)
forall (m :: * -> *).
PureTCM m =>
Nat -> Type -> m (TelV Type, Boundary)
telViewUpToPathBoundary Nat
n Type
t
      catchConstraint (CheckMetaInst x) $ addContext tel $
        checkSolutionForMeta x m (instBody inst) a

-- | Check that the instantiation of the metavariable with the given
--   term is well-typed.
checkSolutionForMeta :: MetaId -> MetaVariable -> Term -> Type -> TCM ()
checkSolutionForMeta :: MetaId -> MetaVariable -> Term -> Type -> TCM ()
checkSolutionForMeta MetaId
x MetaVariable
m Term
v Type
a = do
  [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.check" Nat
30 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"checking solution for meta" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => MetaId -> m Doc
prettyTCM MetaId
x
  case MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
m of
    HasType{ jComparison :: forall a. Judgement a -> Comparison
jComparison = Comparison
cmp } -> do
      [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.check" Nat
30 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$
        MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => MetaId -> m Doc
prettyTCM MetaId
x TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
" : " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
a TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":=" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v
      [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.check" Nat
50 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$ do
        ctx <- TCMT IO Context
forall (m :: * -> *). MonadTCEnv m => m Context
getContext
        inTopContext $ "in context: " <+> prettyTCM (PrettyContext ctx)
      Call -> TCM () -> TCM ()
forall a. Call -> TCMT IO a -> TCMT IO a
forall (m :: * -> *) a. MonadTrace m => Call -> m a -> m a
traceCall (Range -> MetaId -> Type -> Term -> Call
CheckMetaSolution (MetaVariable -> Range
forall a. HasRange a => a -> Range
getRange MetaVariable
m) MetaId
x Type
a Term
v) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$
        Term -> Comparison -> TypeOf Term -> TCM ()
forall a (m :: * -> *).
(CheckInternal a, MonadCheckInternal m) =>
a -> Comparison -> TypeOf a -> m ()
forall (m :: * -> *).
MonadCheckInternal m =>
Term -> Comparison -> TypeOf Term -> m ()
checkInternal Term
v Comparison
cmp TypeOf Term
Type
a
    IsSort{}  -> TCM () -> TCM ()
forall (f :: * -> *) a. Functor f => f a -> f ()
void (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$ do
      [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.check" Nat
30 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ Nat -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 (TCMT IO Doc -> TCMT IO Doc) -> TCMT IO Doc -> TCMT IO Doc
forall a b. (a -> b) -> a -> b
$
        MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => MetaId -> m Doc
prettyTCM MetaId
x TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":=" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
" is a sort"
      s <- Type -> TCM Sort
forall (m :: * -> *).
(PureTCM m, MonadBlock m, MonadError TCErr m) =>
Type -> m Sort
shouldBeSort (Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort
HasCallStack => Sort
__DUMMY_SORT__ Term
v)
      traceCall (CheckMetaSolution (getRange m) x (sort (univSort s)) (Sort s)) $
        inferInternal s

-- | Given two types @a@ and @b@ with @a <: b@, check that @a == b@.
checkSubtypeIsEqual :: Type -> Type -> TCM ()
checkSubtypeIsEqual :: Type -> Type -> TCM ()
checkSubtypeIsEqual Type
a Type
b = do
  [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.subtype" Nat
30 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$
    TCMT IO Doc
"checking that subtype" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
a TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>
    TCMT IO Doc
"of" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
b TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
"is actually equal."
  Type
-> Type
-> (Type -> Type -> TCM ())
-> (Type -> Type -> TCM ())
-> TCM ()
forall a (m :: * -> *) b.
(Instantiate a, SynEq a, MonadReduce m) =>
a -> a -> (a -> a -> m b) -> (a -> a -> m b) -> m b
SynEq.checkSyntacticEquality Type
a Type
b (\Type
_ Type
_ -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()) ((Type -> Type -> TCM ()) -> TCM ())
-> (Type -> Type -> TCM ()) -> TCM ()
forall a b. (a -> b) -> a -> b
$ \Type
a Type
b -> do
    cumulativity <- PragmaOptions -> Bool
optCumulativity (PragmaOptions -> Bool) -> TCMT IO PragmaOptions -> TCM Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TCMT IO PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
    abortIfBlocked (unEl b) >>= \case
      Sort Sort
sb -> Term -> TCM Term
forall (m :: * -> *) t.
(MonadReduce m, MonadBlock m, IsMeta t, Reduce t) =>
t -> m t
abortIfBlocked (Type -> Term
forall t a. Type'' t a -> a
unEl Type
a) TCM Term -> (Term -> TCM ()) -> TCM ()
forall a b. TCMT IO a -> (a -> TCMT IO b) -> TCMT IO b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
        Sort Sort
sa | Bool
cumulativity -> Sort -> Sort -> TCM ()
forall (m :: * -> *). MonadConversion m => Sort -> Sort -> m ()
equalSort Sort
sa Sort
sb
                             | Bool
otherwise    -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
        Dummy{} -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return () -- TODO: this shouldn't happen but
                             -- currently does because of generalized
                             -- metas being created in a dummy context
        Term
a -> Blocker -> TCM ()
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Blocker -> TCM ()) -> TCM Blocker -> TCM ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Blocker -> TCM Blocker
forall (m :: * -> *). PureTCM m => Blocker -> m Blocker
updateBlocker (Term -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Term
a) -- TODO: can this happen?
      Pi Dom Type
b1 Abs Type
b2 -> Term -> TCM Term
forall (m :: * -> *) t.
(MonadReduce m, MonadBlock m, IsMeta t, Reduce t) =>
t -> m t
abortIfBlocked (Type -> Term
forall t a. Type'' t a -> a
unEl Type
a) TCM Term -> (Term -> TCM ()) -> TCM ()
forall a b. TCMT IO a -> (a -> TCMT IO b) -> TCMT IO b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
        Pi Dom Type
a1 Abs Type
a2
          | Dom Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom Type
a1 Relevance -> Relevance -> Bool
forall a. Eq a => a -> a -> Bool
/= Dom Type -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance Dom Type
b1 -> Blocker -> TCM ()
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock -- Can we recover from this?
          | Dom Type -> Quantity
forall a. LensQuantity a => a -> Quantity
getQuantity  Dom Type
a1 Quantity -> Quantity -> Bool
forall a. Eq a => a -> a -> Bool
/= Dom Type -> Quantity
forall a. LensQuantity a => a -> Quantity
getQuantity  Dom Type
b1 -> Blocker -> TCM ()
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock
          | Dom Type -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion  Dom Type
a1 Cohesion -> Cohesion -> Bool
forall a. Eq a => a -> a -> Bool
/= Dom Type -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion  Dom Type
b1 -> Blocker -> TCM ()
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation Blocker
neverUnblock
          | Bool
otherwise -> do
              Type -> Type -> TCM ()
checkSubtypeIsEqual (Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
b1) (Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
a1)
              Dom Type -> Abs Type -> (Type -> TCM ()) -> TCM ()
forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Dom Type -> Abs a -> (a -> m b) -> m b
underAbstractionAbs Dom Type
a1 Abs Type
a2 ((Type -> TCM ()) -> TCM ()) -> (Type -> TCM ()) -> TCM ()
forall a b. (a -> b) -> a -> b
$ \Type
a2' -> Type -> Type -> TCM ()
checkSubtypeIsEqual Type
a2' (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
b2)
        Dummy{} -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return () -- TODO: this shouldn't happen but
                             -- currently does because of generalized
                             -- metas being created in a dummy context
        Term
a -> Blocker -> TCM ()
forall a. Blocker -> TCMT IO a
forall (m :: * -> *) a. MonadBlock m => Blocker -> m a
patternViolation (Blocker -> TCM ()) -> TCM Blocker -> TCM ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Blocker -> TCM Blocker
forall (m :: * -> *). PureTCM m => Blocker -> m Blocker
updateBlocker (Term -> Blocker
forall t. AllMetas t => t -> Blocker
unblockOnAnyMetaIn Term
a)
      -- TODO: check subtyping for Size< types
      Term
_ -> () -> TCM ()
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return ()


-- | Turn the assignment problem @_X args <= SizeLt u@ into
-- @_X args = SizeLt (_Y args)@ and constraint
-- @_Y args <= u@.
subtypingForSizeLt
  :: CompareDirection -- ^ @dir@
  -> MetaId           -- ^ The local meta-variable @x@.
  -> MetaVariable     -- ^ Its associated information @mvar <- lookupLocalMeta x@.
  -> Type             -- ^ Its type @t = jMetaType $ mvJudgement mvar@
  -> Args             -- ^ Its arguments.
  -> Term             -- ^ Its to-be-assigned value @v@, such that @x args `dir` v@.
  -> (Term -> TCM ()) -- ^ Continuation taking its possibly assigned value.
  -> TCM ()
subtypingForSizeLt :: CompareDirection
-> MetaId
-> MetaVariable
-> Type
-> Args
-> Term
-> (Term -> TCM ())
-> TCM ()
subtypingForSizeLt CompareDirection
DirEq MetaId
x MetaVariable
mvar Type
t Args
args Term
v Term -> TCM ()
cont = Term -> TCM ()
cont Term
v
subtypingForSizeLt CompareDirection
dir   MetaId
x MetaVariable
mvar Type
t Args
args Term
v Term -> TCM ()
cont = do
  let fallback :: TCM ()
fallback = Term -> TCM ()
cont Term
v
  -- Check whether we have built-ins SIZE and SIZELT
  (mSize, mSizeLt) <- TCMT IO (Maybe QName, Maybe QName)
forall (m :: * -> *). HasBuiltins m => m (Maybe QName, Maybe QName)
getBuiltinSize
  caseMaybe mSize   fallback $ \ QName
qSize   -> do
    Maybe QName -> TCM () -> (QName -> TCM ()) -> TCM ()
forall a b. Maybe a -> b -> (a -> b) -> b
caseMaybe Maybe QName
mSizeLt TCM ()
fallback ((QName -> TCM ()) -> TCM ()) -> (QName -> TCM ()) -> TCM ()
forall a b. (a -> b) -> a -> b
$ \ QName
qSizeLt -> do
      -- Check whether v is a SIZELT
      v <- Term -> TCM Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Term
v
      case v of
        Def QName
q [Apply (Arg ArgInfo
ai Term
u)] | QName
q QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
qSizeLt -> do
          -- Clone the meta into a new size meta @y@.
          -- To this end, we swap the target of t for Size.
          TelV tel _ <- Type -> TCMT IO (TelV Type)
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
t
          let size = QName -> Type
sizeType_ QName
qSize
              t'   = Tele (Dom Type) -> Type -> Type
telePi Tele (Dom Type)
tel Type
size
          y <- newMeta Instantiable (mvInfo mvar) (mvPriority mvar) (mvPermutation mvar)
                       (HasType __IMPOSSIBLE__ CmpLeq t')
          -- Note: no eta-expansion of new meta possible/necessary.
          -- Add the size constraint @y args `dir` u@.
          let yArgs = MetaId -> Elims -> Term
MetaV MetaId
y (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply Args
args
          addConstraint (unblockOnMeta y) $ dirToCmp (`ValueCmp` AsSizes) dir yArgs u
          -- We continue with the new assignment problem, and install
          -- an exception handler, since we created a meta and a constraint,
          -- so we cannot fall back to the original handler.
          let xArgs = MetaId -> Elims -> Term
MetaV MetaId
x (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply Args
args
              v'    = QName -> Elims -> Term
Def QName
qSizeLt [Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim) -> Arg Term -> Elim
forall a b. (a -> b) -> a -> b
$ ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai Term
yArgs]
              c     = (Comparison -> Term -> Term -> Constraint)
-> CompareDirection -> Term -> Term -> Constraint
forall a c.
(Comparison -> a -> a -> c) -> CompareDirection -> a -> a -> c
dirToCmp (Comparison -> CompareAs -> Term -> Term -> Constraint
`ValueCmp` (Type -> CompareAs
AsTermsOf Type
sizeUniv)) CompareDirection
dir Term
xArgs Term
v'
          catchConstraint c $ cont v'
        Term
_ -> TCM ()
fallback

-- | Eta-expand bound variables like @z@ in @X (fst z)@.
expandProjectedVars
  :: ( Pretty a, PrettyTCM a, NoProjectedVar a
     -- , Normalise a, TermLike a, Subst Term a
     , ReduceAndEtaContract a
     , PrettyTCM b, TermSubst b
     )
  => a  -- ^ Meta variable arguments.
  -> b  -- ^ Right hand side.
  -> (a -> b -> TCM c)
  -> TCM c
expandProjectedVars :: forall a b c.
(Pretty a, PrettyTCM a, NoProjectedVar a, ReduceAndEtaContract a,
 PrettyTCM b, TermSubst b) =>
a -> b -> (a -> b -> TCM c) -> TCM c
expandProjectedVars a
args b
v a -> b -> TCM c
ret = (a, b) -> TCM c
loop (a
args, b
v) where
  loop :: (a, b) -> TCM c
loop (a
args, b
v) = do
    [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign.proj" Nat
45 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"meta args: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> a -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => a -> m Doc
prettyTCM a
args
    args <- TCM a -> TCM a
forall a. TCM a -> TCM a
callByName (TCM a -> TCM a) -> TCM a -> TCM a
forall a b. (a -> b) -> a -> b
$ a -> TCM a
forall a. ReduceAndEtaContract a => a -> TCM a
reduceAndEtaContract a
args
    reportSDoc "tc.meta.assign.proj" 45 $ "norm args: " <+> prettyTCM args
    reportSDoc "tc.meta.assign.proj" 85 $ "norm args: " <+> pretty args
    let done = a -> b -> TCM c
ret a
args b
v
    case noProjectedVar args of
      Right ()              -> do
        [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign.proj" Nat
40 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$
          TCMT IO Doc
"no projected var found in args: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> a -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => a -> m Doc
prettyTCM a
args
        TCM c
done
      Left (ProjectedVar Nat
i [(ProjOrigin, QName)]
_) -> Nat -> (a, b) -> TCM c -> ((a, b) -> TCM c) -> TCM c
forall a c.
(PrettyTCM a, TermSubst a) =>
Nat -> a -> TCM c -> (a -> TCM c) -> TCM c
etaExpandProjectedVar Nat
i (a
args, b
v) TCM c
done (a, b) -> TCM c
loop

-- | Eta-expand a de Bruijn index of record type in context and passed term(s).
etaExpandProjectedVar :: (PrettyTCM a, TermSubst a) => Int -> a -> TCM c -> (a -> TCM c) -> TCM c
etaExpandProjectedVar :: forall a c.
(PrettyTCM a, TermSubst a) =>
Nat -> a -> TCM c -> (a -> TCM c) -> TCM c
etaExpandProjectedVar Nat
i a
v TCM c
fail a -> TCM c
succeed = do
  [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign.proj" Nat
40 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$
    TCMT IO Doc
"trying to expand projected variable" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM (Nat -> Term
var Nat
i)
  TCMT IO (Maybe (Tele (Dom Type), Substitution, Substitution))
-> TCM c
-> ((Tele (Dom Type), Substitution, Substitution) -> TCM c)
-> TCM c
forall (m :: * -> *) a b.
Monad m =>
m (Maybe a) -> m b -> (a -> m b) -> m b
caseMaybeM (Nat
-> TCMT IO (Maybe (Tele (Dom Type), Substitution, Substitution))
etaExpandBoundVar Nat
i) TCM c
fail (((Tele (Dom Type), Substitution, Substitution) -> TCM c) -> TCM c)
-> ((Tele (Dom Type), Substitution, Substitution) -> TCM c)
-> TCM c
forall a b. (a -> b) -> a -> b
$ \ (Tele (Dom Type)
delta, Substitution
sigma, Substitution
tau) -> do
    [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign.proj" Nat
25 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$
      TCMT IO Doc
"eta-expanding var " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM (Nat -> Term
var Nat
i) TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+>
      TCMT IO Doc
" in terms " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> a -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => a -> m Doc
prettyTCM a
v
    TCM c -> TCM c
forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
unsafeInTopContext (TCM c -> TCM c) -> TCM c -> TCM c
forall a b. (a -> b) -> a -> b
$ Tele (Dom Type) -> TCM c -> TCM c
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
forall (m :: * -> *) a.
MonadAddContext m =>
Tele (Dom Type) -> m a -> m a
addContext Tele (Dom Type)
delta (TCM c -> TCM c) -> TCM c -> TCM c
forall a b. (a -> b) -> a -> b
$
      a -> TCM c
succeed (a -> TCM c) -> a -> TCM c
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg a)
tau a
v

-- | Check whether one of the meta args is a projected var.
class NoProjectedVar a where
  noProjectedVar :: a -> Either ProjectedVar ()

  default noProjectedVar
    :: (NoProjectedVar b, Foldable t, t b ~ a)
    => a -> Either ProjectedVar ()
  noProjectedVar = (b -> Either ProjectedVar ()) -> t b -> Either ProjectedVar ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
Fold.mapM_ b -> Either ProjectedVar ()
forall a. NoProjectedVar a => a -> Either ProjectedVar ()
noProjectedVar

instance NoProjectedVar a => NoProjectedVar (Arg a)
instance NoProjectedVar a => NoProjectedVar [a]

instance NoProjectedVar Term where
  noProjectedVar :: Term -> Either ProjectedVar ()
noProjectedVar = \case
      Var Nat
i Elims
es
        | qs :: [(ProjOrigin, QName)]
qs@((ProjOrigin, QName)
_:[(ProjOrigin, QName)]
_) <- (Maybe (ProjOrigin, QName) -> Maybe (ProjOrigin, QName))
-> [Maybe (ProjOrigin, QName)] -> [(ProjOrigin, QName)]
forall a b. (a -> Maybe b) -> [a] -> Prefix b
takeWhileJust Maybe (ProjOrigin, QName) -> Maybe (ProjOrigin, QName)
forall a. a -> a
id ([Maybe (ProjOrigin, QName)] -> [(ProjOrigin, QName)])
-> [Maybe (ProjOrigin, QName)] -> [(ProjOrigin, QName)]
forall a b. (a -> b) -> a -> b
$ (Elim -> Maybe (ProjOrigin, QName))
-> Elims -> [Maybe (ProjOrigin, QName)]
forall a b. (a -> b) -> [a] -> [b]
map Elim -> Maybe (ProjOrigin, QName)
forall e. IsProjElim e => e -> Maybe (ProjOrigin, QName)
isProjElim Elims
es
        -> ProjectedVar -> Either ProjectedVar ()
forall a b. a -> Either a b
Left (ProjectedVar -> Either ProjectedVar ())
-> ProjectedVar -> Either ProjectedVar ()
forall a b. (a -> b) -> a -> b
$ Nat -> [(ProjOrigin, QName)] -> ProjectedVar
ProjectedVar Nat
i [(ProjOrigin, QName)]
qs
      -- Andreas, 2015-09-12 Issue #1316:
      -- Also look in inductive record constructors
      Con (ConHead QName
_ IsRecord{} Induction
Inductive [Arg QName]
_) ConInfo
_ Elims
es
        | Just Args
vs <- Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
        -> Args -> Either ProjectedVar ()
forall a. NoProjectedVar a => a -> Either ProjectedVar ()
noProjectedVar Args
vs
      Term
_ -> () -> Either ProjectedVar ()
forall a. a -> Either ProjectedVar a
forall (m :: * -> *) a. Monad m => a -> m a
return ()

-- | Normalize just far enough to be able to eta-contract maximally.
class (TermLike a, TermSubst a, Reduce a) => ReduceAndEtaContract a where
  reduceAndEtaContract :: a -> TCM a

  default reduceAndEtaContract
    :: (Traversable f, TermLike b, Subst b, Reduce b, ReduceAndEtaContract b, f b ~ a)
    => a -> TCM a
  reduceAndEtaContract = (b -> TCMT IO b) -> f b -> TCMT IO (f b)
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> f a -> m (f b)
Trav.mapM b -> TCMT IO b
forall a. ReduceAndEtaContract a => a -> TCM a
reduceAndEtaContract

instance ReduceAndEtaContract a => ReduceAndEtaContract [a]
instance ReduceAndEtaContract a => ReduceAndEtaContract (Arg a)

instance ReduceAndEtaContract Term where
  reduceAndEtaContract :: Term -> TCM Term
reduceAndEtaContract Term
u = do
    Term -> TCM Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Term
u TCM Term -> (Term -> TCM Term) -> TCM Term
forall a b. TCMT IO a -> (a -> TCMT IO b) -> TCMT IO b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
      -- In case of lambda or record constructor, it makes sense to
      -- reduce further.
      Lam ArgInfo
ai (Abs [Char]
x Term
b) -> ArgInfo -> [Char] -> Term -> TCM Term
forall (m :: * -> *).
(MonadTCEnv m, HasConstInfo m, HasOptions m) =>
ArgInfo -> [Char] -> Term -> m Term
etaLam ArgInfo
ai [Char]
x (Term -> TCM Term) -> TCM Term -> TCM Term
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Term -> TCM Term
forall a. ReduceAndEtaContract a => a -> TCM a
reduceAndEtaContract Term
b
      Con ConHead
c ConInfo
ci Elims
es -> ConHead
-> ConInfo
-> Elims
-> (QName -> ConHead -> ConInfo -> Args -> TCM Term)
-> TCM Term
forall (m :: * -> *).
(MonadTCEnv m, HasConstInfo m, HasOptions m) =>
ConHead
-> ConInfo
-> Elims
-> (QName -> ConHead -> ConInfo -> Args -> m Term)
-> m Term
etaCon ConHead
c ConInfo
ci Elims
es ((QName -> ConHead -> ConInfo -> Args -> TCM Term) -> TCM Term)
-> (QName -> ConHead -> ConInfo -> Args -> TCM Term) -> TCM Term
forall a b. (a -> b) -> a -> b
$ \ QName
r ConHead
c ConInfo
ci Args
args -> do
        args <- Args -> TCM Args
forall a. ReduceAndEtaContract a => a -> TCM a
reduceAndEtaContract Args
args
        etaContractRecord r c ci args
      Term
v -> Term -> TCM Term
forall a. a -> TCMT IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v

{- UNUSED, BUT KEEP!
-- Wrong attempt at expanding bound variables.
-- The following code curries meta instead.

-- | @etaExpandProjectedVar mvar x t n qs@
--
--   @mvar@ is the meta var info.
--   @x@ is the meta variable we are trying to solve for.
--   @t@ is its type.
--   @n@ is the number of the meta arg we want to curry (starting at 0).
--   @qs@ is the projection path along which we curry.
--
etaExpandProjectedVar :: MetaVariable -> MetaId -> Type -> Int -> [QName] -> TCM a
etaExpandProjectedVar mvar x t n qs = inTopContext $ do
  (_, uncurry, t') <- curryAt t n
  let TelV tel a = telView' t'
      perm       = idP (size tel)
  y <- newMeta (mvInfo mvar) (mvPriority mvar) perm (HasType __IMPOSSIBLE__ t')
  assignTerm' x (uncurry $ MetaV y [])
  patternViolation
-}

{-
  -- first, strip the leading n domains (which remain unchanged)
  TelV gamma core <- telViewUpTo n t
  case unEl core of
    -- There should be at least one domain left
    Pi (Dom ai a) b -> do
      -- Eta-expand @dom@ along @qs@ into a telescope @tel@, computing a substitution.
      -- For now, we only eta-expand once.
      -- This might trigger another call to @etaExpandProjectedVar@ later.
      -- A more efficient version does all the eta-expansions at once here.
      (r, pars, def) <- fromMaybe __IMPOSSIBLE__ <$> isRecordType a
      unless (recEtaEquality def) __IMPOSSIBLE__
      let tel = recTel def `apply` pars
          m   = size tel
          v   = Con (recConHead def) $ map var $ downFrom m
          b'  = raise m b `absApp` v
          fs  = recFields def
          vs  = zipWith (\ f i -> Var i [Proj f]) fs $ downFrom m
          -- v = c (n-1) ... 1 0
      (tel, u) <- etaExpandAtRecordType a $ var 0
      -- TODO: compose argInfo ai with tel.
      -- Substitute into @b@.
      -- Abstract over @tel@.
      -- Abstract over @gamma@.
      -- Create new meta.
      -- Solve old meta, using substitution.
      patternViolation
    _ -> __IMPOSSIBLE__
-}

type FVs = VarSet
type SubstCand = [(Int,Term)] -- ^ a possibly non-deterministic substitution

-- | Turn non-det substitution into proper substitution, if possible.
--   Otherwise, raise the error.
checkLinearity :: SubstCand -> ExceptT () TCM SubstCand
checkLinearity :: [(Nat, Term)] -> ExceptT () (TCMT IO) [(Nat, Term)]
checkLinearity [(Nat, Term)]
ids = do
  -- see issue #920
  [(Nat, Term)] -> [(Nat, Term)]
[(Nat, Term)] -> [Item [(Nat, Term)]]
forall l. IsList l => l -> [Item l]
List1.toList ([(Nat, Term)] -> [(Nat, Term)])
-> ExceptT () (TCMT IO) [(Nat, Term)]
-> ExceptT () (TCMT IO) [(Nat, Term)]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (List1 (Nat, Term) -> ExceptT () (TCMT IO) (Nat, Term))
-> [List1 (Nat, Term)] -> ExceptT () (TCMT IO) [(Nat, Term)]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM List1 (Nat, Term) -> ExceptT () (TCMT IO) (Nat, Term)
makeLinear (((Nat, Term) -> Nat) -> [(Nat, Term)] -> [List1 (Nat, Term)]
forall b a. Ord b => (a -> b) -> [a] -> [List1 a]
List1.groupOn (Nat, Term) -> Nat
forall a b. (a, b) -> a
fst [(Nat, Term)]
ids)
  where
    -- Non-determinism can be healed if type is singleton. [Issue 593]
    -- (Same as for irrelevance.)
    makeLinear :: List1 (Int, Term) -> ExceptT () TCM (Int, Term)
    makeLinear :: List1 (Nat, Term) -> ExceptT () (TCMT IO) (Nat, Term)
makeLinear ((Nat, Term)
p       :| []) = (Nat, Term) -> ExceptT () (TCMT IO) (Nat, Term)
forall a. a -> ExceptT () (TCMT IO) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Nat, Term)
p
    makeLinear (p :: (Nat, Term)
p@(Nat
i,Term
t) :| [(Nat, Term)]
_ ) =
      ExceptT () (TCMT IO) Bool
-> ExceptT () (TCMT IO) (Nat, Term)
-> ExceptT () (TCMT IO) (Nat, Term)
-> ExceptT () (TCMT IO) (Nat, Term)
forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM ((Bool -> Either Blocker Bool
forall a b. b -> Either a b
Right Bool
True Either Blocker Bool -> Either Blocker Bool -> Bool
forall a. Eq a => a -> a -> Bool
==) (Either Blocker Bool -> Bool)
-> ExceptT () (TCMT IO) (Either Blocker Bool)
-> ExceptT () (TCMT IO) Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do TCM (Either Blocker Bool)
-> ExceptT () (TCMT IO) (Either Blocker Bool)
forall (m :: * -> *) a. Monad m => m a -> ExceptT () m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (TCM (Either Blocker Bool)
 -> ExceptT () (TCMT IO) (Either Blocker Bool))
-> (Type -> TCM (Either Blocker Bool))
-> Type
-> ExceptT () (TCMT IO) (Either Blocker Bool)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BlockT (TCMT IO) Bool -> TCM (Either Blocker Bool)
forall (m :: * -> *) a.
Monad m =>
BlockT m a -> m (Either Blocker a)
runBlocked (BlockT (TCMT IO) Bool -> TCM (Either Blocker Bool))
-> (Type -> BlockT (TCMT IO) Bool)
-> Type
-> TCM (Either Blocker Bool)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> BlockT (TCMT IO) Bool
forall (m :: * -> *). (PureTCM m, MonadBlock m) => Type -> m Bool
isSingletonTypeModuloRelevance (Type -> ExceptT () (TCMT IO) (Either Blocker Bool))
-> ExceptT () (TCMT IO) Type
-> ExceptT () (TCMT IO) (Either Blocker Bool)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Nat -> ExceptT () (TCMT IO) Type
forall (m :: * -> *).
(Applicative m, MonadFail m, MonadTCEnv m) =>
Nat -> m Type
typeOfBV Nat
i)
        ((Nat, Term) -> ExceptT () (TCMT IO) (Nat, Term)
forall a. a -> ExceptT () (TCMT IO) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Nat, Term)
p)
        (() -> ExceptT () (TCMT IO) (Nat, Term)
forall a. () -> ExceptT () (TCMT IO) a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError ())

-- Intermediate result in the following function
type Res = [(Arg Nat, Term)]

-- | Exceptions raised when substitution cannot be inverted.
data InvertExcept
  = CantInvert Term           -- ^ Cannot recover.
  | NeutralArg                -- ^ A potentially neutral arg: can't invert, but can try pruning.
  | ProjVar ProjectedVar      -- ^ Try to eta-expand var to remove projs.

-- | Check that arguments @args@ to a metavar are in pattern fragment.
--   Assumes all arguments already in whnf and eta-reduced.
--   Parameters are represented as @Var@s so @checkArgs@ really
--   checks that all args are @Var@s and returns the "substitution"
--   to be applied to the rhs of the equation to solve.
--   (If @args@ is considered a substitution, its inverse is returned.)
--
--   The returned list might not be ordered.
--   Linearity, i.e., whether the substitution is deterministic,
--   has to be checked separately.
--
inverseSubst' :: (Term -> Bool) -> Args -> ExceptT InvertExcept TCM SubstCand
inverseSubst' :: (Term -> Bool)
-> Args -> ExceptT InvertExcept (TCMT IO) [(Nat, Term)]
inverseSubst' Term -> Bool
skip Args
args = ((Arg Nat, Term) -> (Nat, Term))
-> [(Arg Nat, Term)] -> [(Nat, Term)]
forall a b. (a -> b) -> [a] -> [b]
map ((Arg Nat -> Nat) -> (Arg Nat, Term) -> (Nat, Term)
forall a c b. (a -> c) -> (a, b) -> (c, b)
mapFst Arg Nat -> Nat
forall e. Arg e -> e
unArg) ([(Arg Nat, Term)] -> [(Nat, Term)])
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Nat, Term)]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [(Arg Term, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
loop (Args -> [Term] -> [(Arg Term, Term)]
forall a b. [a] -> [b] -> [(a, b)]
zip Args
args [Term]
terms)
  where
  loop :: [(Arg Term, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
loop  = ([(Arg Nat, Term)]
 -> (Arg Term, Term)
 -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)])
-> [(Arg Nat, Term)]
-> [(Arg Term, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM [(Arg Nat, Term)]
-> (Arg Term, Term)
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
isVarOrIrrelevant []
  terms :: [Term]
terms = (Nat -> Term) -> [Nat] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Nat -> Term
var (Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom (Args -> Nat
forall a. Sized a => a -> Nat
size Args
args))
  failure :: Term -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
failure Term
c = do
    TCM () -> ExceptT InvertExcept (TCMT IO) ()
forall (m :: * -> *) a. Monad m => m a -> ExceptT InvertExcept m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (TCM () -> ExceptT InvertExcept (TCMT IO) ())
-> TCM () -> ExceptT InvertExcept (TCMT IO) ()
forall a b. (a -> b) -> a -> b
$ [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.meta.assign" Nat
15 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
      [ TCMT IO Doc
"not all arguments are variables: " TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Args -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Args -> m Doc
prettyTCM Args
args
      , TCMT IO Doc
"  aborting assignment" ]
    InvertExcept -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a. InvertExcept -> ExceptT InvertExcept (TCMT IO) a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (Term -> InvertExcept
CantInvert Term
c)
  neutralArg :: ExceptT InvertExcept (TCMT IO) a
neutralArg = InvertExcept -> ExceptT InvertExcept (TCMT IO) a
forall a. InvertExcept -> ExceptT InvertExcept (TCMT IO) a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError InvertExcept
NeutralArg

  isVarOrIrrelevant :: Res -> (Arg Term, Term) -> ExceptT InvertExcept TCM Res
  isVarOrIrrelevant :: [(Arg Nat, Term)]
-> (Arg Term, Term)
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
isVarOrIrrelevant [(Arg Nat, Term)]
vars (Arg ArgInfo
info Term
v, Term
t) = do
    let irr :: Bool
irr | ArgInfo -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant ArgInfo
info = Bool
True
            | DontCare{} <- Term
v   = Bool
True
            | Bool
otherwise         = Bool
False
    ineg <- PrimitiveId -> ExceptT InvertExcept (TCMT IO) (Maybe QName)
forall (m :: * -> *).
HasBuiltins m =>
PrimitiveId -> m (Maybe QName)
getPrimitiveName' PrimitiveId
builtinINeg
    case stripDontCare v of
      -- i := x
      Var Nat
i [] -> [(Arg Nat, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a. a -> ExceptT InvertExcept (TCMT IO) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([(Arg Nat, Term)]
 -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)])
-> [(Arg Nat, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a b. (a -> b) -> a -> b
$ (ArgInfo -> Nat -> Arg Nat
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
info Nat
i, Term
t) (Arg Nat, Term) -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
`cons` [(Arg Nat, Term)]
vars

      -- π i := x  try to eta-expand projection π away!
      Var Nat
i Elims
es | Just [(ProjOrigin, QName)]
qs <- (Elim -> Maybe (ProjOrigin, QName))
-> Elims -> Maybe [(ProjOrigin, QName)]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Elim -> Maybe (ProjOrigin, QName)
forall e. IsProjElim e => e -> Maybe (ProjOrigin, QName)
isProjElim Elims
es ->
        InvertExcept -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a. InvertExcept -> ExceptT InvertExcept (TCMT IO) a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (InvertExcept -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)])
-> InvertExcept -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a b. (a -> b) -> a -> b
$ ProjectedVar -> InvertExcept
ProjVar (ProjectedVar -> InvertExcept) -> ProjectedVar -> InvertExcept
forall a b. (a -> b) -> a -> b
$ Nat -> [(ProjOrigin, QName)] -> ProjectedVar
ProjectedVar Nat
i [(ProjOrigin, QName)]
qs

      -- (i, j) := x  becomes  [i := fst x, j := snd x]
      -- Andreas, 2013-09-17 but only if constructor is fully applied
      tm :: Term
tm@(Con ConHead
c ConInfo
ci Elims
es) -> do
        let fallback :: ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
fallback
             | ArgInfo -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant ArgInfo
info = [(Arg Nat, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a. a -> ExceptT InvertExcept (TCMT IO) a
forall (m :: * -> *) a. Monad m => a -> m a
return [(Arg Nat, Term)]
vars
             | Term -> Bool
skip Term
tm           = [(Arg Nat, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a. a -> ExceptT InvertExcept (TCMT IO) a
forall (m :: * -> *) a. Monad m => a -> m a
return [(Arg Nat, Term)]
vars
             | Bool
otherwise         = Term -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
failure Term
tm
        irrProj <- PragmaOptions -> Bool
optIrrelevantProjections (PragmaOptions -> Bool)
-> ExceptT InvertExcept (TCMT IO) PragmaOptions
-> ExceptT InvertExcept (TCMT IO) Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExceptT InvertExcept (TCMT IO) PragmaOptions
forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
        lift (isEtaRecordConstructor $ conName c) >>= \case
          -- Andreas, 2019-11-10, issue #4185: only for eta-records
          Just (QName
_, RecordData{ _recFields :: RecordData -> [Dom QName]
_recFields = [Dom QName]
fs })
            | [Dom QName] -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Dom QName]
fs Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Elims -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length Elims
es
            , ArgInfo -> Bool
forall a. LensQuantity a => a -> Bool
hasQuantity0 ArgInfo
info Bool -> Bool -> Bool
|| (Dom QName -> Bool) -> [Dom QName] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Dom QName -> Bool
forall a. LensQuantity a => a -> Bool
usableQuantity [Dom QName]
fs     -- Andreas, 2019-11-12/17, issue #4168b
            , Bool
irrProj Bool -> Bool -> Bool
|| (Dom QName -> Bool) -> [Dom QName] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Dom QName -> Bool
forall a. LensRelevance a => a -> Bool
isRelevant [Dom QName]
fs -> do
              let aux :: Arg Term -> Dom QName -> (Arg Term, Term)
aux (Arg ArgInfo
_ Term
v) Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
info', unDom :: forall t e. Dom' t e -> e
unDom = QName
f} =
                    (ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai Term
v,) (Term -> (Arg Term, Term)) -> Term -> (Arg Term, Term)
forall a b. (a -> b) -> a -> b
$ Term
t Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` [ProjOrigin -> QName -> Elim
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
ProjSystem QName
f]
                    where
                    ai :: ArgInfo
ai = ArgInfo
                      { argInfoHiding :: Hiding
argInfoHiding   = Hiding -> Hiding -> Hiding
forall a. Ord a => a -> a -> a
min (ArgInfo -> Hiding
forall a. LensHiding a => a -> Hiding
getHiding ArgInfo
info) (ArgInfo -> Hiding
forall a. LensHiding a => a -> Hiding
getHiding ArgInfo
info')
                      , argInfoModality :: Modality
argInfoModality = Modality
                        { modRelevance :: Relevance
modRelevance  = Relevance -> Relevance -> Relevance
forall a. Ord a => a -> a -> a
max (ArgInfo -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance ArgInfo
info) (ArgInfo -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance ArgInfo
info')
                        , modQuantity :: Quantity
modQuantity   = Quantity -> Quantity -> Quantity
forall a. Ord a => a -> a -> a
max (ArgInfo -> Quantity
forall a. LensQuantity a => a -> Quantity
getQuantity  ArgInfo
info) (ArgInfo -> Quantity
forall a. LensQuantity a => a -> Quantity
getQuantity  ArgInfo
info')
                        , modCohesion :: Cohesion
modCohesion   = Cohesion -> Cohesion -> Cohesion
forall a. Ord a => a -> a -> a
max (ArgInfo -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion  ArgInfo
info) (ArgInfo -> Cohesion
forall a. LensCohesion a => a -> Cohesion
getCohesion  ArgInfo
info')
                        }
                      , argInfoOrigin :: Origin
argInfoOrigin   = Origin -> Origin -> Origin
forall a. Ord a => a -> a -> a
min (ArgInfo -> Origin
forall a. LensOrigin a => a -> Origin
getOrigin ArgInfo
info) (ArgInfo -> Origin
forall a. LensOrigin a => a -> Origin
getOrigin ArgInfo
info')
                      , argInfoFreeVariables :: FreeVariables
argInfoFreeVariables = FreeVariables
unknownFreeVariables
                      , argInfoAnnotation :: Annotation
argInfoAnnotation    = ArgInfo -> Annotation
argInfoAnnotation ArgInfo
info'
                      }
                  vs :: Args
vs = Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
              res <- [(Arg Term, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
loop ([(Arg Term, Term)]
 -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)])
-> [(Arg Term, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Dom QName -> (Arg Term, Term))
-> Args -> [Dom QName] -> [(Arg Term, Term)]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Arg Term -> Dom QName -> (Arg Term, Term)
aux Args
vs [Dom QName]
fs
              return $ res `append` vars
            | Bool
otherwise -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
fallback
          Maybe (QName, RecordData)
_ -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
fallback

      -- An irrelevant argument which is not an irrefutable pattern is dropped
      Term
_ | Bool
irr -> [(Arg Nat, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a. a -> ExceptT InvertExcept (TCMT IO) a
forall (m :: * -> *) a. Monad m => a -> m a
return [(Arg Nat, Term)]
vars

      -- Distinguish args that can be eliminated (Con,Lit,Lam,unsure) ==> failure
      -- from those that can only put somewhere as a whole ==> neutralArg
      Var{}      -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall {a}. ExceptT InvertExcept (TCMT IO) a
neutralArg

      -- primINeg i := x becomes i := primINeg x
      -- (primINeg is a definitional involution)
      Def QName
qn Elims
es | Just [Arg ArgInfo
_ (Var Nat
i [])] <- Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es, QName -> Maybe QName
forall a. a -> Maybe a
Just QName
qn Maybe QName -> Maybe QName -> Bool
forall a. Eq a => a -> a -> Bool
== Maybe QName
ineg ->
        [(Arg Nat, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a. a -> ExceptT InvertExcept (TCMT IO) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ([(Arg Nat, Term)]
 -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)])
-> [(Arg Nat, Term)]
-> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a b. (a -> b) -> a -> b
$ (ArgInfo -> Nat -> Arg Nat
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
info Nat
i, QName -> Elims -> Term
Def QName
qn [Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply (Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
t)]) (Arg Nat, Term) -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
`cons` [(Arg Nat, Term)]
vars

      Def{}      -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall {a}. ExceptT InvertExcept (TCMT IO) a
neutralArg  -- Note that this Def{} is in normal form and might be prunable.
      t :: Term
t@Lam{}    -> Term -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
failure Term
t
      t :: Term
t@Lit{}    -> Term -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
failure Term
t
      t :: Term
t@MetaV{}  -> Term -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
failure Term
t
      Pi{}       -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall {a}. ExceptT InvertExcept (TCMT IO) a
neutralArg
      Sort{}     -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall {a}. ExceptT InvertExcept (TCMT IO) a
neutralArg
      Level{}    -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall {a}. ExceptT InvertExcept (TCMT IO) a
neutralArg
      DontCare{} -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall a. HasCallStack => a
__IMPOSSIBLE__ -- Ruled out by stripDontCare
      Dummy [Char]
s Elims
_  -> [Char] -> ExceptT InvertExcept (TCMT IO) [(Arg Nat, Term)]
forall (m :: * -> *) a.
(HasCallStack, MonadDebug m) =>
[Char] -> m a
__IMPOSSIBLE_VERBOSE__ [Char]
s

  -- managing an assoc list where duplicate indizes cannot be irrelevant vars
  append :: Res -> Res -> Res
  append :: [(Arg Nat, Term)] -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
append [(Arg Nat, Term)]
res [(Arg Nat, Term)]
vars = ((Arg Nat, Term) -> [(Arg Nat, Term)] -> [(Arg Nat, Term)])
-> [(Arg Nat, Term)] -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (Arg Nat, Term) -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
cons [(Arg Nat, Term)]
vars [(Arg Nat, Term)]
res

  -- adding an irrelevant entry only if not present
  cons :: (Arg Nat, Term) -> Res -> Res
  cons :: (Arg Nat, Term) -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
cons a :: (Arg Nat, Term)
a@(Arg ArgInfo
ai Nat
i, Term
t) [(Arg Nat, Term)]
vars
    | ArgInfo -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant ArgInfo
ai = Bool
-> ([(Arg Nat, Term)] -> [(Arg Nat, Term)])
-> [(Arg Nat, Term)]
-> [(Arg Nat, Term)]
forall b a. IsBool b => b -> (a -> a) -> a -> a
applyUnless (((Arg Nat, Term) -> Bool) -> [(Arg Nat, Term)] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any ((Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
==) (Nat -> Bool)
-> ((Arg Nat, Term) -> Nat) -> (Arg Nat, Term) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg Nat -> Nat
forall e. Arg e -> e
unArg (Arg Nat -> Nat)
-> ((Arg Nat, Term) -> Arg Nat) -> (Arg Nat, Term) -> Nat
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Arg Nat, Term) -> Arg Nat
forall a b. (a, b) -> a
fst) [(Arg Nat, Term)]
vars) ((Arg Nat, Term)
a (Arg Nat, Term) -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
forall a. a -> [a] -> [a]
:) [(Arg Nat, Term)]
vars
    | Bool
otherwise       = (Arg Nat, Term)
a (Arg Nat, Term) -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
forall a. a -> [a] -> [a]
:  -- adding a relevant entry
        -- filter out duplicate irrelevants
        ((Arg Nat, Term) -> Bool) -> [(Arg Nat, Term)] -> [(Arg Nat, Term)]
forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not (Bool -> Bool)
-> ((Arg Nat, Term) -> Bool) -> (Arg Nat, Term) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (\ a :: (Arg Nat, Term)
a@(Arg ArgInfo
info Nat
j, Term
t) -> ArgInfo -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant ArgInfo
info Bool -> Bool -> Bool
&& Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
j)) [(Arg Nat, Term)]
vars

-- | If the given metavariable application represents a face, return:
--
--    * The metavariable information;
--    * The actual face, as an assignment of booleans to variables;
--
--    * The substitution candidate resulting from @inverseSubst'@. This
--    is guaranteed to be linear and deterministic.
--
--    * The actual substitution, mapping from the constraint context to
--    the metavariable's context.
--
--  Put concisely, a face constraint is an equation in the pattern
--  fragment modulo the presence of endpoints (@i0@ and @i1@) in the
--  telescope. In more detail, a face constraint has the form
--
--    @?0 Δ (i = i0) (j = i0) Γ (k = i1) Θ (l = i0) = t@
--
--  where all the greek letters consist entirely of distinct bound
--  variables (and, of course, arbitrarily many endpoints are allowed
--  between each substitution fragment).
isFaceConstraint
  :: MetaId
  -> Args
  -> TCM (Maybe (MetaVariable, IntMap.IntMap Bool, SubstCand, Substitution))
isFaceConstraint :: MetaId
-> Args
-> TCM
     (Maybe (MetaVariable, IntMap Bool, [(Nat, Term)], Substitution))
isFaceConstraint MetaId
mid Args
args = MaybeT
  (TCMT IO) (MetaVariable, IntMap Bool, [(Nat, Term)], Substitution)
-> TCM
     (Maybe (MetaVariable, IntMap Bool, [(Nat, Term)], Substitution))
forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT (MaybeT
   (TCMT IO) (MetaVariable, IntMap Bool, [(Nat, Term)], Substitution)
 -> TCM
      (Maybe (MetaVariable, IntMap Bool, [(Nat, Term)], Substitution)))
-> MaybeT
     (TCMT IO) (MetaVariable, IntMap Bool, [(Nat, Term)], Substitution)
-> TCM
     (Maybe (MetaVariable, IntMap Bool, [(Nat, Term)], Substitution))
forall a b. (a -> b) -> a -> b
$ do
  iv   <- MaybeT (TCMT IO) (Term -> IntervalView)
forall (m :: * -> *). HasBuiltins m => m (Term -> IntervalView)
intervalView'
  mvar <- lookupLocalMeta mid  -- information associated with meta x
  -- Make sure that this is actually an interaction point:
  (_, _, _) <- MaybeT $ isInteractionMetaB mid args

  let
    t = Judgement MetaId -> Type
forall a. Judgement a -> Type
jMetaType (Judgement MetaId -> Type) -> Judgement MetaId -> Type
forall a b. (a -> b) -> a -> b
$ MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mvar
    n = Args -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length Args
args

    isEndpoint Term
tm = Maybe (Nat, Bool) -> Bool
forall a. Maybe a -> Bool
isJust (Arg Term -> Nat -> Maybe (Nat, Bool)
fin (Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
tm) Nat
0)

    fin (Arg ArgInfo
_ Term
tm) Nat
i = case Term -> IntervalView
iv Term
tm of
      IntervalView
IOne  -> (Nat, Bool) -> Maybe (Nat, Bool)
forall a. a -> Maybe a
Just (Nat
i, Bool
True)
      IntervalView
IZero -> (Nat, Bool) -> Maybe (Nat, Bool)
forall a. a -> Maybe a
Just (Nat
i, Bool
False)
      IntervalView
_     -> Maybe (Nat, Bool)
forall a. Maybe a
Nothing

  -- The logic here is essentially the same as for actually solving the
  -- meta.. We just return the pieces instead of doing the assignment.
  -- We must check the "face condition" (the relaxed pattern condition)
  -- and check linearity of the substitution candidate, otherwise the
  -- equation can't be inverted into a face constraint.
  sub <- MaybeT $ either (const Nothing) Just <$> runExceptT (inverseSubst' isEndpoint args)
  ids <- MaybeT $ either (const Nothing) Just <$> runExceptT (checkLinearity sub)

  m           <- getContextSize
  TelV tel' _ <- telViewUpToPath n t
  tel''       <- enterClosure mvar $ \Range
_ -> MaybeT (TCMT IO) (Tele (Dom Type))
forall (m :: * -> *).
(Applicative m, MonadTCEnv m) =>
m (Tele (Dom Type))
getContextTelescope

  let
    assocToList Nat
i = \case
      [(Nat, Term)]
_           | Nat
i Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
>= Nat
m -> []
      ((Nat
j,Term
u) : [(Nat, Term)]
l) | Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
j -> Term -> Maybe Term
forall a. a -> Maybe a
Just Term
u  Maybe Term -> [Maybe Term] -> [Maybe Term]
forall a. a -> [a] -> [a]
: Nat -> [(Nat, Term)] -> [Maybe Term]
assocToList (Nat
i Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) [(Nat, Term)]
l
      [(Nat, Term)]
l                    -> Maybe Term
forall a. Maybe a
Nothing Maybe Term -> [Maybe Term] -> [Maybe Term]
forall a. a -> [a] -> [a]
: Nat -> [(Nat, Term)] -> [Maybe Term]
assocToList (Nat
i Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) [(Nat, Term)]
l
    ivs = Nat -> [(Nat, Term)] -> [Maybe Term]
assocToList Nat
0 [(Nat, Term)]
ids
    rho = Impossible -> [Maybe Term] -> Substitution -> Substitution
forall a.
DeBruijn a =>
Impossible -> [Maybe a] -> Substitution' a -> Substitution' a
prependS Impossible
HasCallStack => Impossible
impossible [Maybe Term]
ivs (Substitution -> Substitution) -> Substitution -> Substitution
forall a b. (a -> b) -> a -> b
$ Nat -> Substitution
forall a. Nat -> Substitution' a
raiseS Nat
n

    over  = Tele (Dom Type) -> Nat
forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel' Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Tele (Dom Type) -> Nat
forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel''
    endps = [(Nat, Bool)] -> IntMap Bool
forall a. [(Nat, a)] -> IntMap a
IntMap.fromList ([(Nat, Bool)] -> IntMap Bool) -> [(Nat, Bool)] -> IntMap Bool
forall a b. (a -> b) -> a -> b
$ [Maybe (Nat, Bool)] -> [(Nat, Bool)]
forall a. [Maybe a] -> [a]
catMaybes ([Maybe (Nat, Bool)] -> [(Nat, Bool)])
-> [Maybe (Nat, Bool)] -> [(Nat, Bool)]
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Nat -> Maybe (Nat, Bool))
-> Args -> [Nat] -> [Maybe (Nat, Bool)]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\Arg Term
a Nat
i -> Arg Term -> Nat -> Maybe (Nat, Bool)
fin Arg Term
a (Nat
i Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
over)) Args
args (Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom Nat
n)

  reportSDoc "tc.ip.boundary" 45 $ vcat
    [ "ivs   =" <+> prettyTCM ivs
    , "tel'  =" <+> prettyTCM tel'
    , "tel'' =" <+> prettyTCM tel''
    , "ids   =" <+> prettyTCM ids
    , "sub   =" <+> prettyTCM sub
    , "endps =" <+> pretty endps
    ]

  guard (not (IntMap.null endps))
  -- Can happen when the metavariable's context does not yet know about
  -- an interval variable it will be applied to later, eg in the partial
  -- argument to hcomp:
  guard (all (>= 0) (IntMap.keys endps))
  -- In that case we fail here — when the user writes some more
  -- patterns, they'll become positive
  pure (mvar, endps, ids, rho)

-- | Record a "face" equation onto an interaction point into the actual
-- interaction point boundary. Takes all the same arguments as
-- @assignMeta'@.
tryAddBoundary :: CompareDirection -> MetaId -> InteractionId -> Args -> Term -> CompareAs -> TCM ()
tryAddBoundary :: CompareDirection
-> MetaId -> InteractionId -> Args -> Term -> CompareAs -> TCM ()
tryAddBoundary CompareDirection
dir MetaId
x InteractionId
iid Args
args Term
v CompareAs
target = do
  [Char] -> Nat -> TCMT IO Doc -> TCM ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.ip.boundary" Nat
30 (TCMT IO Doc -> TCM ()) -> TCMT IO Doc -> TCM ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
    [ TCMT IO Doc
"boundary: looking at equational constraint"
    , Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM (MetaId -> Elims -> Term
MetaV MetaId
x (Arg Term -> Elim
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim) -> Args -> Elims
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Args
args)) TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
"=?" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v
    ]
  iv   <- TCMT IO (Term -> IntervalView)
forall (m :: * -> *). HasBuiltins m => m (Term -> IntervalView)
intervalView'
  mvar <- lookupLocalMeta x  -- information associated with meta x

  let
    t = Judgement MetaId -> Type
forall a. Judgement a -> Type
jMetaType (Judgement MetaId -> Type) -> Judgement MetaId -> Type
forall a b. (a -> b) -> a -> b
$ MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mvar
    n = Args -> Nat
forall a. [a] -> Nat
forall (t :: * -> *) a. Foldable t => t a -> Nat
length Args
args
    rhsv = Term -> VarSet
forall t. Free t => t -> VarSet
allFreeVars Term
v

    allVars :: SubstCand -> Bool
    allVars [(Nat, Term)]
sub = VarSet
rhsv VarSet -> VarSet -> Bool
`VarSet.isSubsetOf` [Nat] -> VarSet
VarSet.fromList (((Nat, Term) -> Nat) -> [(Nat, Term)] -> [Nat]
forall a b. (a -> b) -> [a] -> [b]
map (Nat, Term) -> Nat
forall a b. (a, b) -> a
fst [(Nat, Term)]
sub)

  TelV tel' _ <- telViewUpToPath n t

  void . runMaybeT $ do
    -- Make sure we're looking at a face constraint:
    (_, endps, ids, rho) <- MaybeT $ isFaceConstraint x args
    -- And that the non-endpoint parts of the 'Args' cover the free
    -- variables of the RHS:
    guard (allVars ids)

    -- ρ is a substitution from the "constraint context" (the context
    -- we're in) to the metavariable's context. moreover, v[ρ] is
    -- well-scoped in the meta's context.
    let v' = Tele (Dom Type) -> Term -> Term
forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
tel' (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
Substitution' (SubstArg Term)
rho Term
v
    -- We store the boundary faces directly as lambdas for simplicity.

    enterClosure mvar $ \Range
_ -> do
      [Char] -> Nat -> TCMT IO Doc -> MaybeT (TCMT IO) ()
forall (m :: * -> *).
MonadDebug m =>
[Char] -> Nat -> TCMT IO Doc -> m ()
reportSDoc [Char]
"tc.ip.boundary" Nat
30 (TCMT IO Doc -> MaybeT (TCMT IO) ())
-> TCMT IO Doc -> MaybeT (TCMT IO) ()
forall a b. (a -> b) -> a -> b
$ [TCMT IO Doc] -> TCMT IO Doc
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCMT IO Doc
"recovered interaction point boundary"
        , TCMT IO Doc
"  endps =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> IntMap Bool -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty IntMap Bool
endps
        , TCMT IO Doc
"  rho   =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> Substitution -> TCMT IO Doc
forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Substitution
rho
        , TCMT IO Doc
"  t     =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc -> TCMT IO Doc
forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (Type -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Type -> m Doc
prettyTCM Type
t)
        , TCMT IO Doc
"  v'    =" TCMT IO Doc -> TCMT IO Doc -> TCMT IO Doc
forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc -> TCMT IO Doc
forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (Term -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => Term -> m Doc
prettyTCM Term
v')
        ]

      let
        -- Always store the constraint with the smaller termSize:
        upd :: IPBoundary' Term -> IPBoundary' Term
upd (IPBoundary Map (IntMap Bool) Term
m) = case IntMap Bool -> Map (IntMap Bool) Term -> Maybe Term
forall k a. Ord k => k -> Map k a -> Maybe a
MapS.lookup IntMap Bool
endps Map (IntMap Bool) Term
m of
          Just Term
t -> if Term -> Nat
forall a. TermSize a => a -> Nat
termSize Term
t Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
< Term -> Nat
forall a. TermSize a => a -> Nat
termSize Term
v'
            then Map (IntMap Bool) Term -> IPBoundary' Term
forall t. Map (IntMap Bool) t -> IPBoundary' t
IPBoundary Map (IntMap Bool) Term
m
            else Map (IntMap Bool) Term -> IPBoundary' Term
forall t. Map (IntMap Bool) t -> IPBoundary' t
IPBoundary (Map (IntMap Bool) Term -> IPBoundary' Term)
-> Map (IntMap Bool) Term -> IPBoundary' Term
forall a b. (a -> b) -> a -> b
$ IntMap Bool
-> Term -> Map (IntMap Bool) Term -> Map (IntMap Bool) Term
forall k a. Ord k => k -> a -> Map k a -> Map k a
MapS.insert IntMap Bool
endps Term
v' Map (IntMap Bool) Term
m
          Maybe Term
Nothing -> Map (IntMap Bool) Term -> IPBoundary' Term
forall t. Map (IntMap Bool) t -> IPBoundary' t
IPBoundary (Map (IntMap Bool) Term -> IPBoundary' Term)
-> Map (IntMap Bool) Term -> IPBoundary' Term
forall a b. (a -> b) -> a -> b
$ IntMap Bool
-> Term -> Map (IntMap Bool) Term -> Map (IntMap Bool) Term
forall k a. Ord k => k -> a -> Map k a -> Map k a
MapS.insert IntMap Bool
endps Term
v' Map (IntMap Bool) Term
m
        f :: InteractionPoint -> InteractionPoint
f InteractionPoint
ip = InteractionPoint
ip{ ipBoundary = upd (ipBoundary ip) }

      TCM () -> MaybeT (TCMT IO) ()
forall (m :: * -> *) a. Monad m => m a -> MaybeT m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (TCM () -> MaybeT (TCMT IO) ()) -> TCM () -> MaybeT (TCMT IO) ()
forall a b. (a -> b) -> a -> b
$ (InteractionPoints -> InteractionPoints) -> TCM ()
forall (m :: * -> *).
MonadInteractionPoints m =>
(InteractionPoints -> InteractionPoints) -> m ()
modifyInteractionPoints ((InteractionPoint -> InteractionPoint)
-> InteractionId -> InteractionPoints -> InteractionPoints
forall k v.
(Ord k, Ord (Tag v), HasTag v) =>
(v -> v) -> k -> BiMap k v -> BiMap k v
BiMap.adjust InteractionPoint -> InteractionPoint
f InteractionId
iid)

-- | Turn open metas into postulates.
--
--   Preconditions:
--
--   1. We are 'inTopContext'.
--
--   2. 'envCurrentModule' is set to the top-level module.
--
openMetasToPostulates :: TCM ()
openMetasToPostulates :: TCM ()
openMetasToPostulates = do
  m <- (TCEnv -> ModuleName) -> TCMT IO ModuleName
forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> ModuleName
envCurrentModule

  -- Go through all open metas.
  ms <- MapS.assocs <$> useTC stOpenMetaStore
  forM_ ms $ \ (MetaId
x, MetaVariable
mv) -> do
    let t :: Type
t = Type -> Type
dummyTypeToOmega (Type -> Type) -> Type -> Type
forall a b. (a -> b) -> a -> b
$ Judgement MetaId -> Type
forall a. Judgement a -> Type
jMetaType (Judgement MetaId -> Type) -> Judgement MetaId -> Type
forall a b. (a -> b) -> a -> b
$ MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mv

    -- Create a name for the new postulate.
    let r :: Range
r = Closure Range -> Range
forall a. Closure a -> a
clValue (Closure Range -> Range) -> Closure Range -> Range
forall a b. (a -> b) -> a -> b
$ MetaInfo -> Closure Range
miClosRange (MetaInfo -> Closure Range) -> MetaInfo -> Closure Range
forall a b. (a -> b) -> a -> b
$ MetaVariable -> MetaInfo
mvInfo MetaVariable
mv
    s' <- Doc -> [Char]
forall a. Doc a -> [Char]
render (Doc -> [Char]) -> TCMT IO Doc -> TCMT IO [Char]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> MetaId -> TCMT IO Doc
forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
forall (m :: * -> *). MonadPretty m => MetaId -> m Doc
prettyTCM MetaId
x -- Using _ is a bad idea, as it prints as prefix op
    let s = [Char]
"unsolved#meta." [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ (Char -> Bool) -> [Char] -> [Char]
forall a. (a -> Bool) -> [a] -> [a]
filter (Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
/= Char
'_') [Char]
s'
    n <- freshName r s
    let q = ModuleName -> Name -> QName
A.QName ModuleName
m Name
n

    -- Debug.
    reportSDoc "meta.postulate" 20 $ vcat
      [ text ("Turning " ++ if isSortMeta_ mv then "sort" else "value" ++ " meta ")
          <+> prettyTCM x <+> " into postulate."
      , nest 2 $ vcat
        [ "Name: " <+> prettyTCM q
        , "Type: " <+> prettyTCM t
        ]
      ]

    -- Add the new postulate to the signature.
    addConstant' q defaultArgInfo q t defaultAxiom

    -- Solve the meta.
    let inst = Instantiation -> MetaInstantiation
InstV (Instantiation -> MetaInstantiation)
-> Instantiation -> MetaInstantiation
forall a b. (a -> b) -> a -> b
$ Instantiation
                 { instTel :: [Arg [Char]]
instTel = [], instBody :: Term
instBody = QName -> Elims -> Term
Def QName
q [] }
    updateMetaVar x $ \ MetaVariable
mv0 -> MetaVariable
mv0 { mvInstantiation = inst }
    return ()
  where
    -- Unsolved sort metas can have a type ending in a Dummy if they are allowed to be instantiated
    -- to Setω. This will crash the serializer (issue #3730). To avoid this we replace dummy type
    -- codomains by Setω.
    dummyTypeToOmega :: Type -> Type
dummyTypeToOmega Type
t =
      case Type -> TelV Type
telView' Type
t of
        TelV Tele (Dom Type)
tel (El Sort
_ Dummy{}) -> Tele (Dom Type) -> Type -> Type
forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
tel (Sort -> Type
sort (Sort -> Type) -> Sort -> Type
forall a b. (a -> b) -> a -> b
$ Univ -> Integer -> Sort
forall t. Univ -> Integer -> Sort' t
Inf Univ
UType Integer
0)
        TelV Type
_ -> Type
t

-- | Sort metas in dependency order.
dependencySortMetas :: [MetaId] -> TCM (Maybe [MetaId])
dependencySortMetas :: [MetaId] -> TCM (Maybe [MetaId])
dependencySortMetas [MetaId]
metas = do
  metaGraph <- [[(MetaId, MetaId)]] -> [(MetaId, MetaId)]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[(MetaId, MetaId)]] -> [(MetaId, MetaId)])
-> TCMT IO [[(MetaId, MetaId)]] -> TCMT IO [(MetaId, MetaId)]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
    [MetaId]
-> (MetaId -> TCMT IO [(MetaId, MetaId)])
-> TCMT IO [[(MetaId, MetaId)]]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [MetaId]
metas ((MetaId -> TCMT IO [(MetaId, MetaId)])
 -> TCMT IO [[(MetaId, MetaId)]])
-> (MetaId -> TCMT IO [(MetaId, MetaId)])
-> TCMT IO [[(MetaId, MetaId)]]
forall a b. (a -> b) -> a -> b
$ \ MetaId
m -> do
      deps <- (MetaId -> Set MetaId) -> Maybe Type -> Set MetaId
forall m. Monoid m => (MetaId -> m) -> Maybe Type -> m
forall t m. (AllMetas t, Monoid m) => (MetaId -> m) -> t -> m
allMetas (\MetaId
m' -> if MetaId
m' MetaId -> Set MetaId -> Bool
forall a. Ord a => a -> Set a -> Bool
`Set.member` Set MetaId
metas'
                               then MetaId -> Set MetaId
forall el coll. Singleton el coll => el -> coll
singleton MetaId
m'
                               else Set MetaId
forall a. Monoid a => a
mempty) (Maybe Type -> Set MetaId)
-> TCMT IO (Maybe Type) -> TCMT IO (Set MetaId)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
                MetaId -> TCMT IO (Maybe Type)
forall {m :: * -> *}. MonadReduce m => MetaId -> m (Maybe Type)
getType MetaId
m
      return [ (m, m') | m' <- Set.toList deps ]

  return $ Graph.topSort metas' metaGraph

  where
    metas' :: Set MetaId
metas' = [MetaId] -> Set MetaId
forall a. Ord a => [a] -> Set a
Set.fromList [MetaId]
metas

    -- Sort metas don't have types, but we still want to sort them.
    getType :: MetaId -> m (Maybe Type)
getType MetaId
m = do
      j <- MetaId -> m (Judgement MetaId)
forall (m :: * -> *).
ReadTCState m =>
MetaId -> m (Judgement MetaId)
lookupMetaJudgement MetaId
m
      case j of
        IsSort{}                 -> Maybe Type -> m (Maybe Type)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Type
forall a. Maybe a
Nothing
        HasType{ jMetaType :: forall a. Judgement a -> Type
jMetaType = Type
t } -> Type -> Maybe Type
forall a. a -> Maybe a
Just (Type -> Maybe Type) -> m Type -> m (Maybe Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m Type
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull Type
t