{-# LANGUAGE NondecreasingIndentation #-}

module Agda.TypeChecking.Rules.Data where

import Prelude hiding (null)

import Control.Monad
import Control.Monad.Except
import Control.Monad.Trans
import Control.Monad.Trans.Maybe
import Control.Exception as E

-- Control.Monad.Fail import is redundant since GHC 8.8.1
import Control.Monad.Fail (MonadFail)

import Data.Set (Set)
import qualified Data.Set as Set
import Data.List (nub)

import Agda.Interaction.Options.Base

import qualified Agda.Syntax.Abstract as A
import qualified Agda.Syntax.Concrete.Name as C
import Agda.Syntax.Abstract.Views (deepUnscope)
import Agda.Syntax.Internal
import Agda.Syntax.Internal.Pattern
import Agda.Syntax.Internal.MetaVars (unblockOnAnyMetaIn)
import Agda.Syntax.Common
import Agda.Syntax.Position
import qualified Agda.Syntax.Info as Info
import Agda.Syntax.Scope.Monad

import {-# SOURCE #-} Agda.TypeChecking.CompiledClause.Compile
import Agda.TypeChecking.Monad
import Agda.TypeChecking.Conversion
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Generalize
import Agda.TypeChecking.Implicit
import Agda.TypeChecking.MetaVars
import Agda.TypeChecking.Names
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Positivity.Occurrence (Occurrence(StrictPos))
import Agda.TypeChecking.Pretty
import Agda.TypeChecking.Primitive hiding (Nat)
import Agda.TypeChecking.Free
import Agda.TypeChecking.Forcing
import Agda.TypeChecking.Irrelevance
import Agda.TypeChecking.Telescope

import {-# SOURCE #-} Agda.TypeChecking.Rules.Term ( isType_ )

import Agda.Utils.Either
import Agda.Utils.List
import Agda.Utils.List1 (List1, pattern (:|))
import qualified Agda.Utils.List1 as List1
import Agda.Utils.Maybe
import Agda.Utils.Monad
import Agda.Utils.Null
import qualified Agda.Utils.Pretty as P
import Agda.Utils.Size
import Agda.Utils.WithDefault

import Agda.Utils.Impossible

---------------------------------------------------------------------------
-- * Datatypes
---------------------------------------------------------------------------

-- | Type check a datatype definition. Assumes that the type has already been
--   checked.
checkDataDef :: A.DefInfo -> QName -> UniverseCheck -> A.DataDefParams -> [A.Constructor] -> TCM ()
checkDataDef :: DefInfo
-> QName
-> UniverseCheck
-> DataDefParams
-> [Constructor]
-> TCM ()
checkDataDef DefInfo
i QName
name UniverseCheck
uc (A.DataDefParams Set Name
gpars [LamBinding]
ps) [Constructor]
cs =
    forall (m :: * -> *) a. MonadTrace m => Call -> m a -> m a
traceCall (Range -> QName -> [LamBinding] -> [Constructor] -> Call
CheckDataDef (forall a. HasRange a => a -> Range
getRange QName
name) QName
name [LamBinding]
ps [Constructor]
cs) forall a b. (a -> b) -> a -> b
$ do

        -- Add the datatype module
        ModuleName -> TCM ()
addSection (QName -> ModuleName
qnameToMName QName
name)

        -- Look up the type of the datatype.
        Definition
def <- forall (m :: * -> *).
(Functor m, HasConstInfo m, HasOptions m, ReadTCState m,
 MonadTCEnv m, MonadDebug m) =>
Definition -> m Definition
instantiateDef forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
name
        Type
t   <- forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull forall a b. (a -> b) -> a -> b
$ Definition -> Type
defType Definition
def
        let npars :: Nat
npars =
              case Definition -> Defn
theDef Definition
def of
                DataOrRecSig Nat
n -> Nat
n
                Defn
_              -> forall a. HasCallStack => a
__IMPOSSIBLE__

        -- Make sure the shape of the type is visible
        let unTelV :: TelV Type -> Type
unTelV (TelV Tele (Dom Type)
tel Type
a) = Tele (Dom Type) -> Type -> Type
telePi Tele (Dom Type)
tel Type
a
        Type
t <- TelV Type -> Type
unTelV forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
t

        [Maybe Name]
parNames <- Set Name -> QName -> TCM [Maybe Name]
getGeneralizedParameters Set Name
gpars QName
name

        -- Top level free vars
        Nat
freeVars <- forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Nat
getContextSize

        -- The parameters are in scope when checking the constructors.
        DatatypeData
dataDef <- forall a.
[Maybe Name] -> Type -> (Tele (Dom Type) -> Type -> TCM a) -> TCM a
bindGeneralizedParameters [Maybe Name]
parNames Type
t forall a b. (a -> b) -> a -> b
$ \ Tele (Dom Type)
gtel Type
t0 ->
                   forall a.
Nat
-> [LamBinding]
-> Type
-> (Tele (Dom Type) -> Type -> TCM a)
-> TCM a
bindParameters (Nat
npars forall a. Num a => a -> a -> a
- forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Maybe Name]
parNames) [LamBinding]
ps Type
t0 forall a b. (a -> b) -> a -> b
$ \ Tele (Dom Type)
ptel Type
t0 -> do

            -- Parameters are always hidden and erased in constructors
            let tel :: Tele (Dom Type)
tel  = forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
gtel Tele (Dom Type)
ptel
                tel' :: Tele (Dom Type)
tel' = forall a. LensQuantity a => Quantity -> a -> a
applyQuantity Quantity
zeroQuantity forall b c a. (b -> c) -> (a -> b) -> a -> c
.
                       forall a. (LensHiding a, LensRelevance a) => a -> a
hideAndRelParams forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
                       Tele (Dom Type)
tel
            -- let tel' = hideTel tel

            -- The type we get from bindParameters is Θ -> s where Θ is the type of
            -- the indices. We count the number of indices and return s.
            -- We check that s is a sort.
            let TelV Tele (Dom Type)
ixTel Type
s0 = Type -> TelV Type
telView' Type
t0
                nofIxs :: Nat
nofIxs = forall a. Sized a => a -> Nat
size Tele (Dom Type)
ixTel

            Sort' Term
s <- forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
workOnTypes forall a b. (a -> b) -> a -> b
$ do
              -- Andreas, 2016-11-02 issue #2290
              -- Trying to unify the sort with a fresh sort meta which is
              -- defined outside the index telescope is the most robust way
              -- to check independence of the indices.
              -- However, it might give the dreaded "Cannot instantiate meta..."
              -- error which we replace by a more understandable error
              -- in case of a suspected dependency.
              Sort' Term
s <- TCMT IO (Sort' Term)
newSortMetaBelowInf
              forall a. TCM a -> (TCErr -> TCM a) -> TCM a
catchError_ (forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
ixTel forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadConversion m => Type -> Type -> m ()
equalType Type
s0 forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> a -> a
raise Nat
nofIxs forall a b. (a -> b) -> a -> b
$ Sort' Term -> Type
sort Sort' Term
s) forall a b. (a -> b) -> a -> b
$ \ TCErr
err ->
                  if forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (forall a. Free a => Nat -> a -> Bool
`freeIn` Type
s0) [Nat
0..Nat
nofIxs forall a. Num a => a -> a -> a
- Nat
1] then forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<
                     forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [ TCMT IO Doc
"The sort of" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
name
                          , TCMT IO Doc
"cannot depend on its indices in the type"
                          , forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t0
                          ]
                  else forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err
              forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Sort' Term
s

            forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.sort" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
              [ TCMT IO Doc
"checking datatype" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
name
              , forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
                [ TCMT IO Doc
"type (parameters instantiated):   " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t0
                , TCMT IO Doc
"type (full):   " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t
                , TCMT IO Doc
"sort:   " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort' Term
s
                , TCMT IO Doc
"indices:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *). Applicative m => ArgName -> m Doc
text (forall a. Show a => a -> ArgName
show Nat
nofIxs)
                , TCMT IO Doc
"gparams:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *). Applicative m => ArgName -> m Doc
text (forall a. Show a => a -> ArgName
show [Maybe Name]
parNames)
                , TCMT IO Doc
"params: " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *). Applicative m => ArgName -> m Doc
text (forall a. Show a => a -> ArgName
show forall a b. (a -> b) -> a -> b
$ forall a. ExprLike a => a -> a
deepUnscope [LamBinding]
ps)
                ]
              ]
            let npars :: Nat
npars = forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel

            -- Change the datatype from an axiom to a datatype with no constructors.
            let dataDef :: DatatypeData
dataDef = DatatypeData
                  { _dataPars :: Nat
_dataPars       = Nat
npars
                  , _dataIxs :: Nat
_dataIxs        = Nat
nofIxs
                  , _dataClause :: Maybe Clause
_dataClause     = forall a. Maybe a
Nothing
                  , _dataCons :: [QName]
_dataCons       = []     -- Constructors are added later
                  , _dataSort :: Sort' Term
_dataSort       = Sort' Term
s
                  , _dataAbstr :: IsAbstract
_dataAbstr      = forall t. DefInfo' t -> IsAbstract
Info.defAbstract DefInfo
i
                  , _dataMutual :: Maybe [QName]
_dataMutual     = forall a. Maybe a
Nothing
                  , _dataPathCons :: [QName]
_dataPathCons   = []     -- Path constructors are added later
                  , _dataTranspIx :: Maybe QName
_dataTranspIx   = forall a. Maybe a
Nothing -- Generated later if nofIxs > 0.
                  , _dataTransp :: Maybe QName
_dataTransp     = forall a. Maybe a
Nothing -- Added later
                  }

            forall (m :: * -> *) a.
MonadAddContext m =>
Impossible -> Nat -> m a -> m a
escapeContext HasCallStack => Impossible
impossible Nat
npars forall a b. (a -> b) -> a -> b
$ do
              QName -> ArgInfo -> QName -> Type -> Defn -> TCM ()
addConstant' QName
name ArgInfo
defaultArgInfo QName
name Type
t forall a b. (a -> b) -> a -> b
$ DatatypeData -> Defn
DatatypeDefn DatatypeData
dataDef
                -- polarity and argOcc.s determined by the positivity checker

            -- Check the types of the constructors
            [Maybe QName]
pathCons <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Constructor]
cs forall a b. (a -> b) -> a -> b
$ \ Constructor
c -> do
              IsPathCons
isPathCons <- QName
-> UniverseCheck
-> Tele (Dom Type)
-> Nat
-> Sort' Term
-> Constructor
-> TCM IsPathCons
checkConstructor QName
name UniverseCheck
uc Tele (Dom Type)
tel' Nat
nofIxs Sort' Term
s Constructor
c
              forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ if IsPathCons
isPathCons forall a. Eq a => a -> a -> Bool
== IsPathCons
PathCons then forall a. a -> Maybe a
Just (Constructor -> QName
A.axiomName Constructor
c) else forall a. Maybe a
Nothing


            -- cubical: the interval universe does not contain datatypes
            -- similar: SizeUniv, ...
            QName -> Sort' Term -> TCM ()
checkDataSort QName
name Sort' Term
s

            -- when `--without-K`, all the indices should fit in the
            -- sort of the datatype (see #3420).
            -- Andreas, 2019-07-16, issue #3916:
            -- NoUniverseCheck should also disable the index sort check!
            forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (UniverseCheck
uc forall a. Eq a => a -> a -> Bool
== UniverseCheck
NoUniverseCheck) forall a b. (a -> b) -> a -> b
$
              forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
whenM forall (m :: * -> *). HasOptions m => m Bool
withoutKOption forall a b. (a -> b) -> a -> b
$ do
                let s' :: Sort' Term
s' = case Sort' Term
s of
                      Prop Level
l -> forall t. Level' t -> Sort' t
Type Level
l
                      Sort' Term
_      -> Sort' Term
s
                Sort' Term -> Tele (Dom Type) -> TCM ()
checkIndexSorts Sort' Term
s' Tele (Dom Type)
ixTel

            -- Return the data definition
            forall (m :: * -> *) a. Monad m => a -> m a
return DatatypeData
dataDef{ _dataPathCons :: [QName]
_dataPathCons = forall a. [Maybe a] -> [a]
catMaybes [Maybe QName]
pathCons
                          }

        let cons :: [QName]
cons   = forall a b. (a -> b) -> [a] -> [b]
map Constructor -> QName
A.axiomName [Constructor]
cs  -- get constructor names

        (Maybe QName
mtranspix, Maybe QName
transpFun) <-
          forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (forall (b :: Bool). KnownBool b => WithDefault b -> Bool
collapseDefault forall b c a. (b -> c) -> (a -> b) -> a -> c
. PragmaOptions -> WithDefault 'False
optCubicalCompatible forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions)
            (do Maybe QName
mtranspix <- forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ QName -> TCMT IO (Maybe QName)
defineTranspIx QName
name
                Maybe QName
transpFun <- forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$
                               QName -> Maybe QName -> [QName] -> [QName] -> TCMT IO (Maybe QName)
defineTranspFun QName
name Maybe QName
mtranspix [QName]
cons
                                 (DatatypeData -> [QName]
_dataPathCons DatatypeData
dataDef)
                forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe QName
mtranspix, Maybe QName
transpFun))
            (forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. Maybe a
Nothing, forall a. Maybe a
Nothing))

        -- Add the datatype to the signature with its constructors.
        -- It was previously added without them.
        QName -> ArgInfo -> QName -> Type -> Defn -> TCM ()
addConstant' QName
name ArgInfo
defaultArgInfo QName
name Type
t forall a b. (a -> b) -> a -> b
$ DatatypeData -> Defn
DatatypeDefn
            DatatypeData
dataDef{ _dataCons :: [QName]
_dataCons = [QName]
cons
                   , _dataTranspIx :: Maybe QName
_dataTranspIx = Maybe QName
mtranspix
                   , _dataTransp :: Maybe QName
_dataTransp   = Maybe QName
transpFun
                   }

-- | Make sure that the target universe admits data type definitions.
--   E.g. @IUniv@, @SizeUniv@ etc. do not accept new constructions.
checkDataSort :: QName -> Sort -> TCM ()
checkDataSort :: QName -> Sort' Term -> TCM ()
checkDataSort QName
name Sort' Term
s = forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange QName
name forall a b. (a -> b) -> a -> b
$ do
  forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m) =>
t -> (Blocker -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked Sort' Term
s Blocker -> Sort' Term -> TCM ()
postpone {-else-} forall a b. (a -> b) -> a -> b
$ \ NotBlocked
_ (Sort' Term
s :: Sort) -> do
    let
      yes :: TCM ()
      yes :: TCM ()
yes = forall (m :: * -> *) a. Monad m => a -> m a
return ()
      no  :: TCM ()
      no :: TCM ()
no  = forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<
              forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
fsep [ TCMT IO Doc
"The universe"
                   , forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort' Term
s
                   , TCMT IO Doc
"of"
                   , forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
name
                   , TCMT IO Doc
"does not admit data or record declarations"
                   ]
    case Sort' Term
s of
      -- Sorts that admit data definitions.
      Type Level
_       -> TCM ()
yes
      Prop Level
_       -> TCM ()
yes
      Inf IsFibrant
_ Integer
_      -> TCM ()
yes
      SSet Level
_       -> TCM ()
yes
      DefS QName
_ [Elim' Term]
_     -> TCM ()
yes
      -- Sorts that do not admit data definitions.
      Sort' Term
SizeUniv     -> TCM ()
no
      Sort' Term
LockUniv     -> TCM ()
no
      Sort' Term
IntervalUniv -> TCM ()
no
      -- Blocked sorts.
      PiSort Dom' Term Term
_ Sort' Term
_ Abs (Sort' Term)
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__
      FunSort Sort' Term
_ Sort' Term
_  -> forall a. HasCallStack => a
__IMPOSSIBLE__
      UnivSort Sort' Term
_   -> forall a. HasCallStack => a
__IMPOSSIBLE__
      MetaS MetaId
_ [Elim' Term]
_    -> forall a. HasCallStack => a
__IMPOSSIBLE__
      DummyS ArgName
_     -> forall a. HasCallStack => a
__IMPOSSIBLE__
  where
    postpone :: Blocker -> Sort -> TCM ()
    postpone :: Blocker -> Sort' Term -> TCM ()
postpone Blocker
b Sort' Term
s = forall (m :: * -> *).
MonadConstraint m =>
Blocker -> Constraint -> m ()
addConstraint Blocker
b forall a b. (a -> b) -> a -> b
$ QName -> Sort' Term -> Constraint
CheckDataSort QName
name Sort' Term
s

-- | Ensure that the type is a sort.
--   If it is not directly a sort, compare it to a 'newSortMetaBelowInf'.
forceSort :: Type -> TCM Sort
forceSort :: Type -> TCMT IO (Sort' Term)
forceSort Type
t = forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce (forall t a. Type'' t a -> a
unEl Type
t) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
  Sort Sort' Term
s -> forall (m :: * -> *) a. Monad m => a -> m a
return Sort' Term
s
  Term
_      -> do
    Sort' Term
s <- TCMT IO (Sort' Term)
newSortMetaBelowInf
    forall (m :: * -> *). MonadConversion m => Type -> Type -> m ()
equalType Type
t (Sort' Term -> Type
sort Sort' Term
s)
    forall (m :: * -> *) a. Monad m => a -> m a
return Sort' Term
s


-- | Type check a constructor declaration. Checks that the constructor targets
--   the datatype and that it fits inside the declared sort.
--   Returns the non-linear parameters.
checkConstructor
  :: QName         -- ^ Name of data type.
  -> UniverseCheck -- ^ Check universes?
  -> Telescope     -- ^ Parameter telescope.
  -> Nat           -- ^ Number of indices of the data type.
  -> Sort          -- ^ Sort of the data type.
  -> A.Constructor -- ^ Constructor declaration (type signature).
  -> TCM IsPathCons
checkConstructor :: QName
-> UniverseCheck
-> Tele (Dom Type)
-> Nat
-> Sort' Term
-> Constructor
-> TCM IsPathCons
checkConstructor QName
d UniverseCheck
uc Tele (Dom Type)
tel Nat
nofIxs Sort' Term
s (A.ScopedDecl ScopeInfo
scope [Constructor
con]) = do
  ScopeInfo -> TCM ()
setScope ScopeInfo
scope
  QName
-> UniverseCheck
-> Tele (Dom Type)
-> Nat
-> Sort' Term
-> Constructor
-> TCM IsPathCons
checkConstructor QName
d UniverseCheck
uc Tele (Dom Type)
tel Nat
nofIxs Sort' Term
s Constructor
con
checkConstructor QName
d UniverseCheck
uc Tele (Dom Type)
tel Nat
nofIxs Sort' Term
s con :: Constructor
con@(A.Axiom KindOfName
_ DefInfo
i ArgInfo
ai Maybe [Occurrence]
Nothing QName
c Type
e) =
    forall (m :: * -> *) a. MonadTrace m => Call -> m a -> m a
traceCall (QName -> Tele (Dom Type) -> Sort' Term -> Constructor -> Call
CheckConstructor QName
d Tele (Dom Type)
tel Sort' Term
s Constructor
con) forall a b. (a -> b) -> a -> b
$ do
{- WRONG
      -- Andreas, 2011-04-26: the following happens to the right of ':'
      -- we may use irrelevant arguments in a non-strict way in types
      t' <- workOnTypes $ do
-}
        forall {m :: * -> *} {a} {a}.
(MonadDebug m, PrettyTCM a, PrettyTCM a) =>
a -> a -> m ()
debugEnter QName
c Type
e
        -- check that we are relevant
        case forall a. LensRelevance a => a -> Relevance
getRelevance ArgInfo
ai of
          Relevance
Relevant   -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
          Relevance
Irrelevant -> forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ ArgName -> TypeError
GenericError forall a b. (a -> b) -> a -> b
$ ArgName
"Irrelevant constructors are not supported"
          Relevance
NonStrict  -> forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ ArgName -> TypeError
GenericError forall a b. (a -> b) -> a -> b
$ ArgName
"Shape-irrelevant constructors are not supported"
        case forall a. LensQuantity a => a -> Quantity
getQuantity ArgInfo
ai of
          Quantityω{} -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
          Quantity0{} -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
          Quantity1{} -> forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ ArgName -> TypeError
GenericError forall a b. (a -> b) -> a -> b
$ ArgName
"Quantity-restricted constructors are not supported"
        -- check that the type of the constructor is well-formed
        (Type
t, IsPathCons
isPathCons) <- forall (tcm :: * -> *) q a.
(MonadTCEnv tcm, LensQuantity q) =>
q -> tcm a -> tcm a
applyQuantityToContext ArgInfo
ai forall a b. (a -> b) -> a -> b
$
                           Type -> QName -> TCMT IO (Type, IsPathCons)
checkConstructorType Type
e QName
d

        -- compute which constructor arguments are forced (only point constructors)
        [IsForced]
forcedArgs <- if IsPathCons
isPathCons forall a. Eq a => a -> a -> Bool
== IsPathCons
PointCons
                      then QName -> Type -> TCM [IsForced]
computeForcingAnnotations QName
c Type
t
                      else forall (m :: * -> *) a. Monad m => a -> m a
return []
        -- check that the sort (universe level) of the constructor type
        -- is contained in the sort of the data type
        -- (to avoid impredicative existential types)
        forall {m :: * -> *} {a}. (MonadDebug m, PrettyTCM a) => a -> m ()
debugFitsIn Sort' Term
s
        -- To allow propositional squash, we turn @Prop ℓ@ into @Set ℓ@
        -- for the purpose of checking the type of the constructors.
        let s' :: Sort' Term
s' = case Sort' Term
s of
              Prop Level
l -> forall t. Level' t -> Sort' t
Type Level
l
              Sort' Term
_      -> Sort' Term
s
        Nat
arity <- forall (m :: * -> *) a. MonadTrace m => Call -> m a -> m a
traceCall (QName -> Type -> Sort' Term -> Call
CheckConstructorFitsIn QName
c Type
t Sort' Term
s') forall a b. (a -> b) -> a -> b
$
                 forall (tcm :: * -> *) q a.
(MonadTCEnv tcm, LensQuantity q) =>
q -> tcm a -> tcm a
applyQuantityToContext ArgInfo
ai forall a b. (a -> b) -> a -> b
$
                 UniverseCheck -> [IsForced] -> Type -> Sort' Term -> TCMT IO Nat
fitsIn UniverseCheck
uc [IsForced]
forcedArgs Type
t Sort' Term
s'
        -- this may have instantiated some metas in s, so we reduce
        Sort' Term
s <- forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Sort' Term
s
        forall {m :: * -> *} {a} {a}.
(MonadDebug m, PrettyTCM a, PrettyTCM a) =>
a -> a -> m ()
debugAdd QName
c Type
t

        (TelV Tele (Dom Type)
fields Type
_, Boundary
boundary) <- forall (m :: * -> *).
PureTCM m =>
Nat -> Type -> m (TelV Type, Boundary)
telViewUpToPathBoundaryP (-Nat
1) Type
t

        -- We assume that the current context matches the parameters
        -- of the datatype in an empty context (c.f. getContextSize above).
        Tele (Dom Type)
params <- forall (m :: * -> *).
(Applicative m, MonadTCEnv m) =>
m (Tele (Dom Type))
getContextTelescope

        (ConHead
con, CompKit
comp, Maybe [QName]
projNames) <- do
            -- Name for projection of ith field of constructor c is just c-i
            [QName]
names <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Nat
0 .. forall a. Sized a => a -> Nat
size Tele (Dom Type)
fields forall a. Num a => a -> a -> a
- Nat
1] forall a b. (a -> b) -> a -> b
$ \ Nat
i ->
              ArgName -> TCMT IO QName
freshAbstractQName'_ forall a b. (a -> b) -> a -> b
$ forall a. Pretty a => a -> ArgName
P.prettyShow (QName -> Name
A.qnameName QName
c) forall a. [a] -> [a] -> [a]
++ ArgName
"-" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Nat
i

            -- nofIxs == 0 means the data type can be reconstructed
            -- by appling the QName d to the parameters.
            let dataT :: Type
dataT = forall t a. Sort' t -> a -> Type'' t a
El Sort' Term
s forall a b. (a -> b) -> a -> b
$ QName -> [Elim' Term] -> Term
Def QName
d forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a. Arg a -> Elim' a
Apply forall a b. (a -> b) -> a -> b
$ forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
params

            forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.con.comp" Nat
5 forall a b. (a -> b) -> a -> b
$ forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat forall a b. (a -> b) -> a -> b
$
              [ TCMT IO Doc
"params =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Tele (Dom Type)
params
              , TCMT IO Doc
"dataT  =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
dataT
              , TCMT IO Doc
"fields =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Tele (Dom Type)
fields
              , TCMT IO Doc
"names  =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty [QName]
names
              ]

            let con :: ConHead
con = QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead
ConHead QName
c DataOrRecord
IsData Induction
Inductive forall a b. (a -> b) -> a -> b
$ forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith forall (f :: * -> *) a b. Functor f => a -> f b -> f a
(<$) [QName]
names forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall t a. Dom' t a -> Arg a
argFromDom forall a b. (a -> b) -> a -> b
$ forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom Type)
fields

            QName
-> ConHead
-> Tele (Dom Type)
-> [QName]
-> Tele (Dom Type)
-> Type
-> TCM ()
defineProjections QName
d ConHead
con Tele (Dom Type)
params [QName]
names Tele (Dom Type)
fields Type
dataT
            -- Cannot compose indexed inductive types yet.
            CompKit
comp <- if Nat
nofIxs forall a. Eq a => a -> a -> Bool
/= Nat
0 Bool -> Bool -> Bool
|| (forall t. DefInfo' t -> IsAbstract
Info.defAbstract DefInfo
i forall a. Eq a => a -> a -> Bool
== IsAbstract
AbstractDef)
                    then forall (m :: * -> *) a. Monad m => a -> m a
return CompKit
emptyCompKit
                    else forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ QName
-> ConHead
-> Tele (Dom Type)
-> [QName]
-> Tele (Dom Type)
-> Type
-> Boundary
-> TCMT IO CompKit
defineCompData QName
d ConHead
con Tele (Dom Type)
params [QName]
names Tele (Dom Type)
fields Type
dataT Boundary
boundary
            forall (m :: * -> *) a. Monad m => a -> m a
return (ConHead
con, CompKit
comp, forall a. a -> Maybe a
Just [QName]
names)

        -- add parameters to constructor type and put into signature
        forall (m :: * -> *) a.
MonadAddContext m =>
Impossible -> Nat -> m a -> m a
escapeContext HasCallStack => Impossible
impossible (forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel) forall a b. (a -> b) -> a -> b
$ do

          QName -> ArgInfo -> QName -> Type -> Defn -> TCM ()
addConstant' QName
c ArgInfo
ai QName
c (Tele (Dom Type) -> Type -> Type
telePi Tele (Dom Type)
tel Type
t) forall a b. (a -> b) -> a -> b
$ Constructor
              { conPars :: Nat
conPars   = forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel
              , conArity :: Nat
conArity  = Nat
arity
              , conSrcCon :: ConHead
conSrcCon = ConHead
con
              , conData :: QName
conData   = QName
d
              , conAbstr :: IsAbstract
conAbstr  = forall t. DefInfo' t -> IsAbstract
Info.defAbstract DefInfo
i
              , conInd :: Induction
conInd    = Induction
Inductive
              , conComp :: CompKit
conComp   = CompKit
comp
              , conProj :: Maybe [QName]
conProj   = Maybe [QName]
projNames
              , conForced :: [IsForced]
conForced = [IsForced]
forcedArgs
              , conErased :: Maybe [Bool]
conErased = forall a. Maybe a
Nothing  -- computed during compilation to treeless
              }

        -- Add the constructor to the instance table, if needed
        case forall t. DefInfo' t -> IsInstance
Info.defInstance DefInfo
i of
          InstanceDef Range
_r -> forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange QName
c forall a b. (a -> b) -> a -> b
$ do
            -- Including the range of the @instance@ keyword, like
            -- @(getRange (r,c))@, does not produce good results.
            -- Andreas, 2020-01-28, issue #4360:
            -- Use addTypedInstance instead of addNamedInstance
            -- to detect unusable instances.
            QName -> Type -> TCM ()
addTypedInstance QName
c Type
t
            -- addNamedInstance c d
          IsInstance
NotInstanceDef -> forall (f :: * -> *) a. Applicative f => a -> f a
pure ()

        forall (m :: * -> *) a. Monad m => a -> m a
return IsPathCons
isPathCons

  where
    -- Issue 3362: we need to do the `constructs` call inside the
    -- generalization, so unpack the A.Generalize
    checkConstructorType :: Type -> QName -> TCMT IO (Type, IsPathCons)
checkConstructorType (A.ScopedExpr ScopeInfo
s Type
e) QName
d = forall (m :: * -> *) a. ReadTCState m => ScopeInfo -> m a -> m a
withScope_ ScopeInfo
s forall a b. (a -> b) -> a -> b
$ Type -> QName -> TCMT IO (Type, IsPathCons)
checkConstructorType Type
e QName
d
    checkConstructorType Type
e QName
d = do
      let check :: Nat -> Type -> TCMT IO (Type, IsPathCons)
check Nat
k Type
e = do
            Type
t <- forall (m :: * -> *) a.
(MonadTCEnv m, HasOptions m, MonadDebug m) =>
m a -> m a
workOnTypes forall a b. (a -> b) -> a -> b
$ Type -> TCMT IO Type
isType_ Type
e
            -- check that the type of the constructor ends in the data type
            Nat
n <- forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Nat
getContextSize
            forall {m :: * -> *} {a} {a} {a}.
(MonadDebug m, PrettyTCM a, PrettyTCM a, Show a) =>
a -> a -> a -> m ()
debugEndsIn Type
t QName
d (Nat
n forall a. Num a => a -> a -> a
- Nat
k)
            IsPathCons
isPathCons <- Nat -> Nat -> Type -> QName -> TCM IsPathCons
constructs (Nat
n forall a. Num a => a -> a -> a
- Nat
k) Nat
k Type
t QName
d
            forall (m :: * -> *) a. Monad m => a -> m a
return (Type
t, IsPathCons
isPathCons)

      case Type
e of
        A.Generalized Set QName
s Type
e -> do
          ([Maybe QName]
_, Type
t, IsPathCons
isPathCons) <- forall a.
Set QName -> TCM (Type, a) -> TCM ([Maybe QName], Type, a)
generalizeType' Set QName
s (Nat -> Type -> TCMT IO (Type, IsPathCons)
check Nat
1 Type
e)
          forall (m :: * -> *) a. Monad m => a -> m a
return (Type
t, IsPathCons
isPathCons)
        Type
_ -> Nat -> Type -> TCMT IO (Type, IsPathCons)
check Nat
0 Type
e

    debugEnter :: a -> a -> m ()
debugEnter a
c a
e =
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.con" Nat
5 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCMT IO Doc
"checking constructor" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
c forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
e
        ]
    debugEndsIn :: a -> a -> a -> m ()
debugEndsIn a
t a
d a
n =
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.con" Nat
15 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCMT IO Doc
"checking that"
              , forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
t
              , TCMT IO Doc
"ends in" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
d
              ]
        , forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"nofPars =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *). Applicative m => ArgName -> m Doc
text (forall a. Show a => a -> ArgName
show a
n)
        ]
    debugFitsIn :: a -> m ()
debugFitsIn a
s =
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.con" Nat
15 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
        [ TCMT IO Doc
"checking that the type fits in"
        , forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
s
        ]
    debugAdd :: a -> a -> m ()
debugAdd a
c a
t =
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.con" Nat
5 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCMT IO Doc
"adding constructor" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
c forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
t
        ]
checkConstructor QName
_ UniverseCheck
_ Tele (Dom Type)
_ Nat
_ Sort' Term
_ Constructor
_ = forall a. HasCallStack => a
__IMPOSSIBLE__ -- constructors are axioms

defineCompData :: QName      -- datatype name
               -> ConHead
               -> Telescope  -- Γ parameters
               -> [QName]    -- projection names
               -> Telescope  -- Γ ⊢ Φ field types
               -> Type       -- Γ ⊢ T target type
               -> Boundary   -- [(i,t_i,b_i)],  Γ.Φ ⊢ [ (i=0) -> t_i; (i=1) -> u_i ] : B_i
               -> TCM CompKit
defineCompData :: QName
-> ConHead
-> Tele (Dom Type)
-> [QName]
-> Tele (Dom Type)
-> Type
-> Boundary
-> TCMT IO CompKit
defineCompData QName
d ConHead
con Tele (Dom Type)
params [QName]
names Tele (Dom Type)
fsT Type
t Boundary
boundary = do
  [Maybe Term]
required <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *). HasBuiltins m => ArgName -> m (Maybe Term)
getTerm'
    [ ArgName
builtinInterval
    , ArgName
builtinIZero
    , ArgName
builtinIOne
    , ArgName
builtinIMin
    , ArgName
builtinIMax
    , ArgName
builtinINeg
    , ArgName
builtinPOr
    , ArgName
builtinItIsOne
    ]
  if Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all forall a. Maybe a -> Bool
isJust [Maybe Term]
required) then forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ CompKit
emptyCompKit else do
    Maybe QName
hcomp  <- forall {m :: * -> *} {t :: * -> *} {a}.
(Traversable t, HasBuiltins m) =>
Bool -> t ArgName -> m (Maybe a) -> m (Maybe a)
whenDefined (forall a. Null a => a -> Bool
null Boundary
boundary) [ArgName
builtinHComp,ArgName
builtinTrans]
      (Command
-> QName
-> ConHead
-> Tele (Dom Type)
-> [QName]
-> Tele (Dom Type)
-> Type
-> Boundary
-> TCMT IO (Maybe QName)
defineKanOperationD Command
DoHComp  QName
d ConHead
con Tele (Dom Type)
params [QName]
names Tele (Dom Type)
fsT Type
t Boundary
boundary)
    Maybe QName
transp <- forall {m :: * -> *} {t :: * -> *} {a}.
(Traversable t, HasBuiltins m) =>
Bool -> t ArgName -> m (Maybe a) -> m (Maybe a)
whenDefined Bool
True            [ArgName
builtinTrans]
      (Command
-> QName
-> ConHead
-> Tele (Dom Type)
-> [QName]
-> Tele (Dom Type)
-> Type
-> Boundary
-> TCMT IO (Maybe QName)
defineKanOperationD Command
DoTransp QName
d ConHead
con Tele (Dom Type)
params [QName]
names Tele (Dom Type)
fsT Type
t Boundary
boundary)
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ CompKit
      { nameOfTransp :: Maybe QName
nameOfTransp = Maybe QName
transp
      , nameOfHComp :: Maybe QName
nameOfHComp  = Maybe QName
hcomp
      }
  where
    -- Δ^I, i : I |- sub Δ : Δ
    sub :: a -> Substitution
sub a
tel = [ Nat -> Term
var Nat
n forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
defaultArgInfo forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
0] | Nat
n <- [Nat
1..forall a. Sized a => a -> Nat
size a
tel] ] forall a. DeBruijn a => [a] -> Substitution' a -> Substitution' a
++# forall a. Impossible -> Substitution' a
EmptyS forall a. HasCallStack => a
__IMPOSSIBLE__
    withArgInfo :: Tele (Dom t) -> [b] -> [Arg b]
withArgInfo Tele (Dom t)
tel = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith forall e. ArgInfo -> e -> Arg e
Arg (forall a b. (a -> b) -> [a] -> [b]
map forall t e. Dom' t e -> ArgInfo
domInfo forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList forall a b. (a -> b) -> a -> b
$ Tele (Dom t)
tel)

    defineKanOperationD :: Command
-> QName
-> ConHead
-> Tele (Dom Type)
-> [QName]
-> Tele (Dom Type)
-> Type
-> Boundary
-> TCMT IO (Maybe QName)
defineKanOperationD Command
cmd QName
d ConHead
con Tele (Dom Type)
params [QName]
names Tele (Dom Type)
fsT Type
t Boundary
boundary = do
      let project :: Term -> QName -> Term
project = (\ Term
t QName
p -> forall t. Apply t => t -> [Arg Term] -> t
apply (QName -> [Elim' Term] -> Term
Def QName
p []) [forall e. e -> Arg e
argN Term
t])
      Maybe
  ((QName, Tele (Dom Type), Type, [Dom Type], [Term]), Substitution)
stuff <- Command
-> Maybe Term
-> (Term -> QName -> Term)
-> QName
-> Tele (Dom Type)
-> Tele (Dom Type)
-> [Arg QName]
-> Type
-> TCM
     (Maybe
        ((QName, Tele (Dom Type), Type, [Dom Type], [Term]), Substitution))
defineKanOperationForFields Command
cmd
                 (forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ forall a. Null a => a -> Bool
null Boundary
boundary) forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall a. a -> Maybe a
Just (ConHead -> ConInfo -> [Elim' Term] -> Term
Con ConHead
con ConInfo
ConOSystem forall a b. (a -> b) -> a -> b
$ forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary' (a, a) -> [Elim' a]
teleElims Tele (Dom Type)
fsT Boundary
boundary))
                 Term -> QName -> Term
project QName
d Tele (Dom Type)
params Tele (Dom Type)
fsT (forall a b. (a -> b) -> [a] -> [b]
map forall e. e -> Arg e
argN [QName]
names) Type
t
      forall a b. Maybe a -> b -> (a -> b) -> b
caseMaybe Maybe
  ((QName, Tele (Dom Type), Type, [Dom Type], [Term]), Substitution)
stuff (forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing) forall a b. (a -> b) -> a -> b
$ \ ((QName
theName, Tele (Dom Type)
gamma , Type
ty, [Dom Type]
_cl_types , [Term]
bodies), Substitution
theSub) -> do

      Term
iz <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero
      Term
body <- do
        case Command
cmd of
          Command
DoHComp -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ ConHead -> ConInfo -> [Elim' Term] -> Term
Con ConHead
con ConInfo
ConOSystem (forall a b. (a -> b) -> [a] -> [b]
map forall a. Arg a -> Elim' a
Apply forall a b. (a -> b) -> a -> b
$ forall {t} {b}. Tele (Dom t) -> [b] -> [Arg b]
withArgInfo Tele (Dom Type)
fsT [Term]
bodies)
          Command
DoTransp | forall a. Null a => a -> Bool
null Boundary
boundary {- && null ixs -} -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ ConHead -> ConInfo -> [Elim' Term] -> Term
Con ConHead
con ConInfo
ConOSystem (forall a b. (a -> b) -> [a] -> [b]
map forall a. Arg a -> Elim' a
Apply forall a b. (a -> b) -> a -> b
$ forall {t} {b}. Tele (Dom t) -> [b] -> [Arg b]
withArgInfo Tele (Dom Type)
fsT [Term]
bodies)
                   | Bool
otherwise -> do
            Term
io <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIOne
            Term
tIMax <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIMax
            Term
tIMin <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIMin
            Term
tINeg <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primINeg
            Term
tPOr  <- forall a. a -> Maybe a -> a
fromMaybe forall a. HasCallStack => a
__IMPOSSIBLE__ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasBuiltins m => ArgName -> m (Maybe Term)
getTerm' ArgName
builtinPOr
            Term
tHComp <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primHComp
            -- Δ = params
            -- Δ ⊢ Φ = fsT
            -- (δ : Δ) ⊢ T = R δ
            -- (δ : Δ) ⊢ con : Φ → R δ  -- no indexing
            -- boundary = [(i,t_i,u_i)]
            -- Δ.Φ ⊢ [ (i=0) -> t_i; (i=1) -> u_i ] : B_i
            -- Δ.Φ | PiPath Φ boundary (R δ) |- teleElims fsT boundary : R δ
            -- Γ = ((δ : Δ^I), φ, us : Φ[δ 0]) = gamma
            -- Γ ⊢ ty = R (δ i1)
            -- (γ : Γ) ⊢ cl_types = (flatten Φ)[n ↦ f_n (transpR γ)]
            -- Γ ⊢ bodies : Φ[δ i1]
            -- Γ ⊢ t : ty
            -- Γ, i : I ⊢ theSub : Δ.Φ
            let

              -- Δ.Φ ⊢ u = Con con ConOSystem $ teleElims fsT boundary : R δ
              u :: Term
u = ConHead -> ConInfo -> [Elim' Term] -> Term
Con ConHead
con ConInfo
ConOSystem forall a b. (a -> b) -> a -> b
$ forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary' (a, a) -> [Elim' a]
teleElims Tele (Dom Type)
fsT Boundary
boundary
              -- Γ ⊢ u
              the_u :: Term
the_u = forall a. Nat -> Substitution' a -> Substitution' a
liftS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
fsT) Substitution
d0 forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Term
u
                where
                  -- δ : Δ^I, φ : F ⊢ [δ 0] : Δ
                  d0 :: Substitution
                  d0 :: Substitution
d0 = forall a. Nat -> Substitution' a -> Substitution' a
wkS Nat
1 -- Δ^I, φ : F ⊢ Δ
                             (forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Term
iz forall a. Substitution' a
IdS forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params) -- Δ^I ⊢ Δ
                                       -- Δ^I , i:I ⊢ sub params : Δ
              the_phi :: Term
the_phi = forall a. Subst a => Nat -> a -> a
raise (forall a. Sized a => a -> Nat
size Tele (Dom Type)
fsT) forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
0
              -- Γ ⊢ sigma : Δ.Φ
              -- sigma = [δ i1,bodies]
              -- sigma = theSub[i1]
              sigma :: Substitution
sigma = forall a. [a] -> [a]
reverse [Term]
bodies forall a. DeBruijn a => [a] -> Substitution' a -> Substitution' a
++# Substitution
d1
               where
                -- δ i1
                d1 :: Substitution
                d1 :: Substitution
d1 = forall a. Nat -> Substitution' a -> Substitution' a
wkS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
params) -- Γ ⊢ Δ
                       (forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Term
io forall a. Substitution' a
IdS forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params) -- Δ^I ⊢ Δ
                                 -- Δ^I , i:I ⊢ sub params : Δ

              -- Δ.Φ ⊢ [ (i=0) -> t_i; (i=1) -> u_i ] : R δ
              bs :: Boundary
bs = Tele (Dom Type) -> Boundary -> Boundary
fullBoundary Tele (Dom Type)
fsT Boundary
boundary
              -- ψ = sigma `applySubst` map (\ i → i ∨ ~ i) . map fst $ boundary
              -- Γ ⊢ t : R (δ i1)
              w1' :: Term
w1' = ConHead -> ConInfo -> [Elim' Term] -> Term
Con ConHead
con ConInfo
ConOSystem forall a b. (a -> b) -> a -> b
$ Substitution
sigma forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary' (a, a) -> [Elim' a]
teleElims Tele (Dom Type)
fsT Boundary
boundary
              -- (δ, φ, u0) : Γ ⊢
              -- w1 = hcomp (\ i → R (δ i1))
              --            (\ i → [ ψ ↦ α (~ i), φ ↦ u0])
              --            w1'
              imax :: NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
imax NamesT (TCMT IO) Term
x NamesT (TCMT IO) Term
y = forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
tIMax forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
x forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
y
              ineg :: NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
ineg NamesT (TCMT IO) Term
r = forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
tINeg forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
r
              lvlOfType :: Type -> Term
lvlOfType = (\ (Type Level
l) -> Level -> Term
Level Level
l) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. LensSort a => a -> Sort' Term
getSort
              pOr :: NamesT (TCMT IO) Type
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
pOr NamesT (TCMT IO) Type
la NamesT (TCMT IO) Term
i NamesT (TCMT IO) Term
j NamesT (TCMT IO) Term
u0 NamesT (TCMT IO) Term
u1 = forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
tPOr forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> (Type -> Term
lvlOfType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) Type
la) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
i forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
j
                                           forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" (\ NamesT (TCMT IO) Term
_ -> forall t a. Type'' t a -> a
unEl forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) Type
la) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
u0 forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
u1
              absAp :: m (Abs r) -> m (SubstArg r) -> m r
absAp m (Abs r)
x m (SubstArg r)
y = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 forall a. Subst a => Abs a -> SubstArg a -> a
absApp m (Abs r)
x m (SubstArg r)
y

              mkFace :: (Term, (Term, Term)) -> TCMT IO (Abs (Term, Term))
mkFace (Term
r,(Term
u1,Term
u2)) = forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
                -- Γ
                NamesT (TCMT IO) Term
phi <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
the_phi  -- (δ , φ , us) ⊢ φ
                -- Γ ⊢ ty = Abs i. R (δ i)
                NamesT (TCMT IO) (Abs Type)
ty <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open (forall a. ArgName -> a -> Abs a
Abs ArgName
"i" forall a b. (a -> b) -> a -> b
$ (forall a. Nat -> Substitution' a -> Substitution' a
liftS Nat
1 (forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
params)) forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params) forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Type
t)

                forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> do
                  -- Γ, i
                  [NamesT (TCMT IO) Term
r,NamesT (TCMT IO) Term
u1,NamesT (TCMT IO) Term
u2] <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
theSub) [Term
r,Term
u1,Term
u2]
                  Term
psi <- NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
imax NamesT (TCMT IO) Term
r (NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
ineg NamesT (TCMT IO) Term
r)
                  let
                    -- Γ, i ⊢ squeeze u = primTrans (\ j -> ty [i := i ∨ j]) (φ ∨ i) u
                    squeeze :: NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
squeeze NamesT (TCMT IO) Term
u = forall (m :: * -> *) a. Monad m => m a -> NamesT m a
cl forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primTrans
                                          forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"j" (\ NamesT (TCMT IO) Term
j -> Type -> Term
lvlOfType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs Type)
ty forall {m :: * -> *} {r}.
(Monad m, Subst r) =>
m (Abs r) -> m (SubstArg r) -> m r
`absAp` (NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
imax forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i NamesT (TCMT IO) Term
j))
                                          forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"j" (\ NamesT (TCMT IO) Term
j -> forall t a. Type'' t a -> a
unEl forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs Type)
ty forall {m :: * -> *} {r}.
(Monad m, Subst r) =>
m (Abs r) -> m (SubstArg r) -> m r
`absAp` (NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
imax forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i NamesT (TCMT IO) Term
j))
                                          forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT (TCMT IO) Term
phi NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
`imax` forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i)
                                          forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
u
                  Term
alpha <- NamesT (TCMT IO) Type
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
pOr (NamesT (TCMT IO) (Abs Type)
ty forall {m :: * -> *} {r}.
(Monad m, Subst r) =>
m (Abs r) -> m (SubstArg r) -> m r
`absAp` forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i)
                              (NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
ineg NamesT (TCMT IO) Term
r)
                              NamesT (TCMT IO) Term
r
                           (forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
squeeze NamesT (TCMT IO) Term
u1) (forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
squeeze NamesT (TCMT IO) Term
u2)
                  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ (Term
psi, Term
alpha)

            -- Γ ⊢ Abs i. [(ψ_n,α_n : [ψ] → R (δ i))]
            [Abs (Term, Term)]
faces <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Term, (Term, Term)) -> TCMT IO (Abs (Term, Term))
mkFace Boundary
bs

            forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
                -- Γ
                NamesT (TCMT IO) Term
w1' <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
w1'
                NamesT (TCMT IO) Term
phi <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
the_phi
                NamesT (TCMT IO) Term
u   <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
the_u
                -- R (δ i1)
                NamesT (TCMT IO) Type
ty <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Type
ty
                [(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
faces <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\ Abs (Term, Term)
x -> forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 (,) (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Subst a => Impossible -> Abs a -> a
noabsApp forall a. HasCallStack => a
__IMPOSSIBLE__ forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst Abs (Term, Term)
x) (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> b
snd Abs (Term, Term)
x)) [Abs (Term, Term)]
faces
                let
                  thePsi :: NamesT (TCMT IO) Term
thePsi = forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
imax (forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst [(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
faces)
                  hcomp :: NamesT (TCMT IO) Type
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
hcomp NamesT (TCMT IO) Type
ty NamesT (TCMT IO) Term
phi NamesT (TCMT IO) Term
sys NamesT (TCMT IO) Term
a0 = forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
tHComp forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> (Type -> Term
lvlOfType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) Type
ty)
                                                    forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> (forall t a. Type'' t a -> a
unEl forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) Type
ty)
                                                    forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> NamesT (TCMT IO) Term
phi
                                                    forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
sys
                                                    forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
a0
                let
                 sys :: NamesT (TCMT IO) Term
sys = forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
i -> do
                  let
                    recurse :: [(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
-> NamesT (TCMT IO) Term
recurse [(NamesT (TCMT IO) Term
psi,NamesT (TCMT IO) (Abs Term)
alpha)] = NamesT (TCMT IO) (Abs Term)
alpha forall {m :: * -> *} {r}.
(Monad m, Subst r) =>
m (Abs r) -> m (SubstArg r) -> m r
`absAp` (NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
ineg NamesT (TCMT IO) Term
i)
                    recurse ((NamesT (TCMT IO) Term
psi,NamesT (TCMT IO) (Abs Term)
alpha):[(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
xs) = NamesT (TCMT IO) Type
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
pOr NamesT (TCMT IO) Type
ty
                                                   NamesT (TCMT IO) Term
psi  NamesT (TCMT IO) Term
theOr
                                                   (NamesT (TCMT IO) (Abs Term)
alpha forall {m :: * -> *} {r}.
(Monad m, Subst r) =>
m (Abs r) -> m (SubstArg r) -> m r
`absAp` (NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
ineg NamesT (TCMT IO) Term
i)) ([(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
-> NamesT (TCMT IO) Term
recurse [(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
xs)
                      where
                        theOr :: NamesT (TCMT IO) Term
theOr = forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
imax (forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst [(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
xs)
                    recurse [] = forall a. HasCallStack => a
__IMPOSSIBLE__
                    sys_alpha :: NamesT (TCMT IO) Term
sys_alpha = [(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
-> NamesT (TCMT IO) Term
recurse [(NamesT (TCMT IO) Term, NamesT (TCMT IO) (Abs Term))]
faces
                  NamesT (TCMT IO) Type
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
pOr NamesT (TCMT IO) Type
ty
                                                   NamesT (TCMT IO) Term
thePsi    NamesT (TCMT IO) Term
phi
                                                   NamesT (TCMT IO) Term
sys_alpha (forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> NamesT (TCMT IO) Term
u)
                NamesT (TCMT IO) Type
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
hcomp NamesT (TCMT IO) Type
ty (NamesT (TCMT IO) Term
thePsi NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term -> NamesT (TCMT IO) Term
`imax` NamesT (TCMT IO) Term
phi) NamesT (TCMT IO) Term
sys NamesT (TCMT IO) Term
w1'


      let

        -- δ : Δ^I, φ : F ⊢ [δ 0] : Δ
        d0 :: Substitution
        d0 :: Substitution
d0 = forall a. Nat -> Substitution' a -> Substitution' a
wkS Nat
1 -- Δ^I, φ : F ⊢ Δ
                       (forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Term
iz forall a. Substitution' a
IdS forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params) -- Δ^I ⊢ Δ
                                 -- Δ^I , i:I ⊢ sub params : Δ

        -- Δ.Φ ⊢ u = Con con ConOSystem $ teleElims fsT boundary : R δ
--        u = Con con ConOSystem $ teleElims fsT boundary
        up :: Pattern' DBPatVar
up = forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
con (PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo PatternInfo
defaultPatternInfo Bool
False Bool
False forall a. Maybe a
Nothing Bool
False) forall a b. (a -> b) -> a -> b
$
               forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary -> [NamedArg (Pattern' a)]
telePatterns (Substitution
d0 forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Tele (Dom Type)
fsT) (forall a. Nat -> Substitution' a -> Substitution' a
liftS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
fsT) Substitution
d0 forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Boundary
boundary)
--        gamma' = telFromList $ take (size gamma - 1) $ telToList gamma

        -- (δ , φ , fs : Φ[d0]) ⊢ u[liftS Φ d0]
        -- (δ , φ, u) : Γ ⊢ body
        -- Δ ⊢ Φ = fsT
        -- (δ , φ , fs : Φ[d0]) ⊢ u[liftS Φ d0] `consS` raiseS Φ : Γ
--        (tel',theta) = (abstract gamma' (d0 `applySubst` fsT), (liftS (size fsT) d0 `applySubst` u) `consS` raiseS (size fsT))

      let
        pats :: [Arg (Named_ (Pattern' DBPatVar))]
pats | forall a. Null a => a -> Bool
null Boundary
boundary = forall a t. DeBruijn a => Tele (Dom t) -> [NamedArg a]
teleNamedArgs Tele (Dom Type)
gamma
             | Bool
otherwise     = forall a. Nat -> [a] -> [a]
take (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
fsT) (forall a t. DeBruijn a => Tele (Dom t) -> [NamedArg a]
teleNamedArgs Tele (Dom Type)
gamma) forall a. [a] -> [a] -> [a]
++ [forall e. e -> Arg e
argN forall a b. (a -> b) -> a -> b
$ forall a name. a -> Named name a
unnamed forall a b. (a -> b) -> a -> b
$ Pattern' DBPatVar
up]
        clause :: Clause
clause = Clause
          { clauseTel :: Tele (Dom Type)
clauseTel         = Tele (Dom Type)
gamma
          , clauseType :: Maybe (Arg Type)
clauseType        = forall a. a -> Maybe a
Just forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. e -> Arg e
argN forall a b. (a -> b) -> a -> b
$ Type
ty
          , namedClausePats :: [Arg (Named_ (Pattern' DBPatVar))]
namedClausePats   = [Arg (Named_ (Pattern' DBPatVar))]
pats
          , clauseFullRange :: Range
clauseFullRange   = forall a. Range' a
noRange
          , clauseLHSRange :: Range
clauseLHSRange    = forall a. Range' a
noRange
          , clauseCatchall :: Bool
clauseCatchall    = Bool
False
          , clauseBody :: Maybe Term
clauseBody        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Term
body
          , clauseExact :: Maybe Bool
clauseExact       = forall a. a -> Maybe a
Just Bool
True
          , clauseRecursive :: Maybe Bool
clauseRecursive   = forall a. Maybe a
Nothing
              -- Andreas 2020-02-06 TODO
              -- Or: Just False;  is it known to be non-recursive?
          , clauseUnreachable :: Maybe Bool
clauseUnreachable = forall a. a -> Maybe a
Just Bool
False
          , clauseEllipsis :: ExpandedEllipsis
clauseEllipsis    = ExpandedEllipsis
NoEllipsis
          , clauseWhereModule :: Maybe ModuleName
clauseWhereModule = forall a. Maybe a
Nothing
          }
        cs :: [Clause]
cs = [Clause
clause]
      forall (m :: * -> *).
(MonadConstraint m, MonadTCState m) =>
QName -> [Clause] -> m ()
addClauses QName
theName [Clause]
cs
      (Maybe SplitTree
mst, Bool
_, CompiledClauses
cc) <- forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (Maybe (QName, Type)
-> [Clause] -> TCM (Maybe SplitTree, Bool, CompiledClauses)
compileClauses forall a. Maybe a
Nothing [Clause]
cs)
      forall (m :: * -> *) a. Monad m => Maybe a -> (a -> m ()) -> m ()
whenJust Maybe SplitTree
mst forall a b. (a -> b) -> a -> b
$ QName -> SplitTree -> TCM ()
setSplitTree QName
theName
      QName -> CompiledClauses -> TCM ()
setCompiledClauses QName
theName CompiledClauses
cc
      forall (m :: * -> *). MonadTCState m => QName -> Bool -> m ()
setTerminates QName
theName Bool
True
      forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just QName
theName

    whenDefined :: Bool -> t ArgName -> m (Maybe a) -> m (Maybe a)
whenDefined Bool
False t ArgName
_ m (Maybe a)
_ = forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
    whenDefined Bool
True t ArgName
xs m (Maybe a)
m = do
      t (Maybe Term)
xs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *). HasBuiltins m => ArgName -> m (Maybe Term)
getTerm' t ArgName
xs
      if forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all forall a. Maybe a -> Bool
isJust t (Maybe Term)
xs then m (Maybe a)
m else forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing

-- Andrea: TODO handle Irrelevant fields somehow.
-- | Define projections for non-indexed data types (families don't work yet).
--   Of course, these projections are partial functions in general.
--
--   Precondition: we are in the context Γ of the data type parameters.
defineProjections :: QName      -- datatype name
                  -> ConHead
                  -> Telescope  -- Γ parameters
                  -> [QName]    -- projection names
                  -> Telescope  -- Γ ⊢ Φ field types
                  -> Type       -- Γ ⊢ T target type
                  -> TCM ()
defineProjections :: QName
-> ConHead
-> Tele (Dom Type)
-> [QName]
-> Tele (Dom Type)
-> Type
-> TCM ()
defineProjections QName
dataName ConHead
con Tele (Dom Type)
params [QName]
names Tele (Dom Type)
fsT Type
t = do
  let
    -- Γ , (d : T) ⊢ Φ[n ↦ proj n d]
    fieldTypes :: [Dom Type]
fieldTypes = ([ QName -> [Elim' Term] -> Term
Def QName
f [] forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
0] | QName
f <- forall a. [a] -> [a]
reverse [QName]
names ] forall a. DeBruijn a => [a] -> Substitution' a -> Substitution' a
++# forall a. Nat -> Substitution' a
raiseS Nat
1) forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst`
                    forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel Tele (Dom Type)
fsT  -- Γ , Φ ⊢ Φ
    -- ⊢ Γ , (d : T)
    projTel :: Tele (Dom Type)
projTel    = forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
params (forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (forall a. a -> Dom a
defaultDom Type
t) (forall a. ArgName -> a -> Abs a
Abs ArgName
"d" forall a. Tele a
EmptyTel))
    np :: Nat
np         = forall a. Sized a => a -> Nat
size Tele (Dom Type)
params

  forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ (forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 (forall a. Integral a => a -> [a]
downFrom (forall a. Sized a => a -> Nat
size [Dom Type]
fieldTypes)) [QName]
names [Dom Type]
fieldTypes) forall a b. (a -> b) -> a -> b
$ \ (Nat
i,QName
projName,Dom Type
ty) -> do
    let
      projType :: Dom Type
projType = forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
projTel forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom Type
ty
      cpi :: ConPatternInfo
cpi    = PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo PatternInfo
defaultPatternInfo Bool
False Bool
False (forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall e. e -> Arg e
argN forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> a -> a
raise (forall a. Sized a => a -> Nat
size Tele (Dom Type)
fsT) Type
t) Bool
False
      conp :: Arg (Named_ (Pattern' DBPatVar))
conp   = forall a. a -> NamedArg a
defaultNamedArg forall a b. (a -> b) -> a -> b
$ forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
con ConPatternInfo
cpi forall a b. (a -> b) -> a -> b
$ forall a t. DeBruijn a => Tele (Dom t) -> [NamedArg a]
teleNamedArgs Tele (Dom Type)
fsT
      sigma :: Substitution
sigma  = ConHead -> ConInfo -> [Elim' Term] -> Term
Con ConHead
con ConInfo
ConOSystem (forall a b. (a -> b) -> [a] -> [b]
map forall a. Arg a -> Elim' a
Apply forall a b. (a -> b) -> a -> b
$ forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
fsT) forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
`consS` forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
fsT)
      clause :: Clause
clause = forall a. Null a => a
empty
          { clauseTel :: Tele (Dom Type)
clauseTel         = forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
params Tele (Dom Type)
fsT
          , namedClausePats :: [Arg (Named_ (Pattern' DBPatVar))]
namedClausePats   = [ Arg (Named_ (Pattern' DBPatVar))
conp ]
          , clauseBody :: Maybe Term
clauseBody        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
i
          , clauseType :: Maybe (Arg Type)
clauseType        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall e. e -> Arg e
argN forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution
sigma forall a b. (a -> b) -> a -> b
$ forall t e. Dom' t e -> e
unDom Dom Type
ty
          , clauseRecursive :: Maybe Bool
clauseRecursive   = forall a. a -> Maybe a
Just Bool
False  -- non-recursive
          , clauseUnreachable :: Maybe Bool
clauseUnreachable = forall a. a -> Maybe a
Just Bool
False
          }

    forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.proj" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
      [ TCMT IO Doc
"proj" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (Nat
i,Dom Type
ty)
      , forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
projName, TCMT IO Doc
":", forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Dom Type
projType ]
      ]

    -- Andreas, 2020-02-14, issue #4437
    -- Define data projections as projection-like from the start.
    forall a. TCM a -> TCM a
noMutualBlock forall a b. (a -> b) -> a -> b
$ do
      let cs :: [Clause]
cs = [ Clause
clause ]
      (Maybe SplitTree
mst, Bool
_, CompiledClauses
cc) <- Maybe (QName, Type)
-> [Clause] -> TCM (Maybe SplitTree, Bool, CompiledClauses)
compileClauses forall a. Maybe a
Nothing [Clause]
cs
      let fun :: FunctionData
fun = FunctionData
emptyFunctionData
                { _funClauses :: [Clause]
_funClauses    = [Clause]
cs
                , _funCompiled :: Maybe CompiledClauses
_funCompiled   = forall a. a -> Maybe a
Just CompiledClauses
cc
                , _funSplitTree :: Maybe SplitTree
_funSplitTree  = Maybe SplitTree
mst
                , _funProjection :: Either ProjectionLikenessMissing Projection
_funProjection = forall a b. b -> Either a b
Right Projection
                    { projProper :: Maybe QName
projProper   = forall a. Maybe a
Nothing
                    , projOrig :: QName
projOrig     = QName
projName
                    , projFromType :: Arg QName
projFromType = forall e. ArgInfo -> e -> Arg e
Arg (forall a. LensArgInfo a => a -> ArgInfo
getArgInfo Dom Type
ty) QName
dataName
                    , projIndex :: Nat
projIndex    = Nat
np forall a. Num a => a -> a -> a
+ Nat
1
                    , projLams :: ProjLams
projLams     = [Arg ArgName] -> ProjLams
ProjLams forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall t a. Dom' t a -> Arg a
argFromDom forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> a
fst) forall a b. (a -> b) -> a -> b
$ forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom Type)
projTel
                    }
                , _funMutual :: Maybe [QName]
_funMutual     = forall a. a -> Maybe a
Just []
                , _funTerminates :: Maybe Bool
_funTerminates = forall a. a -> Maybe a
Just Bool
True
                }
      Language
lang <- forall (m :: * -> *). HasOptions m => m Language
getLanguage
      forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ QName -> Definition -> TCM ()
addConstant QName
projName forall a b. (a -> b) -> a -> b
$
        (ArgInfo -> QName -> Type -> Language -> Defn -> Definition
defaultDefn ArgInfo
defaultArgInfo QName
projName (forall t e. Dom' t e -> e
unDom Dom Type
projType) Language
lang forall a b. (a -> b) -> a -> b
$ FunctionData -> Defn
FunctionDefn FunctionData
fun)
          { defNoCompilation :: Bool
defNoCompilation  = Bool
True
          , defArgOccurrences :: [Occurrence]
defArgOccurrences = [Occurrence
StrictPos]
          }

      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.proj.fun" Nat
60 forall a b. (a -> b) -> a -> b
$ forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCMT IO Doc
"proj" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Nat
i
        , forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty FunctionData
fun
        ]


freshAbstractQName'_ :: String -> TCM QName
freshAbstractQName'_ :: ArgName -> TCMT IO QName
freshAbstractQName'_ = Fixity' -> Name -> TCMT IO QName
freshAbstractQName Fixity'
noFixity' forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> Name
C.simpleName


-- | Defines and returns the name of the `transpIx` function.
defineTranspIx :: QName  -- ^ datatype name
               -> TCM (Maybe QName)
defineTranspIx :: QName -> TCMT IO (Maybe QName)
defineTranspIx QName
d = do
  Definition
def <- forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
  case Definition -> Defn
theDef Definition
def of
    Datatype { dataPars :: Defn -> Nat
dataPars = Nat
npars
             , dataIxs :: Defn -> Nat
dataIxs = Nat
nixs
             , dataSort :: Defn -> Sort' Term
dataSort = Sort' Term
s}
     -> do
      let t :: Type
t = Definition -> Type
defType Definition
def
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.ixs" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCMT IO Doc
"name :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
        , TCMT IO Doc
"type :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t
        , TCMT IO Doc
"npars:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Nat
npars
        , TCMT IO Doc
"nixs :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Nat
nixs
        ]
      if Nat
nixs forall a. Eq a => a -> a -> Bool
== Nat
0 then forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing else do
      QName
trIx <- ArgName -> TCMT IO QName
freshAbstractQName'_ forall a b. (a -> b) -> a -> b
$ ArgName
"transpX-" forall a. [a] -> [a] -> [a]
++ forall a. Pretty a => a -> ArgName
P.prettyShow (QName -> Name
A.qnameName QName
d)
      TelV Tele (Dom Type)
params Type
t' <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> Type -> m (TelV Type)
telViewUpTo Nat
npars Type
t
      TelV Tele (Dom Type)
ixs    Type
dT <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> Type -> m (TelV Type)
telViewUpTo Nat
nixs Type
t'
      -- params     ⊢ s
      -- params     ⊢ ixs
      -- params.ixs ⊢ dT
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.ixs" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCMT IO Doc
"params :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Tele (Dom Type)
params
        , TCMT IO Doc
"ixs    :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> (forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
params forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Tele (Dom Type)
ixs)
        , TCMT IO Doc
"dT     :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> (forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
params forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
ixs forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
dT)
        ]
      -- theType <- abstract params <$> undefined
      Type
interval <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType
      let deltaI :: Tele (Dom Type)
deltaI = Type -> Tele (Dom Type) -> Tele (Dom Type)
expTelescope Type
interval Tele (Dom Type)
ixs
      Term
iz <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero
      io :: Term
io@(Con ConHead
c ConInfo
_ [Elim' Term]
_) <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIOne
      Term
imin <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primIMin"
      Term
imax <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primIMax"
      Term
ineg <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primINeg"
      Term
transp <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
builtinTrans
      Term
por <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primPOr"
      Term
one <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primItIsOne
      -- reportSDoc "trans.rec" 20 $ text $ show params
      -- reportSDoc "trans.rec" 20 $ text $ show deltaI
      -- reportSDoc "trans.rec" 10 $ text $ show fsT

      -- let thePrefix = "transp-"
      -- theName <- freshAbstractQName'_ $ thePrefix ++ P.prettyShow (A.qnameName name)

      -- reportSLn "trans.rec" 5 $ ("Generated name: " ++ show theName ++ " " ++ showQNameId theName)

      -- record type in 'exponentiated' context
      -- (params : Γ)(ixs : Δ^I), i : I |- T[params, ixs i]
      let rect' :: Type
rect' = forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
ixs forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` forall t a. Sort' t -> a -> Type'' t a
El (forall a. Subst a => Nat -> a -> a
raise (forall a. Sized a => a -> Nat
size Tele (Dom Type)
ixs) Sort' Term
s) (QName -> [Elim' Term] -> Term
Def QName
d (forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary' (a, a) -> [Elim' a]
teleElims (forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
params Tele (Dom Type)
ixs) []))
      forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
params forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.ixs" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"deltaI:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Tele (Dom Type)
deltaI
      forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
params forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
deltaI forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (ArgName
"i"::String, forall a. a -> Dom a
defaultDom Type
interval) forall a b. (a -> b) -> a -> b
$ do
        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.ixs" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"rect':" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty (forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
ixs)
        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.ixs" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"rect':" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Type
rect'

      Type
theType <- (forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract (forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Tele (Dom Type)
params) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>) forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
deltaI forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
                  NamesT (TCMT IO) (Abs Type)
rect' <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open (forall a. [ArgName] -> NamesT Fail a -> a
runNames [] forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT Fail b
x -> let NamesT Fail Term
_ = forall b. (Subst b, DeBruijn b) => NamesT Fail b
x forall a. a -> a -> a
`asTypeOf` forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall a. HasCallStack => a
undefined :: Term) in
                                                                 forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
rect')
                  forall (m :: * -> *).
(MonadFail m, MonadAddContext m, MonadDebug m) =>
ArgName
-> NamesT m Type
-> (NamesT m Term -> NamesT m Type)
-> NamesT m Type
nPi' ArgName
"phi" (forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType) forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
phi ->
                   (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs Type)
rect' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz) forall (m :: * -> *). Applicative m => m Type -> m Type -> m Type
--> (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs Type)
rect' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io)

      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.ixs" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"transpIx:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
theType
      let
        ctel :: Tele (Dom Type)
ctel = forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
params forall a b. (a -> b) -> a -> b
$ forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
deltaI forall a b. (a -> b) -> a -> b
$ forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (forall a. a -> Dom a
defaultDom forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> SubstArg a -> a -> a
subst Nat
0 Term
iz Type
rect') (forall a. ArgName -> a -> Abs a
Abs ArgName
"t" forall a. Tele a
EmptyTel)
        ps :: [Arg (Named_ (Pattern' DBPatVar))]
ps = forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary -> [NamedArg (Pattern' a)]
telePatterns Tele (Dom Type)
ctel []
        cpi :: ConPatternInfo
cpi = ConPatternInfo
noConPatternInfo { conPType :: Maybe (Arg Type)
conPType = forall a. a -> Maybe a
Just (forall e. e -> Arg e
defaultArg Type
interval) }
        pat :: NamedArg (Pattern' DBPatVar)
        pat :: Arg (Named_ (Pattern' DBPatVar))
pat = forall a. a -> NamedArg a
defaultNamedArg forall a b. (a -> b) -> a -> b
$ forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
cpi []
        clause :: Clause
clause = forall a. Null a => a
empty
          { clauseTel :: Tele (Dom Type)
clauseTel         = Tele (Dom Type)
ctel
          , namedClausePats :: [Arg (Named_ (Pattern' DBPatVar))]
namedClausePats   = forall a. [a] -> [a]
init [Arg (Named_ (Pattern' DBPatVar))]
ps forall a. [a] -> [a] -> [a]
++ [Arg (Named_ (Pattern' DBPatVar))
pat, forall a. [a] -> a
last [Arg (Named_ (Pattern' DBPatVar))]
ps]

          , clauseBody :: Maybe Term
clauseBody        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
0
          , clauseType :: Maybe (Arg Type)
clauseType        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall e. e -> Arg e
defaultArg forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> a -> a
raise Nat
1 forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> SubstArg a -> a -> a
subst Nat
0 Term
io Type
rect'
          , clauseRecursive :: Maybe Bool
clauseRecursive   = forall a. a -> Maybe a
Just Bool
False  -- non-recursive
          , clauseUnreachable :: Maybe Bool
clauseUnreachable = forall a. a -> Maybe a
Just Bool
False
          }

      forall a. TCM a -> TCM a
noMutualBlock forall a b. (a -> b) -> a -> b
$ do
        let cs :: [Clause]
cs = [ Clause
clause ]
--        we do not compile clauses as that leads to throwing missing clauses errors.
--        (mst, _, cc) <- compileClauses Nothing cs
        let fun :: FunctionData
fun = FunctionData
emptyFunctionData
                  { _funClauses :: [Clause]
_funClauses    = [Clause]
cs
               --   , _funCompiled   = Just cc
               --   , _funSplitTree  = mst
                  , _funProjection :: Either ProjectionLikenessMissing Projection
_funProjection = forall a b. a -> Either a b
Left ProjectionLikenessMissing
MaybeProjection
                  , _funMutual :: Maybe [QName]
_funMutual     = forall a. a -> Maybe a
Just []
                  , _funTerminates :: Maybe Bool
_funTerminates = forall a. a -> Maybe a
Just Bool
True
                  , _funIsKanOp :: Maybe QName
_funIsKanOp    = forall a. a -> Maybe a
Just QName
d
                  }
        forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ do
         forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.transpx.type" Nat
15 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
           [ TCMT IO Doc
"type of" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
trIx forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
":"
           , forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
theType
           ]

         QName -> Definition -> TCM ()
addConstant QName
trIx forall a b. (a -> b) -> a -> b
$
          (ArgInfo -> QName -> Type -> Language -> Defn -> Definition
defaultDefn ArgInfo
defaultArgInfo QName
trIx Type
theType (Cubical -> Language
Cubical Cubical
CErased) forall a b. (a -> b) -> a -> b
$ FunctionData -> Defn
FunctionDefn FunctionData
fun)
            { defNoCompilation :: Bool
defNoCompilation  = Bool
True
            }

        -- reportSDoc "tc.data.proj.fun" 60 $ inTopContext $ vcat
        --   [ "proj" <+> prettyTCM i
        --   , nest 2 $ pretty fun
        --   ]
      -- addContext ctel $ do
      --   let es = teleElims ctel []
      --   r <- reduce $ Def trIx es
      --   reportSDoc "tc.data.ixs" 20 $ "reducedx:" <+> prettyTCM r
      --   r <- reduce $ Def trIx (init es ++ [Apply $ argN io, last es])
      --   reportSDoc "tc.data.ixs" 20 $ "reduced1:" <+> prettyTCM r
      forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just QName
trIx
    Defn
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__
  where

    -- Γ, Δ^I, i : I |- sub (Γ ⊢ Δ) : Γ, Δ
    sub :: a -> Substitution
sub a
tel = Nat -> Substitution
expS forall a b. (a -> b) -> a -> b
$ forall a. Sized a => a -> Nat
size a
tel


defineTranspFun :: QName -- ^ datatype
                -> Maybe QName -- ^ transpX "constructor"
                -> [QName]     -- ^ constructor names
                -> [QName]     -- ^ path cons
                -> TCM (Maybe QName) -- transp function for the datatype.
defineTranspFun :: QName -> Maybe QName -> [QName] -> [QName] -> TCMT IO (Maybe QName)
defineTranspFun QName
d Maybe QName
mtrX [QName]
cons [QName]
pathCons = do
  Definition
def <- forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
  case Definition -> Defn
theDef Definition
def of
    Datatype { dataPars :: Defn -> Nat
dataPars = Nat
npars
             , dataIxs :: Defn -> Nat
dataIxs = Nat
nixs
             , dataSort :: Defn -> Sort' Term
dataSort = s :: Sort' Term
s@(Type Level
_)
--             , dataCons = cons -- not there yet
             }
     -> do
      let t :: Type
t = Definition -> Type
defType Definition
def
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
vcat
        [ TCMT IO Doc
"name :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
d
        , TCMT IO Doc
"type :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t
        , TCMT IO Doc
"npars:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Nat
npars
        , TCMT IO Doc
"nixs :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Nat
nixs
        ]
      QName
trD <- ArgName -> TCMT IO QName
freshAbstractQName'_ forall a b. (a -> b) -> a -> b
$ ArgName
"transp" forall a. [a] -> [a] -> [a]
++ forall a. Pretty a => a -> ArgName
P.prettyShow (QName -> Name
A.qnameName QName
d)
      TelV Tele (Dom Type)
params Type
t' <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> Type -> m (TelV Type)
telViewUpTo Nat
npars Type
t
      TelV Tele (Dom Type)
ixs    Type
dT <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> Type -> m (TelV Type)
telViewUpTo Nat
nixs Type
t'

      let tel :: Tele (Dom Type)
tel = forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
params Tele (Dom Type)
ixs
      Maybe (Tele (Dom LType))
mixs <- forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *). MonadReduce m => Type -> m (Maybe LType)
toLType)) Tele (Dom Type)
ixs
      forall a b. Maybe a -> b -> (a -> b) -> b
caseMaybe Maybe (Tele (Dom LType))
mixs (forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing) forall a b. (a -> b) -> a -> b
$ \ Tele (Dom LType)
_ -> do

      io :: Term
io@(Con ConHead
io_c ConInfo
_ []) <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIOne
      Term
iz <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero

      Type
interval <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType
      let telI :: Tele (Dom Type)
telI = Type -> Tele (Dom Type) -> Tele (Dom Type)
expTelescope Type
interval Tele (Dom Type)
tel
          sigma :: Substitution
sigma = forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
tel
          dTs :: Type
dTs = (Substitution
sigma forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` forall t a. Sort' t -> a -> Type'' t a
El Sort' Term
s (QName -> [Elim' Term] -> Term
Def QName
d forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a. Arg a -> Elim' a
Apply forall a b. (a -> b) -> a -> b
$ forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
tel))

      Type
theType <- (forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
telI forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
                  NamesT (TCMT IO) (Abs Type)
dT <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. ArgName -> a -> Abs a
Abs ArgName
"i" forall a b. (a -> b) -> a -> b
$ Type
dTs
                  forall (m :: * -> *).
(MonadFail m, MonadAddContext m, MonadDebug m) =>
ArgName
-> NamesT m Type
-> (NamesT m Term -> NamesT m Type)
-> NamesT m Type
nPi' ArgName
"phi" forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
phi ->
                   (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs Type)
dT forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz) forall (m :: * -> *). Applicative m => m Type -> m Type -> m Type
--> (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs Type)
dT forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io)


      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"transpD:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
theType


      forall a. TCM a -> TCM a
noMutualBlock forall a b. (a -> b) -> a -> b
$ do
        forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ QName -> Definition -> TCM ()
addConstant QName
trD forall a b. (a -> b) -> a -> b
$
          (ArgInfo -> QName -> Type -> Language -> Defn -> Definition
defaultDefn ArgInfo
defaultArgInfo QName
trD Type
theType (Cubical -> Language
Cubical Cubical
CErased) Defn
emptyFunction)
        let
          ctel :: Tele (Dom Type)
ctel = forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
telI forall a b. (a -> b) -> a -> b
$ forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (forall a. a -> Dom a
defaultDom forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> SubstArg a -> a -> a
subst Nat
0 Term
iz Type
dTs) (forall a. ArgName -> a -> Abs a
Abs ArgName
"t" forall a. Tele a
EmptyTel)
          ps :: [Arg (Named_ (Pattern' DBPatVar))]
ps = forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary -> [NamedArg (Pattern' a)]
telePatterns Tele (Dom Type)
ctel []
          cpi :: ConPatternInfo
cpi = ConPatternInfo
noConPatternInfo { conPType :: Maybe (Arg Type)
conPType = forall a. a -> Maybe a
Just (forall e. e -> Arg e
defaultArg Type
interval)
                                 , conPFallThrough :: Bool
conPFallThrough = Bool
True
                                 }
          pat :: NamedArg (Pattern' DBPatVar)
          pat :: Arg (Named_ (Pattern' DBPatVar))
pat = forall a. a -> NamedArg a
defaultNamedArg forall a b. (a -> b) -> a -> b
$ forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
io_c ConPatternInfo
cpi []
          clause :: Clause
clause = forall a. Null a => a
empty
            { clauseTel :: Tele (Dom Type)
clauseTel         = Tele (Dom Type)
ctel
            , namedClausePats :: [Arg (Named_ (Pattern' DBPatVar))]
namedClausePats   = forall a. [a] -> [a]
init [Arg (Named_ (Pattern' DBPatVar))]
ps forall a. [a] -> [a] -> [a]
++ [Arg (Named_ (Pattern' DBPatVar))
pat, forall a. [a] -> a
last [Arg (Named_ (Pattern' DBPatVar))]
ps]

            , clauseBody :: Maybe Term
clauseBody        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
0
            , clauseType :: Maybe (Arg Type)
clauseType        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall e. e -> Arg e
defaultArg forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> a -> a
raise Nat
1 forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> SubstArg a -> a -> a
subst Nat
0 Term
io Type
dTs
            , clauseRecursive :: Maybe Bool
clauseRecursive   = forall a. a -> Maybe a
Just Bool
False  -- non-recursive
            , clauseUnreachable :: Maybe Bool
clauseUnreachable = forall a. a -> Maybe a
Just Bool
False
            }
        let debugNoTransp :: c -> m ()
debugNoTransp c
cl = forall (m :: * -> *) a c b.
(MonadTCEnv m, ReadTCState m, LensClosure a c) =>
c -> (a -> m b) -> m b
enterClosure c
cl forall a b. (a -> b) -> a -> b
$ \ Abs a
t -> do
              forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp" Nat
20 forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (ArgName
"i" :: String, HasCallStack => Dom Type
__DUMMY_DOM__) forall a b. (a -> b) -> a -> b
$
                TCMT IO Doc
"could not transp" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (forall a. Subst a => Abs a -> a
absBody Abs a
t)
        -- TODO: if no params nor indexes trD phi u0 = u0.
        Either (Closure (Abs Type)) [Clause]
ecs <- forall a. TCM a -> TCM (Either (Closure (Abs Type)) a)
tryTranspError forall a b. (a -> b) -> a -> b
$ (Clause
clauseforall a. a -> [a] -> [a]
:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> QName
-> Bool
-> Maybe QName
-> Nat
-> Nat
-> Tele (Dom Type)
-> Tele (Dom Type)
-> Substitution
-> Type
-> [QName]
-> TCMT IO [Clause]
defineConClause QName
trD (Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ forall a. Null a => a -> Bool
null [QName]
pathCons) Maybe QName
mtrX Nat
npars Nat
nixs Tele (Dom Type)
ixs Tele (Dom Type)
telI Substitution
sigma Type
dTs [QName]
cons
        forall (m :: * -> *) a b c.
Monad m =>
m (Either a b) -> (a -> m c) -> (b -> m c) -> m c
caseEitherM (forall (f :: * -> *) a. Applicative f => a -> f a
pure Either (Closure (Abs Type)) [Clause]
ecs) (\ Closure (Abs Type)
cl -> forall {m :: * -> *} {a} {c}.
(MonadTCEnv m, ReadTCState m, LensClosure (Abs a) c, MonadDebug m,
 PrettyTCM a, Subst a) =>
c -> m ()
debugNoTransp Closure (Abs Type)
cl forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing) forall a b. (a -> b) -> a -> b
$ \ [Clause]
cs -> do
        (Maybe SplitTree
mst, Bool
_, CompiledClauses
cc) <- Maybe (QName, Type)
-> [Clause] -> TCM (Maybe SplitTree, Bool, CompiledClauses)
compileClauses forall a. Maybe a
Nothing [Clause]
cs
        let fun :: FunctionData
fun = FunctionData
emptyFunctionData
                  { _funClauses :: [Clause]
_funClauses    = [Clause]
cs
                  , _funCompiled :: Maybe CompiledClauses
_funCompiled   = forall a. a -> Maybe a
Just CompiledClauses
cc
                  , _funSplitTree :: Maybe SplitTree
_funSplitTree  = Maybe SplitTree
mst
                  , _funProjection :: Either ProjectionLikenessMissing Projection
_funProjection = forall a b. a -> Either a b
Left ProjectionLikenessMissing
MaybeProjection
                  , _funMutual :: Maybe [QName]
_funMutual     = forall a. a -> Maybe a
Just []
                  , _funTerminates :: Maybe Bool
_funTerminates = forall a. a -> Maybe a
Just Bool
True
                  , _funIsKanOp :: Maybe QName
_funIsKanOp    = forall a. a -> Maybe a
Just QName
d
                  }
        forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext forall a b. (a -> b) -> a -> b
$ QName -> Definition -> TCM ()
addConstant QName
trD forall a b. (a -> b) -> a -> b
$
          (ArgInfo -> QName -> Type -> Language -> Defn -> Definition
defaultDefn ArgInfo
defaultArgInfo QName
trD Type
theType (Cubical -> Language
Cubical Cubical
CErased) forall a b. (a -> b) -> a -> b
$ FunctionData -> Defn
FunctionDefn FunctionData
fun)
            { defNoCompilation :: Bool
defNoCompilation  = Bool
True
            }
        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep
          [ TCMT IO Doc
"transp: compiled clauses of " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
trD
          , forall (m :: * -> *). Functor m => Nat -> m Doc -> m Doc
nest Nat
2 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. Pretty a => a -> Doc
P.pretty CompiledClauses
cc
          ]

        forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just QName
trD


    Datatype {} -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
    Defn
_           -> forall a. HasCallStack => a
__IMPOSSIBLE__
  where
    -- Γ, Δ^I, i : I |- sub (Γ ⊢ Δ) : Γ, Δ
    sub :: a -> Substitution
sub a
tel = Nat -> Substitution
expS (forall a. Sized a => a -> Nat
size a
tel)

defineConClause :: QName -- ^ trD
                -> Bool  -- ^ HIT
                -> Maybe QName -- ^ trX
                -> Nat  -- ^ npars = size Δ
                -> Nat  -- ^ nixs = size X
                -> Telescope -- ^ Δ ⊢ X
                -> Telescope -- ^ (Δ.X)^I
                -> Substitution -- ^ (Δ.X)^I, i : I ⊢ σ : Δ.X
                -> Type       -- ^ (Δ.X)^I, i : I ⊢ D[δ i,x i] -- datatype
                -> [QName]      -- ^ Constructors
                -> TCM [Clause]
defineConClause :: QName
-> Bool
-> Maybe QName
-> Nat
-> Nat
-> Tele (Dom Type)
-> Tele (Dom Type)
-> Substitution
-> Type
-> [QName]
-> TCMT IO [Clause]
defineConClause QName
trD' Bool
isHIT Maybe QName
mtrX Nat
npars Nat
nixs Tele (Dom Type)
xTel' Tele (Dom Type)
telI Substitution
sigma Type
dT' [QName]
cnames = do

  forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (forall a. Maybe a -> Bool
isNothing Maybe QName
mtrX forall a. Eq a => a -> a -> Bool
== (Nat
nixs forall a. Eq a => a -> a -> Bool
== Nat
0)) forall a b. (a -> b) -> a -> b
$ forall a. HasCallStack => a
__IMPOSSIBLE__

  Term
io <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIOne
  Term
iz <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero
  Term
tHComp <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primHComp
  Term
tINeg <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primINeg
  let max :: NamesT m Term -> NamesT m Term -> NamesT m Term
max NamesT m Term
i NamesT m Term
j = forall (m :: * -> *) a. Monad m => m a -> NamesT m a
cl forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIMax forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
i forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
j
  let min :: NamesT m Term -> NamesT m Term -> NamesT m Term
min NamesT m Term
i NamesT m Term
j = forall (m :: * -> *) a. Monad m => m a -> NamesT m a
cl forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIMin forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
i forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
j
  let neg :: NamesT m Term -> NamesT m Term
neg NamesT m Term
i = forall (m :: * -> *) a. Monad m => m a -> NamesT m a
cl forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primINeg forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT m Term
i
  let hcomp :: NamesT (TCMT IO) Type
-> [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
hcomp NamesT (TCMT IO) Type
ty [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
sys NamesT (TCMT IO) Term
u0 = do
          Type
ty <- NamesT (TCMT IO) Type
ty
          Just (LEl Level
l Term
ty) <- forall (m :: * -> *). MonadReduce m => Type -> m (Maybe LType)
toLType Type
ty
          NamesT (TCMT IO) Term
l <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ Level -> Term
Level Level
l
          NamesT (TCMT IO) Term
ty <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ Term
ty
          Term
face <- (forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
max (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
sys)
          Term
sys <- forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i'" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
i -> forall (m :: * -> *).
HasBuiltins m =>
NamesT m Term
-> NamesT m Term
-> [(NamesT m Term, NamesT m Term)]
-> NamesT m Term
combineSys NamesT (TCMT IO) Term
l NamesT (TCMT IO) Term
ty [(NamesT (TCMT IO) Term
phi, NamesT (TCMT IO) Term
u forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
i) | (NamesT (TCMT IO) Term
phi,NamesT (TCMT IO) Term
u) <- [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
sys]
          forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
tHComp forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> NamesT (TCMT IO) Term
l forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> NamesT (TCMT IO) Term
ty forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
face forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
sys forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
u0
  Type
interval <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType
  let intervalTel :: ArgName -> Tele (Dom Type)
intervalTel ArgName
nm = forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (forall a. a -> Dom a
defaultDom Type
interval) (forall a. ArgName -> a -> Abs a
Abs ArgName
nm forall a. Tele a
EmptyTel)

  let (Tele (Dom Type)
parI,Tele (Dom Type)
ixsI) = Nat -> Tele (Dom Type) -> (Tele (Dom Type), Tele (Dom Type))
splitTelescopeAt Nat
npars Tele (Dom Type)
telI
  let
    abstract_trD :: MonadFail m => (Vars m -> Vars m -> Vars m -> NamesT m Telescope) -> NamesT m Telescope
    abstract_trD :: forall (m :: * -> *).
MonadFail m =>
(Vars m -> Vars m -> Vars m -> NamesT m (Tele (Dom Type)))
-> NamesT m (Tele (Dom Type))
abstract_trD Vars m -> Vars m -> Vars m -> NamesT m (Tele (Dom Type))
k = do
               NamesT m (AbsN (Tele (Dom Type)))
ixsI <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
parI) Tele (Dom Type)
ixsI
               NamesT m (Tele (Dom Type))
parI <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Tele (Dom Type)
parI
               forall (m :: * -> *) a.
(MonadFail m, Abstract a) =>
NamesT m (Tele (Dom Type)) -> (Vars m -> NamesT m a) -> NamesT m a
abstractN NamesT m (Tele (Dom Type))
parI forall a b. (a -> b) -> a -> b
$ \ Vars m
delta -> do
               forall (m :: * -> *) a.
(MonadFail m, Abstract a) =>
NamesT m (Tele (Dom Type)) -> (Vars m -> NamesT m a) -> NamesT m a
abstractN (NamesT m (AbsN (Tele (Dom Type)))
ixsI forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` Vars m
delta) forall a b. (a -> b) -> a -> b
$ \ Vars m
x -> do
               forall (m :: * -> *) a.
(MonadFail m, Abstract a) =>
NamesT m (Tele (Dom Type)) -> (Vars m -> NamesT m a) -> NamesT m a
abstractN (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ ArgName -> Tele (Dom Type)
intervalTel ArgName
"phi") forall a b. (a -> b) -> a -> b
$ \ Vars m
phi -> do
               Vars m -> Vars m -> Vars m -> NamesT m (Tele (Dom Type))
k Vars m
delta Vars m
x Vars m
phi
    bind_trD :: MonadFail m => (ArgVars m -> ArgVars m -> ArgVars m -> NamesT m b) ->
                NamesT m (AbsN (AbsN (AbsN b)))
    bind_trD :: forall (m :: * -> *) b.
MonadFail m =>
(ArgVars m -> ArgVars m -> ArgVars m -> NamesT m b)
-> NamesT m (AbsN (AbsN (AbsN b)))
bind_trD ArgVars m -> ArgVars m -> ArgVars m -> NamesT m b
k = do
      forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg (Tele (Dom Type) -> [Arg ArgName]
teleArgNames Tele (Dom Type)
parI) forall a b. (a -> b) -> a -> b
$ \ ArgVars m
delta_ps -> do
      forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg (Tele (Dom Type) -> [Arg ArgName]
teleArgNames Tele (Dom Type)
ixsI) forall a b. (a -> b) -> a -> b
$ \ ArgVars m
x_ps -> do
      forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg (Tele (Dom Type) -> [Arg ArgName]
teleArgNames forall a b. (a -> b) -> a -> b
$ ArgName -> Tele (Dom Type)
intervalTel ArgName
"phi") forall a b. (a -> b) -> a -> b
$ \ ArgVars m
phi_ps -> do
      ArgVars m -> ArgVars m -> ArgVars m -> NamesT m b
k ArgVars m
delta_ps ArgVars m
x_ps ArgVars m
phi_ps
  let trD :: NamesT (TCMT IO) (AbsN (AbsN (AbsN Term)))
trD = forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg (Tele (Dom Type) -> [Arg ArgName]
teleArgNames Tele (Dom Type)
parI) forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
delta ->
            forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg (Tele (Dom Type) -> [Arg ArgName]
teleArgNames Tele (Dom Type)
ixsI) forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
x ->
            forall (m :: * -> *) a.
MonadFail m =>
[ArgName] -> (Vars m -> NamesT m a) -> NamesT m (AbsN a)
bindN [ArgName
"phi",ArgName
"u0"]           forall a b. (a -> b) -> a -> b
$ \ [NamesT (TCMT IO) Term
phi,NamesT (TCMT IO) Term
u0] ->
              ((QName -> [Elim' Term] -> Term
Def QName
trD' [] forall t. Apply t => t -> [Arg Term] -> t
`apply`) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence (ArgVars (TCMT IO)
delta forall a. [a] -> [a] -> [a]
++ ArgVars (TCMT IO)
x)) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
phi forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
u0
  -- [Δ] ⊢ X
  let xTel :: NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
xTel = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
parI) Tele (Dom Type)
xTel'
  -- [δ : Δ^I, x : X^I, i : I] ⊢ D (δ i) (x i)
  let dT :: NamesT (TCMT IO) (AbsN Type)
dT = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
parI forall a. [a] -> [a] -> [a]
++ Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
ixsI forall a. [a] -> [a] -> [a]
++ [ArgName
"i"]) Type
dT'

  let hcompComputes :: Bool
hcompComputes = Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ Bool
isHIT Bool -> Bool -> Bool
|| Nat
nixs forall a. Ord a => a -> a -> Bool
> Nat
0
  [Clause]
c_HComp <- if Bool
hcompComputes then forall (m :: * -> *) a. Monad m => a -> m a
return [] else do
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"======================="
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"hcomp"
      QName
qHComp <- forall a. a -> Maybe a -> a
fromMaybe forall a. HasCallStack => a
__IMPOSSIBLE__ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasBuiltins m => ArgName -> m (Maybe QName)
getPrimitiveName' ArgName
builtinHComp
      Type
hcomp_ty <- Definition -> Type
defType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
qHComp
      Tele (Dom Type)
gamma <- forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
               NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
ixsI <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
parI) Tele (Dom Type)
ixsI
               NamesT (TCMT IO) (Tele (Dom Type))
parI <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Tele (Dom Type)
parI
               forall (m :: * -> *).
MonadFail m =>
(Vars m -> Vars m -> Vars m -> NamesT m (Tele (Dom Type)))
-> NamesT m (Tele (Dom Type))
abstract_trD forall a b. (a -> b) -> a -> b
$ \ Vars (TCMT IO)
delta Vars (TCMT IO)
x Vars (TCMT IO)
_ -> do
               Just (LEl Level
l Term
ty) <- forall (m :: * -> *). MonadReduce m => Type -> m (Maybe LType)
toLType forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (NamesT (TCMT IO) (AbsN Type)
dT forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` (Vars (TCMT IO)
delta forall a. [a] -> [a] -> [a]
++ Vars (TCMT IO)
x forall a. [a] -> [a] -> [a]
++ [forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz]))
               -- (φ : I), (I → Partial φ (D (δ i0) (x i0))), D (δ i0) (x i0)
               TelV Tele (Dom Type)
args Type
_ <- forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall a (m :: * -> *).
(PiApplyM a, MonadReduce m, HasBuiltins m) =>
Type -> a -> m Type
piApplyM Type
hcomp_ty [Level -> Term
Level Level
l,Term
ty]
               forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (forall a. Sized a => a -> Nat
size Tele (Dom Type)
args forall a. Eq a => a -> a -> Bool
== Nat
3) forall a. HasCallStack => a
__IMPOSSIBLE__
               forall (f :: * -> *) a. Applicative f => a -> f a
pure Tele (Dom Type)
args
      AbsN
  (AbsN
     (AbsN (AbsN ([Arg (Named_ (Pattern' DBPatVar))], Type, Term))))
res <- forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
        let hcompArgs :: [Arg ArgName]
hcompArgs = forall a b. (a -> b) -> [a] -> [b]
map forall e. e -> Arg e
argN [ArgName
"phi",ArgName
"u",ArgName
"u0"]
        forall (m :: * -> *) b.
MonadFail m =>
(ArgVars m -> ArgVars m -> ArgVars m -> NamesT m b)
-> NamesT m (AbsN (AbsN (AbsN b)))
bind_trD forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
delta_ps ArgVars (TCMT IO)
x_ps ArgVars (TCMT IO)
phi_ps -> do
        let x :: [NamesT (TCMT IO) Term]
x = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
x_ps
        let delta :: [NamesT (TCMT IO) Term]
delta = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
delta_ps
        let [NamesT (TCMT IO) Term
phi] = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
phi_ps
        forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg [Arg ArgName]
hcompArgs forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
as0 -> do -- as0 : aTel[delta 0]
        let
          origPHComp :: NamesT (TCMT IO) (Pattern' DBPatVar)
origPHComp = do
            Just (LEl Level
l Term
t) <- forall (m :: * -> *). MonadReduce m => Type -> m (Maybe LType)
toLType forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (NamesT (TCMT IO) (AbsN Type)
dT forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` ([NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
x forall a. [a] -> [a] -> [a]
++ [forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz]))
            let ds :: [Arg (Named_ (Pattern' DBPatVar))]
ds = forall a b. (a -> b) -> [a] -> [b]
map (forall e. e -> Arg e
argH forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a name. a -> Named name a
unnamed forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Term -> Pattern' a
dotP) [Level -> Term
Level Level
l, Term
t]
            ps0 :: [Arg (Named_ (Pattern' DBPatVar))]
ps0@[Arg (Named_ (Pattern' DBPatVar))
_hphi,Arg (Named_ (Pattern' DBPatVar))
_u,Arg (Named_ (Pattern' DBPatVar))
_u0] <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence forall a b. (a -> b) -> a -> b
$ ArgVars (TCMT IO)
as0
            forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
defaultPatternInfo QName
qHComp forall a b. (a -> b) -> a -> b
$ [Arg (Named_ (Pattern' DBPatVar))]
ds forall a. [a] -> [a] -> [a]
++ [Arg (Named_ (Pattern' DBPatVar))]
ps0
          psHComp :: NamesT (TCMT IO) [Arg (Named_ (Pattern' DBPatVar))]
psHComp = forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence forall a b. (a -> b) -> a -> b
$ ArgVars (TCMT IO)
delta_ps forall a. [a] -> [a] -> [a]
++ ArgVars (TCMT IO)
x_ps forall a. [a] -> [a] -> [a]
++ ArgVars (TCMT IO)
phi_ps forall a. [a] -> [a] -> [a]
++ [forall e. e -> Arg e
argN forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a name. a -> Named name a
unnamed forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Pattern' DBPatVar)
origPHComp]
        let
          rhsTy :: NamesT (TCMT IO) Type
rhsTy = NamesT (TCMT IO) (AbsN Type)
dT forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` ([NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
x forall a. [a] -> [a] -> [a]
++ [forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io])
        -- trD δ x φ (hcomp [hφ ↦ u] u0) ↦ rhsHComp
        let rhsHComp :: NamesT (TCMT IO) Term
rhsHComp = do
              let [NamesT (TCMT IO) Term
hphi,NamesT (TCMT IO) Term
u,NamesT (TCMT IO) Term
u0] = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
as0
              -- TODO: should trD be transp for the datatype?
              let baseHComp :: NamesT (TCMT IO) Term
baseHComp = NamesT (TCMT IO) (AbsN (AbsN (AbsN Term)))
trD forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
delta forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
x forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term
phi,NamesT (TCMT IO) Term
u0]
              let sideHComp :: NamesT (TCMT IO) Term
sideHComp = forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
i -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
o -> do
                     NamesT (TCMT IO) (AbsN (AbsN (AbsN Term)))
trD forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
delta forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
x forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term
phi,NamesT (TCMT IO) Term
u forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
i forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<..> NamesT (TCMT IO) Term
o]
              NamesT (TCMT IO) Type
-> [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
hcomp NamesT (TCMT IO) Type
rhsTy [(NamesT (TCMT IO) Term
hphi, NamesT (TCMT IO) Term
sideHComp)] NamesT (TCMT IO) Term
baseHComp
        (,,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) [Arg (Named_ (Pattern' DBPatVar))]
psHComp forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamesT (TCMT IO) Type
rhsTy forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamesT (TCMT IO) Term
rhsHComp
      let ([Arg (Named_ (Pattern' DBPatVar))]
ps,Type
rhsTy,Term
rhs) = forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ AbsN
  (AbsN
     (AbsN (AbsN ([Arg (Named_ (Pattern' DBPatVar))], Type, Term))))
res
      (forall a. a -> [a] -> [a]
:[]) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {m :: * -> *}.
MonadDebug m =>
Tele (Dom Type)
-> [Arg (Named_ (Pattern' DBPatVar))] -> Type -> Term -> m Clause
mkClause Tele (Dom Type)
gamma [Arg (Named_ (Pattern' DBPatVar))]
ps Type
rhsTy Term
rhs


  [Clause]
c_trX   <- forall a b. Maybe a -> b -> (a -> b) -> b
caseMaybe Maybe QName
mtrX (forall (f :: * -> *) a. Applicative f => a -> f a
pure []) forall a b. (a -> b) -> a -> b
$ \ QName
trX -> do
        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"======================="
        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM QName
trX
        Tele (Dom Type)
gamma <- forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
                     NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
ixsI <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
parI) Tele (Dom Type)
ixsI
                     NamesT (TCMT IO) (Tele (Dom Type))
parI <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Tele (Dom Type)
parI
                     forall (m :: * -> *).
MonadFail m =>
(Vars m -> Vars m -> Vars m -> NamesT m (Tele (Dom Type)))
-> NamesT m (Tele (Dom Type))
abstract_trD forall a b. (a -> b) -> a -> b
$ \ Vars (TCMT IO)
delta Vars (TCMT IO)
_ Vars (TCMT IO)
_ -> do
                     let delta0_refl :: [NamesT (TCMT IO) Term]
delta0_refl = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. (a -> b) -> [a] -> [b]
map Vars (TCMT IO)
delta forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
p -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> NamesT (TCMT IO) Term
p forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz
                     forall (m :: * -> *) a.
(MonadFail m, Abstract a) =>
NamesT m (Tele (Dom Type)) -> (Vars m -> NamesT m a) -> NamesT m a
abstractN (NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
ixsI forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
delta0_refl) forall a b. (a -> b) -> a -> b
$ \ Vars (TCMT IO)
x' -> do
                     forall (m :: * -> *) a.
(MonadFail m, Abstract a) =>
NamesT m (Tele (Dom Type)) -> (Vars m -> NamesT m a) -> NamesT m a
abstractN (forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ ArgName -> Tele (Dom Type)
intervalTel ArgName
"phi'") forall a b. (a -> b) -> a -> b
$ \ Vars (TCMT IO)
_ -> do
                     Type
ty <- NamesT (TCMT IO) (AbsN Type)
dT forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` ([NamesT (TCMT IO) Term]
delta0_refl forall a. [a] -> [a] -> [a]
++ Vars (TCMT IO)
x' forall a. [a] -> [a] -> [a]
++ [forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz])
                     forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (forall a. a -> Dom a
defaultDom Type
ty) forall a b. (a -> b) -> a -> b
$ forall a. ArgName -> a -> Abs a
Abs ArgName
"t" forall a. Tele a
EmptyTel
        AbsN
  (AbsN
     (AbsN
        (AbsN
           (AbsN (AbsN ([Arg (Named_ (Pattern' DBPatVar))], Type, Term))))))
res <- forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$
          forall (m :: * -> *) b.
MonadFail m =>
(ArgVars m -> ArgVars m -> ArgVars m -> NamesT m b)
-> NamesT m (AbsN (AbsN (AbsN b)))
bind_trD forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
delta_ps ArgVars (TCMT IO)
x_ps ArgVars (TCMT IO)
phi_ps -> do
          let x :: [NamesT (TCMT IO) Term]
x = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
x_ps
          let delta :: [NamesT (TCMT IO) Term]
delta = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
delta_ps
          let [NamesT (TCMT IO) Term
phi] = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
phi_ps
          --- pattern matching args below
          forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg (forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. [a] -> [a] -> [a]
++ ArgName
"'")) (Tele (Dom Type) -> [Arg ArgName]
teleArgNames Tele (Dom Type)
ixsI)) forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
x'_ps -> do
          let x' :: [NamesT (TCMT IO) Term]
x' = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
x'_ps :: [NamesT TCM Term]
          let phi'name :: [Arg ArgName]
phi'name = Tele (Dom Type) -> [Arg ArgName]
teleArgNames forall a b. (a -> b) -> a -> b
$ ArgName -> Tele (Dom Type)
intervalTel ArgName
"phi'"
          forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg [Arg ArgName]
phi'name forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
phi'_ps -> do
          let phi's :: [NamesT (TCMT IO) Term]
phi's = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
phi'_ps
          forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg [forall e. e -> Arg e
argN ArgName
"t"] forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
as0 -> do
          let deltaArg :: NamesT (TCMT IO) Term -> NamesT (TCMT IO) [Arg Term]
deltaArg NamesT (TCMT IO) Term
i = do
                Term
i <- NamesT (TCMT IO) Term
i
                [Arg Term]
xs <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence ArgVars (TCMT IO)
delta_ps
                forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN Term
i])) [Arg Term]
xs

          let
            origPTrX :: NamesT (TCMT IO) (Pattern' DBPatVar)
origPTrX = do
              [Arg (Named_ (Pattern' DBPatVar))]
x'_ps <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence ArgVars (TCMT IO)
x'_ps
              [Arg (Named_ (Pattern' DBPatVar))]
phi'_ps <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence ArgVars (TCMT IO)
phi'_ps
              [Arg (Named_ (Pattern' DBPatVar))]
ds <- forall a b. (a -> b) -> [a] -> [b]
map (forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a name. a -> Named name a
unnamed forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Term -> Pattern' a
dotP)) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) Term -> NamesT (TCMT IO) [Arg Term]
deltaArg (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz)
              ps0 :: [Arg (Named_ (Pattern' DBPatVar))]
ps0@[Arg (Named_ (Pattern' DBPatVar))
_t] <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence ArgVars (TCMT IO)
as0
              forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
defaultPatternInfo QName
trX forall a b. (a -> b) -> a -> b
$ [Arg (Named_ (Pattern' DBPatVar))]
ds forall a. [a] -> [a] -> [a]
++ [Arg (Named_ (Pattern' DBPatVar))]
x'_ps forall a. [a] -> [a] -> [a]
++ [Arg (Named_ (Pattern' DBPatVar))]
phi'_ps forall a. [a] -> [a] -> [a]
++ [Arg (Named_ (Pattern' DBPatVar))]
ps0
            psTrX :: NamesT (TCMT IO) [Arg (Named_ (Pattern' DBPatVar))]
psTrX = forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence forall a b. (a -> b) -> a -> b
$ ArgVars (TCMT IO)
delta_ps forall a. [a] -> [a] -> [a]
++ ArgVars (TCMT IO)
x_ps forall a. [a] -> [a] -> [a]
++ ArgVars (TCMT IO)
phi_ps forall a. [a] -> [a] -> [a]
++ [forall e. e -> Arg e
argN forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a name. a -> Named name a
unnamed forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Pattern' DBPatVar)
origPTrX]

            rhsTy :: NamesT (TCMT IO) Type
rhsTy = NamesT (TCMT IO) (AbsN Type)
dT forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` ([NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
x forall a. [a] -> [a] -> [a]
++ [forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io])

          -- trD δ x φ (trX x' φ' t) ↦ rhsTrx
          let rhsTrX :: NamesT (TCMT IO) Term
rhsTrX = do
                let [NamesT (TCMT IO) Term
t] = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
as0
                let [NamesT (TCMT IO) Term
phi'] = [NamesT (TCMT IO) Term]
phi's
                let telXdeltai :: NamesT (TCMT IO) (Abs (Tele (Dom Type)))
telXdeltai = forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
applyN NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
xTel (forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i) [NamesT (TCMT IO) Term]
delta)
                let reflx1 :: [NamesT (TCMT IO) Term]
reflx1 = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. (a -> b) -> [a] -> [b]
map [NamesT (TCMT IO) Term]
x forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
q -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> NamesT (TCMT IO) Term
q forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io
                let symx' :: [NamesT (TCMT IO) Term]
symx' = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. (a -> b) -> [a] -> [b]
map [NamesT (TCMT IO) Term]
x' forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
q' -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
i -> NamesT (TCMT IO) Term
q' forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg NamesT (TCMT IO) Term
i
                [NamesT (TCMT IO) Term]
x_tr <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. Arg e -> e
unArg) forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< NamesT (TCMT IO) (Abs (Tele (Dom Type)))
-> [NamesT (TCMT IO) Term]
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) Term
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) [Arg Term]
transpPathTel' NamesT (TCMT IO) (Abs (Tele (Dom Type)))
telXdeltai [NamesT (TCMT IO) Term]
symx' [NamesT (TCMT IO) Term]
reflx1 NamesT (TCMT IO) Term
phi' [NamesT (TCMT IO) Term]
x
                let baseTrX :: NamesT (TCMT IO) Term
baseTrX = NamesT (TCMT IO) (AbsN (AbsN (AbsN Term)))
trD forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
delta forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
x_tr forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term
phi forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`min` NamesT (TCMT IO) Term
phi',NamesT (TCMT IO) Term
t]
                let sideTrX :: NamesT (TCMT IO) Term
sideTrX = forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"j" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
j -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> do
                      let trD_f :: NamesT (TCMT IO) Term
trD_f = NamesT (TCMT IO) (AbsN (AbsN (AbsN Term)))
trD forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. (a -> b) -> [a] -> [b]
map [NamesT (TCMT IO) Term]
delta forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
p -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
i -> NamesT (TCMT IO) Term
p forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT (TCMT IO) Term
i forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`min` forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg NamesT (TCMT IO) Term
j))
                                      forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. (a -> b) -> [a] -> [b]
map [NamesT (TCMT IO) Term]
x_tr  forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
p -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
i -> NamesT (TCMT IO) Term
p forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT (TCMT IO) Term
i forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`min` forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg NamesT (TCMT IO) Term
j))
                                      forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [(NamesT (TCMT IO) Term
phi forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`min` NamesT (TCMT IO) Term
phi') forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`max` NamesT (TCMT IO) Term
j,NamesT (TCMT IO) Term
t]
                      let x_tr_f :: NamesT (TCMT IO) [Arg Term]
x_tr_f = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\ (Abs ArgName
n (Arg ArgInfo
i Term
t)) -> forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i forall a b. (a -> b) -> a -> b
$ ArgInfo -> Abs Term -> Term
Lam ArgInfo
defaultArgInfo (forall a. ArgName -> a -> Abs a
Abs ArgName
n Term
t)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence) forall a b. (a -> b) -> a -> b
$
                           forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> do
                            Term
j <- NamesT (TCMT IO) Term
j
                            forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN Term
j])) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs (Tele (Dom Type)))
-> [NamesT (TCMT IO) Term]
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) Term
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) [Arg Term]
trFillPathTel' NamesT (TCMT IO) (Abs (Tele (Dom Type)))
telXdeltai [NamesT (TCMT IO) Term]
symx' [NamesT (TCMT IO) Term]
reflx1 NamesT (TCMT IO) Term
phi' [NamesT (TCMT IO) Term]
x (forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i)
                      let args :: NamesT (TCMT IO) [Arg Term]
args = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 forall a. [a] -> [a] -> [a]
(++) (forall a b. (a -> b) -> [a] -> [b]
map (forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) Term -> NamesT (TCMT IO) [Arg Term]
deltaArg (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io)) NamesT (TCMT IO) [Arg Term]
x_tr_f
                      (forall t. Apply t => t -> [Arg Term] -> t
apply (QName -> [Elim' Term] -> Term
Def QName
trX []) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) [Arg Term]
args) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT (TCMT IO) Term
phi' forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`max` forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg NamesT (TCMT IO) Term
j) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
trD_f
                NamesT (TCMT IO) Type
-> [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
hcomp NamesT (TCMT IO) Type
rhsTy [(NamesT (TCMT IO) Term
phi,NamesT (TCMT IO) Term
sideTrX),(NamesT (TCMT IO) Term
phi',forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> NamesT (TCMT IO) Term
baseTrX)]
                            NamesT (TCMT IO) Term
baseTrX

          (,,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) [Arg (Named_ (Pattern' DBPatVar))]
psTrX forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamesT (TCMT IO) Type
rhsTy forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamesT (TCMT IO) Term
rhsTrX


        let ([Arg (Named_ (Pattern' DBPatVar))]
ps,Type
rhsTy,Term
rhs) = forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ AbsN
  (AbsN
     (AbsN
        (AbsN
           (AbsN (AbsN ([Arg (Named_ (Pattern' DBPatVar))], Type, Term))))))
res
        (forall a. a -> [a] -> [a]
:[]) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {m :: * -> *}.
MonadDebug m =>
Tele (Dom Type)
-> [Arg (Named_ (Pattern' DBPatVar))] -> Type -> Term -> m Clause
mkClause Tele (Dom Type)
gamma [Arg (Named_ (Pattern' DBPatVar))]
ps Type
rhsTy Term
rhs

  forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (([Clause]
c_HComp forall a. [a] -> [a] -> [a]
++ [Clause]
c_trX) forall a. [a] -> [a] -> [a]
++) forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [QName]
cnames forall a b. (a -> b) -> a -> b
$ \ QName
cname -> do
    Definition
def <- forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
cname
    let
      Constructor
       { conPars :: Defn -> Nat
conPars = Nat
npars'
       , conArity :: Defn -> Nat
conArity = Nat
nargs
       , conSrcCon :: Defn -> ConHead
conSrcCon = ConHead
chead
       } = Definition -> Defn
theDef Definition
def
    do
        let tcon :: Type
tcon = Definition -> Type
defType Definition
def

        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"======================="
        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"tcon:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (ConHead -> QName
conName ConHead
chead) forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
tcon

        forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (ConHead -> QName
conName ConHead
chead forall a. Eq a => a -> a -> Bool
== QName
cname Bool -> Bool -> Bool
&& Nat
npars' forall a. Eq a => a -> a -> Bool
== Nat
npars) forall a b. (a -> b) -> a -> b
$ forall a. HasCallStack => a
__IMPOSSIBLE__


        TelV Tele (Dom Type)
prm Type
tcon' <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> Type -> m (TelV Type)
telViewUpTo Nat
npars' Type
tcon
        -- Δ ⊢ aTel
        -- Δ.aTel ⊢ ty
        -- Δ.aTel ⊢ [(φ,(l,r))] = boundary : ty
        (TelV Tele (Dom Type)
aTel Type
ty, Boundary
boundary) <- forall (m :: * -> *).
PureTCM m =>
Nat -> Type -> m (TelV Type, Boundary)
telViewUpToPathBoundary Nat
nargs Type
tcon'

        Def QName
_ [Elim' Term]
es <- forall t a. Type'' t a -> a
unEl forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Type
ty
        -- Δ.aTel ⊢ con_ixs : X
        let con_ixs :: [Arg Term]
con_ixs = forall a. a -> Maybe a -> a
fromMaybe forall a. HasCallStack => a
__IMPOSSIBLE__ forall a b. (a -> b) -> a -> b
$ forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims forall a b. (a -> b) -> a -> b
$ forall a. Nat -> [a] -> [a]
drop Nat
npars [Elim' Term]
es

        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$
          forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
prm forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"aTel:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Tele (Dom Type)
aTel
        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$
          forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
prm forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
aTel forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"ty:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
ty
        forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$
          forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
prm forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
aTel forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"boundary:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Boundary
boundary

        Tele (Dom Type)
gamma <- forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
                     NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
ixsI <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
parI) Tele (Dom Type)
ixsI
                     NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
aTel <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
prm) Tele (Dom Type)
aTel
                     NamesT (TCMT IO) (Tele (Dom Type))
parI <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Tele (Dom Type)
parI
                     forall (m :: * -> *).
MonadFail m =>
(Vars m -> Vars m -> Vars m -> NamesT m (Tele (Dom Type)))
-> NamesT m (Tele (Dom Type))
abstract_trD forall a b. (a -> b) -> a -> b
$ \ Vars (TCMT IO)
delta Vars (TCMT IO)
_ Vars (TCMT IO)
_ -> do
                     let args :: NamesT (TCMT IO) (Tele (Dom Type))
args = NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
aTel forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz) Vars (TCMT IO)
delta
                     NamesT (TCMT IO) (Tele (Dom Type))
args
        AbsN
  (AbsN
     (AbsN (AbsN ([Arg (Named_ (Pattern' DBPatVar))], Type, Term))))
res <- forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
          let aTelNames :: [ArgName]
aTelNames = Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
aTel
              aTelArgs :: [Arg ArgName]
aTelArgs = Tele (Dom Type) -> [Arg ArgName]
teleArgNames Tele (Dom Type)
aTel
          NamesT (TCMT IO) (AbsN [Term])
con_ixs <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
prm forall a. [a] -> [a] -> [a]
++ Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
aTel) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall e. Arg e -> e
unArg [Arg Term]
con_ixs
          NamesT (TCMT IO) (AbsN Boundary)
bndry <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
prm forall a. [a] -> [a] -> [a]
++ Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
aTel) forall a b. (a -> b) -> a -> b
$ Boundary
boundary
          NamesT (TCMT IO) (AbsN Term)
u    <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
prm forall a. [a] -> [a] -> [a]
++ [ArgName]
aTelNames) forall a b. (a -> b) -> a -> b
$ ConHead -> ConInfo -> [Elim' Term] -> Term
Con ConHead
chead ConInfo
ConOSystem (forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary' (a, a) -> [Elim' a]
teleElims Tele (Dom Type)
aTel Boundary
boundary)
          NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
aTel <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> a -> AbsN a
AbsN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
prm) Tele (Dom Type)
aTel
          -- bsys : Abs Δ.Args ([phi] → ty)
          (NamesT (TCMT IO) (AbsN Term)
bsysFace,NamesT (TCMT IO) (AbsN Term)
bsys) <- do
            AbsN (Term, Term)
p <- forall (m :: * -> *) a.
MonadFail m =>
[ArgName] -> (Vars m -> NamesT m a) -> NamesT m (AbsN a)
bindN (Tele (Dom Type) -> [ArgName]
teleNames Tele (Dom Type)
prm forall a. [a] -> [a] -> [a]
++ [ArgName]
aTelNames) forall a b. (a -> b) -> a -> b
$ \ Vars (TCMT IO)
ts -> do
              Just (LEl Level
l Term
ty) <- forall (m :: * -> *). MonadReduce m => Type -> m (Maybe LType)
toLType Type
ty
              NamesT (TCMT IO) Term
l <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open (Level -> Term
Level Level
l)
              NamesT (TCMT IO) Term
ty <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
ty
              Boundary
bs <- NamesT (TCMT IO) (AbsN Boundary)
bndry forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` Vars (TCMT IO)
ts
              [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
xs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\(Term
phi,Term
u) -> (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
phi forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
u) forall a b. (a -> b) -> a -> b
$ do
                (Term
i,(Term
l,Term
r)) <- Boundary
bs
                let pElem :: Term -> Term
pElem Term
t = ArgInfo -> Abs Term -> Term
Lam (forall a. LensRelevance a => Relevance -> a -> a
setRelevance Relevance
Irrelevant ArgInfo
defaultArgInfo) forall a b. (a -> b) -> a -> b
$ forall a. ArgName -> a -> Abs a
NoAbs ArgName
"o" Term
t
                [(Term
tINeg forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN Term
i],Term -> Term
pElem Term
l),(Term
i,Term -> Term
pElem Term
r)]
              forall (m :: * -> *).
HasBuiltins m =>
NamesT m Term
-> NamesT m Term
-> [(NamesT m Term, NamesT m Term)]
-> NamesT m (Term, Term)
combineSys' NamesT (TCMT IO) Term
l NamesT (TCMT IO) Term
ty [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
xs
            (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open (forall a b. (a, b) -> a
fst forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> AbsN (Term, Term)
p) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open (forall a b. (a, b) -> b
snd forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> AbsN (Term, Term)
p)
          forall (m :: * -> *) b.
MonadFail m =>
(ArgVars m -> ArgVars m -> ArgVars m -> NamesT m b)
-> NamesT m (AbsN (AbsN (AbsN b)))
bind_trD forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
delta_ps ArgVars (TCMT IO)
x_ps ArgVars (TCMT IO)
phi_ps -> do
          let x :: [NamesT (TCMT IO) Term]
x = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
x_ps
          let delta :: [NamesT (TCMT IO) Term]
delta = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
delta_ps
          let [NamesT (TCMT IO) Term
phi] = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
phi_ps
          --- pattern matching args below
          forall (m :: * -> *) a.
MonadFail m =>
[Arg ArgName] -> (ArgVars m -> NamesT m a) -> NamesT m (AbsN a)
bindNArg [Arg ArgName]
aTelArgs forall a b. (a -> b) -> a -> b
$ \ ArgVars (TCMT IO)
as0 -> do -- as0 : aTel[delta 0]

          let aTel0 :: NamesT (TCMT IO) (Tele (Dom Type))
aTel0 = NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
aTel forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz) [NamesT (TCMT IO) Term]
delta

          -- telePatterns is not context invariant, so we need an open here where the context ends in aTel0.
          NamesT (TCMT IO) [Arg (Named_ (Pattern' DBPatVar))]
ps0 <- (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) forall a b. (a -> b) -> a -> b
$ (forall a.
DeBruijn a =>
Tele (Dom Type) -> Boundary -> [NamedArg (Pattern' a)]
telePatterns forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Tele (Dom Type))
aTel0 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
applyN NamesT (TCMT IO) (AbsN Boundary)
bndry forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz) [NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall e. Arg e -> e
unArg) ArgVars (TCMT IO)
as0))

          let deltaArg :: NamesT (TCMT IO) Term -> NamesT (TCMT IO) [Arg Term]
deltaArg NamesT (TCMT IO) Term
i = do
                Term
i <- NamesT (TCMT IO) Term
i
                [Arg Term]
xs <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence ArgVars (TCMT IO)
delta_ps
                forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN Term
i])) [Arg Term]
xs

          let
            origP :: NamesT (TCMT IO) (Pattern' DBPatVar)
origP = forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
chead ConPatternInfo
noConPatternInfo forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) [Arg (Named_ (Pattern' DBPatVar))]
ps0
            ps :: NamesT (TCMT IO) [Arg (Named_ (Pattern' DBPatVar))]
ps = forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence forall a b. (a -> b) -> a -> b
$ ArgVars (TCMT IO)
delta_ps forall a. [a] -> [a] -> [a]
++ ArgVars (TCMT IO)
x_ps forall a. [a] -> [a] -> [a]
++ ArgVars (TCMT IO)
phi_ps forall a. [a] -> [a] -> [a]
++ [forall e. e -> Arg e
argN forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a name. a -> Named name a
unnamed forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Pattern' DBPatVar)
origP]
          let
            orig :: NamesT (TCMT IO) Term
orig = Pattern' DBPatVar -> Term
patternToTerm forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Pattern' DBPatVar)
origP
            rhsTy :: NamesT (TCMT IO) Type
rhsTy = NamesT (TCMT IO) (AbsN Type)
dT forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` ([NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
x forall a. [a] -> [a] -> [a]
++ [forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io])

          (,,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) [Arg (Named_ (Pattern' DBPatVar))]
ps forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamesT (TCMT IO) Type
rhsTy forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> do

          -- Declared Constructors.
          let aTelI :: NamesT (TCMT IO) (Abs (Tele (Dom Type)))
aTelI = forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
aTel forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i) [NamesT (TCMT IO) Term]
delta

          Either (Closure (Abs Type)) [Arg Term]
eas1 <- forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
(=<<) (forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT) forall a b. (a -> b) -> a -> b
$ Abs (Tele (Dom Type))
-> Term
-> [Arg Term]
-> ExceptT (Closure (Abs Type)) (TCMT IO) [Arg Term]
transpTel forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs (Tele (Dom Type)))
aTelI forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamesT (TCMT IO) Term
phi forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence ArgVars (TCMT IO)
as0

          forall (m :: * -> *) a b c.
Monad m =>
m (Either a b) -> (a -> m c) -> (b -> m c) -> m c
caseEitherM (forall (f :: * -> *) a. Applicative f => a -> f a
pure Either (Closure (Abs Type)) [Arg Term]
eas1) (forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a e. Exception e => e -> a
E.throw forall b c a. (b -> c) -> (a -> b) -> a -> c
. Closure (Abs Type) -> TranspError
CannotTransp) forall a b. (a -> b) -> a -> b
$ \ [Arg Term]
as1 -> do

          [NamesT (TCMT IO) Term]
as1 <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. Arg e -> e
unArg) [Arg Term]
as1

          NamesT (TCMT IO) (Abs [Arg Term])
as01 <- (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> do
            Either (Closure (Abs Type)) [Arg Term]
eas01 <- forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
(=<<) (forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT) forall a b. (a -> b) -> a -> b
$ Abs (Tele (Dom Type))
-> Term
-> [Arg Term]
-> Term
-> ExceptT (Closure (Abs Type)) (TCMT IO) [Arg Term]
trFillTel forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs (Tele (Dom Type)))
aTelI forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamesT (TCMT IO) Term
phi forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence ArgVars (TCMT IO)
as0 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i
            forall (m :: * -> *) a b c.
Monad m =>
m (Either a b) -> (a -> m c) -> (b -> m c) -> m c
caseEitherM (forall (f :: * -> *) a. Applicative f => a -> f a
pure Either (Closure (Abs Type)) [Arg Term]
eas01) (forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a e. Exception e => e -> a
E.throw forall b c a. (b -> c) -> (a -> b) -> a -> c
. Closure (Abs Type) -> TranspError
CannotTransp) forall (f :: * -> *) a. Applicative f => a -> f a
pure

          let argApp :: m (f b) -> m Term -> m (f b)
argApp m (f b)
a m Term
t = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 (\ f b
a Term
t -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN Term
t]) f b
a) m (f b)
a m Term
t
          let
            argLam :: MonadFail m => String -> (Var m -> NamesT m (Arg Term)) -> NamesT m (Arg Term)
            argLam :: forall (m :: * -> *).
MonadFail m =>
ArgName -> (Var m -> NamesT m (Arg Term)) -> NamesT m (Arg Term)
argLam ArgName
n Var m -> NamesT m (Arg Term)
f = (\ (Abs ArgName
n (Arg ArgInfo
i Term
t)) -> forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i forall a b. (a -> b) -> a -> b
$ ArgInfo -> Abs Term -> Term
Lam ArgInfo
defaultArgInfo forall a b. (a -> b) -> a -> b
$ forall a. ArgName -> a -> Abs a
Abs ArgName
n Term
t) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"n" Var m -> NamesT m (Arg Term)
f
          let cas1 :: NamesT (TCMT IO) Term
cas1 = forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
applyN NamesT (TCMT IO) (AbsN Term)
u forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io) [NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
as1

          let base :: NamesT (TCMT IO) Term
base | Maybe QName
Nothing <- Maybe QName
mtrX = NamesT (TCMT IO) Term
cas1
                   | Just QName
trX <- Maybe QName
mtrX = do
                       let theTel :: NamesT (TCMT IO) (Abs (Abs (Tele (Dom Type))))
theTel = forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"j" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
j -> forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
applyN NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
xTel (forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
max forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
j) [NamesT (TCMT IO) Term]
delta)
                       let theLeft :: NamesT (TCMT IO) [Term]
theLeft = forall (m :: * -> *).
Monad m =>
NamesT m (Abs [Term]) -> NamesT m [Term]
lamTel forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> do
                             [NamesT (TCMT IO) Term]
as01 <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. Arg e -> e
unArg) forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs [Arg Term])
as01 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i)
                             NamesT (TCMT IO) (AbsN [Term])
con_ixs forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` (forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i) [NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
as01)
                       [NamesT (TCMT IO) Term]
theLeft <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< NamesT (TCMT IO) [Term]
theLeft
                       [NamesT (TCMT IO) Term]
theRight <- (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *).
Monad m =>
NamesT m (Abs [Term]) -> NamesT m [Term]
lamTel forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> do
                         NamesT (TCMT IO) (AbsN [Term])
con_ixs forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` (forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io) [NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
as1)

                       [Arg Term]
trx' <- NamesT (TCMT IO) (Abs (Abs (Tele (Dom Type))))
-> [NamesT (TCMT IO) Term]
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) Term
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) [Arg Term]
transpPathPTel' NamesT (TCMT IO) (Abs (Abs (Tele (Dom Type))))
theTel [NamesT (TCMT IO) Term]
x [NamesT (TCMT IO) Term]
theRight NamesT (TCMT IO) Term
phi [NamesT (TCMT IO) Term]
theLeft
                       let args :: NamesT (TCMT IO) [Arg Term]
args = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 forall a. [a] -> [a] -> [a]
(++) (forall a b. (a -> b) -> [a] -> [b]
map (forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) Term -> NamesT (TCMT IO) [Arg Term]
deltaArg (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io)) (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Arg Term]
trx' forall a b. (a -> b) -> a -> b
$ \ Arg Term
q' -> do
                                                                       NamesT (TCMT IO) (Arg Term)
q' <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Arg Term
q'
                                                                       forall (m :: * -> *).
MonadFail m =>
ArgName -> (Var m -> NamesT m (Arg Term)) -> NamesT m (Arg Term)
argLam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> NamesT (TCMT IO) (Arg Term)
q' forall {m :: * -> *} {b} {f :: * -> *}.
(Monad m, Apply b, Functor f) =>
m (f b) -> m Term -> m (f b)
`argApp` forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i)
                       (forall t. Apply t => t -> [Arg Term] -> t
apply (QName -> [Elim' Term] -> Term
Def QName
trX []) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) [Arg Term]
args) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
phi forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
cas1


          if forall a. Null a => a -> Bool
null Boundary
boundary then NamesT (TCMT IO) Term
base else do

          -- We have to correct the boundary for path constructors.

          -- bline : Abs I ([phi] → ty)
          let blineFace :: NamesT (TCMT IO) Term
blineFace = forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
applyN NamesT (TCMT IO) (AbsN Term)
bsysFace forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io) [NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
as1
          let bline :: NamesT (TCMT IO) Term
bline = do
                let theTel :: NamesT (TCMT IO) (Abs (Abs (Tele (Dom Type))))
theTel = forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"j" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
j -> forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
applyN NamesT (TCMT IO) (AbsN (Tele (Dom Type)))
xTel (forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
max forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
j) [NamesT (TCMT IO) Term]
delta)
                let theLeft :: NamesT (TCMT IO) [Term]
theLeft = forall (m :: * -> *).
Monad m =>
NamesT m (Abs [Term]) -> NamesT m [Term]
lamTel forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> do
                      [NamesT (TCMT IO) Term]
as01 <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. Arg e -> e
unArg) forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs [Arg Term])
as01 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i)
                      NamesT (TCMT IO) (AbsN [Term])
con_ixs forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` (forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i) [NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
as01)
                [NamesT (TCMT IO) Term]
theLeft <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< NamesT (TCMT IO) [Term]
theLeft
                [NamesT (TCMT IO) Term]
theRight <- (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *).
Monad m =>
NamesT m (Abs [Term]) -> NamesT m [Term]
lamTel forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> do
                  NamesT (TCMT IO) (AbsN [Term])
con_ixs forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` (forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io) [NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
as1)
                let q2_f :: NamesT (TCMT IO) (Abs [Term])
q2_f = forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i -> forall a b. (a -> b) -> [a] -> [b]
map forall e. Arg e -> e
unArg forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs (Abs (Tele (Dom Type))))
-> [NamesT (TCMT IO) Term]
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) Term
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) [Arg Term]
trFillPathPTel' NamesT (TCMT IO) (Abs (Abs (Tele (Dom Type))))
theTel [NamesT (TCMT IO) Term]
x [NamesT (TCMT IO) Term]
theRight NamesT (TCMT IO) Term
phi [NamesT (TCMT IO) Term]
theLeft forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
i

                forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
i -> do
                let v0 :: NamesT (TCMT IO) Term
v0 = do
                     [NamesT (TCMT IO) Term]
as01 <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. Arg e -> e
unArg) forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs [Arg Term])
as01 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> NamesT (TCMT IO) Term
i)
                     forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
applyN NamesT (TCMT IO) (AbsN Term)
bsys forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT (TCMT IO) Term
i) [NamesT (TCMT IO) Term]
delta forall a. [a] -> [a] -> [a]
++ [NamesT (TCMT IO) Term]
as01
                let squeezedv0 :: NamesT (TCMT IO) Term
squeezedv0 = forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
o -> do
                      let
                        delta_f :: [NamesT TCM Term]
                        delta_f :: [NamesT (TCMT IO) Term]
delta_f = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. (a -> b) -> [a] -> [b]
map [NamesT (TCMT IO) Term]
delta forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
p -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"j" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
j -> NamesT (TCMT IO) Term
p forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT (TCMT IO) Term
j forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`max` NamesT (TCMT IO) Term
i)
                      [NamesT (TCMT IO) Term]
x_f <- (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *).
Monad m =>
NamesT m (Abs [Term]) -> NamesT m [Term]
lamTel forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"j" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
j ->
                                 (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs [Term])
q2_f forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
j) forall (m :: * -> *).
Monad m =>
NamesT m [Term] -> NamesT m Term -> NamesT m [Term]
`appTel` NamesT (TCMT IO) Term
i
                      NamesT (TCMT IO) (AbsN (AbsN (AbsN Term)))
trD forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
delta_f forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term]
x_f forall (m :: * -> *) a.
(Monad m, Subst a) =>
NamesT m (AbsN a) -> [NamesT m (SubstArg a)] -> NamesT m a
`applyN` [NamesT (TCMT IO) Term
phi forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`max` NamesT (TCMT IO) Term
i, NamesT (TCMT IO) Term
v0 forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<..> NamesT (TCMT IO) Term
o]

                forall a b. Maybe a -> b -> (a -> b) -> b
caseMaybe Maybe QName
mtrX NamesT (TCMT IO) Term
squeezedv0 forall a b. (a -> b) -> a -> b
$ \ QName
trX -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
o -> do
                  [Arg Term]
q2 <- NamesT (TCMT IO) (Abs (Abs (Tele (Dom Type))))
-> [NamesT (TCMT IO) Term]
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) Term
-> [NamesT (TCMT IO) Term]
-> NamesT (TCMT IO) [Arg Term]
transpPathPTel' NamesT (TCMT IO) (Abs (Abs (Tele (Dom Type))))
theTel [NamesT (TCMT IO) Term]
x [NamesT (TCMT IO) Term]
theRight NamesT (TCMT IO) Term
phi [NamesT (TCMT IO) Term]
theLeft
                  let args :: NamesT (TCMT IO) [Arg Term]
args = forall (m :: * -> *) a1 a2 r.
Monad m =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r
liftM2 forall a. [a] -> [a] -> [a]
(++) (forall a b. (a -> b) -> [a] -> [b]
map (forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
Hidden) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) Term -> NamesT (TCMT IO) [Arg Term]
deltaArg (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io))
                                         (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Arg Term]
q2 forall a b. (a -> b) -> a -> b
$ \ Arg Term
q' -> do
                                            NamesT (TCMT IO) (Arg Term)
q' <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Arg Term
q'
                                            forall (m :: * -> *).
MonadFail m =>
ArgName -> (Var m -> NamesT m (Arg Term)) -> NamesT m (Arg Term)
argLam ArgName
"j" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
j -> NamesT (TCMT IO) (Arg Term)
q' forall {m :: * -> *} {b} {f :: * -> *}.
(Monad m, Apply b, Functor f) =>
m (f b) -> m Term -> m (f b)
`argApp` (forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg forall b. (Subst b, DeBruijn b) => NamesT (TCMT IO) b
j forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`min` NamesT (TCMT IO) Term
i))

                  (forall t. Apply t => t -> [Arg Term] -> t
apply (QName -> [Elim' Term] -> Term
Def QName
trX []) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) [Arg Term]
args) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg NamesT (TCMT IO) Term
i forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term -> NamesT m Term
`max` NamesT (TCMT IO) Term
phi) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT (TCMT IO) Term
squeezedv0 forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<..> NamesT (TCMT IO) Term
o)
          NamesT (TCMT IO) Type
-> [(NamesT (TCMT IO) Term, NamesT (TCMT IO) Term)]
-> NamesT (TCMT IO) Term
-> NamesT (TCMT IO) Term
hcomp
             NamesT (TCMT IO) Type
rhsTy
             [(NamesT (TCMT IO) Term
blineFace,forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
i -> NamesT (TCMT IO) Term
bline forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (forall {m :: * -> *}.
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
NamesT m Term -> NamesT m Term
neg NamesT (TCMT IO) Term
i))
             ,(NamesT (TCMT IO) Term
phi      ,forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> NamesT (TCMT IO) Term
orig)
             ]
             NamesT (TCMT IO) Term
base

        let
          ([Arg (Named_ (Pattern' DBPatVar))]
ps,Type
rhsTy,Term
rhs) = forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ forall a. AbsN a -> a
unAbsN forall a b. (a -> b) -> a -> b
$ AbsN
  (AbsN
     (AbsN (AbsN ([Arg (Named_ (Pattern' DBPatVar))], Type, Term))))
res
        forall {m :: * -> *}.
MonadDebug m =>
Tele (Dom Type)
-> [Arg (Named_ (Pattern' DBPatVar))] -> Type -> Term -> m Clause
mkClause Tele (Dom Type)
gamma [Arg (Named_ (Pattern' DBPatVar))]
ps Type
rhsTy Term
rhs
  where
    mkClause :: Tele (Dom Type)
-> [Arg (Named_ (Pattern' DBPatVar))] -> Type -> Term -> m Clause
mkClause Tele (Dom Type)
gamma [Arg (Named_ (Pattern' DBPatVar))]
ps Type
rhsTy Term
rhs = do
      let
        c :: Clause
c = Clause
            { clauseTel :: Tele (Dom Type)
clauseTel         = Tele (Dom Type)
gamma
            , clauseType :: Maybe (Arg Type)
clauseType        = forall a. a -> Maybe a
Just forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. e -> Arg e
argN forall a b. (a -> b) -> a -> b
$ Type
rhsTy
            , namedClausePats :: [Arg (Named_ (Pattern' DBPatVar))]
namedClausePats   = [Arg (Named_ (Pattern' DBPatVar))]
ps
            , clauseFullRange :: Range
clauseFullRange   = forall a. Range' a
noRange
            , clauseLHSRange :: Range
clauseLHSRange    = forall a. Range' a
noRange
            , clauseCatchall :: Bool
clauseCatchall    = Bool
False
            , clauseBody :: Maybe Term
clauseBody        = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Term
rhs
            , clauseRecursive :: Maybe Bool
clauseRecursive   = forall a. Maybe a
Nothing
            -- it is indirectly recursive through transp, does it count?
            , clauseUnreachable :: Maybe Bool
clauseUnreachable = forall a. a -> Maybe a
Just Bool
False
            , clauseEllipsis :: ExpandedEllipsis
clauseEllipsis    = ExpandedEllipsis
NoEllipsis
            , clauseExact :: Maybe Bool
clauseExact       = forall a. Maybe a
Nothing
            , clauseWhereModule :: Maybe ModuleName
clauseWhereModule = forall a. Maybe a
Nothing
            }
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$
        TCMT IO Doc
"gamma:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Tele (Dom Type)
gamma
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
gamma forall a b. (a -> b) -> a -> b
$
        TCMT IO Doc
"ps   :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM ([Arg (Named_ (Pattern' DBPatVar))] -> [Elim' Term]
patternsToElims [Arg (Named_ (Pattern' DBPatVar))]
ps)
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
gamma forall a b. (a -> b) -> a -> b
$
        TCMT IO Doc
"type :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
rhsTy
      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
20 forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
gamma forall a b. (a -> b) -> a -> b
$
        TCMT IO Doc
"body :" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
rhs

      forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.transp.con" Nat
30 forall a b. (a -> b) -> a -> b
$
        forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Tele (Dom Type)
gamma forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"c:" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Clause
c
      forall (m :: * -> *) a. Monad m => a -> m a
return Clause
c


defineKanOperationForFields
  :: Command
  -> (Maybe Term)            -- ^ PathCons, Δ.Φ ⊢ u : R δ
  -> (Term -> QName -> Term) -- ^ how to apply a "projection" to a term
  -> QName       -- ^ some name, e.g. record name
  -> Telescope   -- ^ param types Δ
  -> Telescope   -- ^ fields' types Δ ⊢ Φ
  -> [Arg QName] -- ^ fields' names
  -> Type        -- ^ record type Δ ⊢ T
  -> TCM (Maybe ((QName, Telescope, Type, [Dom Type], [Term]), Substitution))
defineKanOperationForFields :: Command
-> Maybe Term
-> (Term -> QName -> Term)
-> QName
-> Tele (Dom Type)
-> Tele (Dom Type)
-> [Arg QName]
-> Type
-> TCM
     (Maybe
        ((QName, Tele (Dom Type), Type, [Dom Type], [Term]), Substitution))
defineKanOperationForFields Command
cmd Maybe Term
pathCons Term -> QName -> Term
project QName
name Tele (Dom Type)
params Tele (Dom Type)
fsT [Arg QName]
fns Type
rect =
   case Command
cmd of
       Command
DoTransp -> forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT forall a b. (a -> b) -> a -> b
$ do
         Tele (Dom CType)
fsT' <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *). MonadReduce m => Type -> m (Maybe CType)
toCType)) Tele (Dom Type)
fsT
         forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$ Maybe Term
-> (Term -> QName -> Term)
-> QName
-> Tele (Dom Type)
-> Tele (Dom CType)
-> [Arg QName]
-> Type
-> TCM
     ((QName, Tele (Dom Type), Type, [Dom Type], [Term]), Substitution)
defineTranspForFields Maybe Term
pathCons Term -> QName -> Term
project QName
name Tele (Dom Type)
params Tele (Dom CType)
fsT' [Arg QName]
fns Type
rect
       Command
DoHComp -> forall (m :: * -> *) a. MaybeT m a -> m (Maybe a)
runMaybeT forall a b. (a -> b) -> a -> b
$ do
         Tele (Dom LType)
fsT' <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *). MonadReduce m => Type -> m (Maybe LType)
toLType)) Tele (Dom Type)
fsT
         LType
rect' <- forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadReduce m => Type -> m (Maybe LType)
toLType Type
rect
         forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$ (Term -> QName -> Term)
-> QName
-> Tele (Dom Type)
-> Tele (Dom LType)
-> [Arg QName]
-> LType
-> TCM
     ((QName, Tele (Dom Type), Type, [Dom Type], [Term]), Substitution)
defineHCompForFields Term -> QName -> Term
project QName
name Tele (Dom Type)
params Tele (Dom LType)
fsT' [Arg QName]
fns LType
rect'


-- invariant: resulting tel Γ is such that Γ = ... , (φ : I), (a0 : ...)
--            where a0 has type matching the arguments of primTrans.
defineTranspForFields
  :: (Maybe Term)            -- ^ PathCons, Δ.Φ ⊢ u : R δ
  -> (Term -> QName -> Term) -- ^ how to apply a "projection" to a term
  -> QName       -- ^ some name, e.g. record name
  -> Telescope   -- ^ param types Δ
  -> Tele (Dom CType)   -- ^ fields' types Δ ⊢ Φ
  -> [Arg QName] -- ^ fields' names
  -> Type        -- ^ record type Δ ⊢ T
  -> TCM ((QName, Telescope, Type, [Dom Type], [Term]), Substitution)
     -- ^ @((name, tel, rtype, clause_types, bodies), sigma)@
     --   name: name of transport function for this constructor/record. clauses still missing.
     --   tel: Ξ telescope for the RHS, Ξ ⊃ (Δ^I, φ : I), also Ξ ⊢ us0 : Φ[δ 0]
     --   rtype: Ξ ⊢ T' := T[δ 1]
     --   clause_types: Ξ ⊢ Φ' := Φ[δ 1]
     --   bodies: Ξ ⊢ us1 : Φ'
     --   sigma:  Ξ, i : I ⊢ σ : Δ.Φ -- line [δ 0,us0] ≡ [δ 0,us1]
defineTranspForFields :: Maybe Term
-> (Term -> QName -> Term)
-> QName
-> Tele (Dom Type)
-> Tele (Dom CType)
-> [Arg QName]
-> Type
-> TCM
     ((QName, Tele (Dom Type), Type, [Dom Type], [Term]), Substitution)
defineTranspForFields Maybe Term
pathCons Term -> QName -> Term
applyProj QName
name Tele (Dom Type)
params Tele (Dom CType)
fsT [Arg QName]
fns Type
rect = do
  Type
interval <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType
  let deltaI :: Tele (Dom Type)
deltaI = Type -> Tele (Dom Type) -> Tele (Dom Type)
expTelescope Type
interval Tele (Dom Type)
params
  Term
iz <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero
  Term
io <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIOne
  Term
imin <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primIMin"
  Term
imax <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primIMax"
  Term
ineg <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primINeg"
  Term
transp <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
builtinTrans
  -- por <- getPrimitiveTerm "primPOr"
  -- one <- primItIsOne
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"trans.rec" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Tele (Dom Type)
params
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"trans.rec" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Tele (Dom Type)
deltaI
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"trans.rec" Nat
10 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
pretty Tele (Dom CType)
fsT

  let thePrefix :: ArgName
thePrefix = ArgName
"transp-"
  QName
theName <- ArgName -> TCMT IO QName
freshAbstractQName'_ forall a b. (a -> b) -> a -> b
$ ArgName
thePrefix forall a. [a] -> [a] -> [a]
++ forall a. Pretty a => a -> ArgName
P.prettyShow (QName -> Name
A.qnameName QName
name)

  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> ArgName -> m ()
reportSLn ArgName
"trans.rec" Nat
5 forall a b. (a -> b) -> a -> b
$ (ArgName
"Generated name: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show QName
theName forall a. [a] -> [a] -> [a]
++ ArgName
" " forall a. [a] -> [a] -> [a]
++ QName -> ArgName
showQNameId QName
theName)

  Type
theType <- (forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
deltaI forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
              NamesT (TCMT IO) (Abs Type)
rect' <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open (forall a. [ArgName] -> NamesT Fail a -> a
runNames [] forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
MonadFail m =>
ArgName
-> ((forall b. (Subst b, DeBruijn b) => NamesT m b) -> NamesT m a)
-> NamesT m (Abs a)
bind ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ forall b. (Subst b, DeBruijn b) => NamesT Fail b
x -> let NamesT Fail Term
_ = forall b. (Subst b, DeBruijn b) => NamesT Fail b
x forall a. a -> a -> a
`asTypeOf` forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall a. HasCallStack => a
undefined :: Term) in
                                                             forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
rect')
              forall (m :: * -> *).
(MonadFail m, MonadAddContext m, MonadDebug m) =>
ArgName
-> NamesT m Type
-> (NamesT m Term -> NamesT m Type)
-> NamesT m Type
nPi' ArgName
"phi" forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
phi ->
               (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs Type)
rect' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz) forall (m :: * -> *). Applicative m => m Type -> m Type -> m Type
--> (forall a. Subst a => Abs a -> SubstArg a -> a
absApp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT (TCMT IO) (Abs Type)
rect' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io)

  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"trans.rec" Nat
20 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
theType
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"trans.rec" Nat
60 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
text forall a b. (a -> b) -> a -> b
$ ArgName
"sort = " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show (forall a. LensSort a => a -> Sort' Term
getSort Type
rect')

  Language
lang <- forall (m :: * -> *). HasOptions m => m Language
getLanguage
  forall a. TCM a -> TCM a
noMutualBlock forall a b. (a -> b) -> a -> b
$ QName -> Definition -> TCM ()
addConstant QName
theName forall a b. (a -> b) -> a -> b
$
    (ArgInfo -> QName -> Type -> Language -> Defn -> Definition
defaultDefn ArgInfo
defaultArgInfo QName
theName Type
theType Language
lang
       (FunctionData -> Defn
FunctionDefn forall a b. (a -> b) -> a -> b
$ FunctionData
emptyFunctionData { _funTerminates :: Maybe Bool
_funTerminates = forall a. a -> Maybe a
Just Bool
True, _funIsKanOp :: Maybe QName
_funIsKanOp = forall a. a -> Maybe a
Just QName
name }))
      { defNoCompilation :: Bool
defNoCompilation = Bool
True }
  -- ⊢ Γ = gamma = (δ : Δ^I) (φ : I) (u0 : R (δ i0))
  -- Γ ⊢     rtype = R (δ i1)
  TelV Tele (Dom Type)
gamma Type
rtype <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
theType


  let
      -- (γ : Γ) ⊢ transpR γ : rtype
      theTerm :: Term
theTerm = QName -> [Elim' Term] -> Term
Def QName
theName [] forall t. Apply t => t -> [Arg Term] -> t
`apply` forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
gamma

      -- (γ : Γ) ⊢ (flatten Φ[δ i1])[n ↦ f_n (transpR γ)]
      clause_types :: [Dom CType]
clause_types = forall a. DeBruijn a => [a] -> Substitution' a
parallelS [Term
theTerm Term -> QName -> Term
`applyProj` (forall e. Arg e -> e
unArg Arg QName
fn)
                               | Arg QName
fn <- forall a. [a] -> [a]
reverse [Arg QName]
fns] forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst`
                       forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel (forall a. DeBruijn a => Nat -> a -> Substitution' a
singletonS Nat
0 Term
io forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Tele (Dom CType)
fsT') -- Γ, Φ[δ i1] ⊢ flatten Φ[δ i1]

      -- Γ, i : I ⊢ [δ i] : Δ
      delta_i :: Substitution
delta_i = (forall a. Nat -> Substitution' a -> Substitution' a
liftS Nat
1 (forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
deltaI)) forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params) -- Defined but not used

      -- Γ, i : I ⊢ Φ[δ i]
      fsT' :: Tele (Dom CType)
fsT' = (forall a. Nat -> Substitution' a -> Substitution' a
liftS Nat
1 (forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
deltaI)) forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params)  forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst`
               Tele (Dom CType)
fsT -- Δ ⊢ Φ
      lam_i :: Term -> Term
lam_i = ArgInfo -> Abs Term -> Term
Lam ArgInfo
defaultArgInfo forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. ArgName -> a -> Abs a
Abs ArgName
"i"



      -- (δ , φ , u0) : Γ ⊢ φ : I
      -- the_phi = var 1
      -- -- (δ , φ , u0) : Γ ⊢ u0 : R (δ i0)
      -- the_u0  = var 0

      -- Γ' = (δ : Δ^I, φ : I)
      gamma' :: Tele (Dom Type)
gamma' = ListTel -> Tele (Dom Type)
telFromList forall a b. (a -> b) -> a -> b
$ forall a. Nat -> [a] -> [a]
take (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- Nat
1) forall a b. (a -> b) -> a -> b
$ forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom Type)
gamma

      -- δ : Δ^I, φ : F ⊢ [δ 0] : Δ
      d0 :: Substitution
      d0 :: Substitution
d0 = forall a. Nat -> Substitution' a -> Substitution' a
wkS Nat
1 -- Δ^I, φ : F ⊢ Δ
                       (forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS Term
iz forall a. Substitution' a
IdS forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params) -- Δ^I ⊢ Δ
                                 -- Δ^I , i:I ⊢ sub params : Δ

      -- Ξ , Ξ ⊢ θ : Γ, Ξ ⊢ φ, Ξ ⊢ u : R (δ i0), Ξ ⊢ us : Φ[δ i0]
      (Tele (Dom Type)
tel,Substitution
theta,Term
the_phi,Term
the_u0, [Term]
the_fields) =
        case Maybe Term
pathCons of
          -- (δ : Δ).Φ ⊢ u : R δ
          Just Term
u -> (forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
gamma' (Substitution
d0 forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap CType -> Type
fromCType) Tele (Dom CType)
fsT) -- Ξ = δ : Δ^I, φ : F, _ : Φ[δ i0]
                    , (forall a. Nat -> Substitution' a -> Substitution' a
liftS (forall a. Sized a => a -> Nat
size Tele (Dom CType)
fsT) Substitution
d0 forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Term
u) forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
`consS` forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom CType)
fsT)
                    , forall a. Subst a => Nat -> a -> a
raise (forall a. Sized a => a -> Nat
size Tele (Dom CType)
fsT) (Nat -> Term
var Nat
0)
                    , (forall a. Nat -> Substitution' a -> Substitution' a
liftS (forall a. Sized a => a -> Nat
size Tele (Dom CType)
fsT) Substitution
d0 forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Term
u)
                    , forall a. Nat -> [a] -> [a]
drop (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma') forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall e. Arg e -> e
unArg forall a b. (a -> b) -> a -> b
$ forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
tel)
          Maybe Term
Nothing -> (Tele (Dom Type)
gamma, forall a. Substitution' a
IdS, Nat -> Term
var Nat
1, Nat -> Term
var Nat
0, forall a b. (a -> b) -> [a] -> [b]
map (\ Arg QName
fname -> Nat -> Term
var Nat
0 Term -> QName -> Term
`applyProj` forall e. Arg e -> e
unArg Arg QName
fname) [Arg QName]
fns )

      fsT_tel :: Tele (Dom CType)
fsT_tel = (forall a. Nat -> Substitution' a -> Substitution' a
liftS Nat
1 (forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
deltaI)) forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params) forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Tele (Dom CType)
fsT

      iMin :: Term -> Term -> Term
iMin Term
x Term
y = Term
imin forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN Term
x, forall e. e -> Arg e
argN Term
y]
      iMax :: Term -> Term -> Term
iMax Term
x Term
y = Term
imax forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN Term
x, forall e. e -> Arg e
argN Term
y]
      iNeg :: Term -> Term
iNeg Term
x = Term
ineg forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN Term
x]

      -- .. ⊢ field : filled_ty' i0
      mkBody :: (Term, Dom CType) -> TCMT IO Term
mkBody (Term
field, Dom CType
filled_ty') = do
        let
          filled_ty :: Term
filled_ty = Term -> Term
lam_i forall a b. (a -> b) -> a -> b
$ (forall t a. Type'' t a -> a
unEl forall b c a. (b -> c) -> (a -> b) -> a -> c
. CType -> Type
fromCType forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t e. Dom' t e -> e
unDom) Dom CType
filled_ty'
          -- Γ ⊢ l : I -> Level of filled_ty
        -- sort <- reduce $ getSort $ unDom filled_ty'
        case forall t e. Dom' t e -> e
unDom Dom CType
filled_ty' of
          LType (LEl Level
l Term
_) -> do
            let lvl :: Term
lvl = Term -> Term
lam_i forall a b. (a -> b) -> a -> b
$ Level -> Term
Level Level
l
            forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> NamesT Fail a -> a
runNames [] forall a b. (a -> b) -> a -> b
$ do
             NamesT Fail Term
lvl <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
lvl
             [NamesT Fail Term
phi,NamesT Fail Term
field] <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open [Term
the_phi,Term
field]
             forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
transp forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> NamesT Fail Term
lvl forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
filled_ty
                                 forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
phi
                                 forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
field
          -- interval arg
          ClosedType{}  ->
            forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> NamesT Fail a -> a
runNames [] forall a b. (a -> b) -> a -> b
$ do
            [NamesT Fail Term
field] <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open [Term
field]
            NamesT Fail Term
field

  let
        -- ' Ξ , i : I ⊢ τ = [(\ j → δ (i ∧ j)), φ ∨ ~ i, u] : Ξ
        tau :: Substitution
tau = forall a. DeBruijn a => [a] -> Substitution' a
parallelS forall a b. (a -> b) -> a -> b
$ [Term]
us forall a. [a] -> [a] -> [a]
++ (Term
phi Term -> Term -> Term
`iMax` Term -> Term
iNeg (Nat -> Term
var Nat
0))
                        forall a. a -> [a] -> [a]
: forall a b. (a -> b) -> [a] -> [b]
map (\ Term
d -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
defaultArgInfo forall a b. (a -> b) -> a -> b
$ forall a. ArgName -> a -> Abs a
Abs ArgName
"i" forall a b. (a -> b) -> a -> b
$ forall a. Subst a => Nat -> a -> a
raise Nat
1 Term
d forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN forall a b. (a -> b) -> a -> b
$ (Term -> Term -> Term
iMin (Nat -> Term
var Nat
0) (Nat -> Term
var Nat
1))]) [Term]
ds
         where
          -- Ξ, i : I
          ([Term]
us, Term
phi:[Term]
ds) = forall a. Nat -> [a] -> ([a], [a])
splitAt (forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma') forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
reverse (forall a. Subst a => Nat -> a -> a
raise Nat
1 (forall a b. (a -> b) -> [a] -> [b]
map forall e. Arg e -> e
unArg (forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
tel)))

  let
    go :: [Term] -> [(Term, Dom CType)] -> TCMT IO [Term]
go [Term]
acc [] = forall (m :: * -> *) a. Monad m => a -> m a
return []
    go [Term]
acc ((Term
fname,Dom CType
field_ty) : [(Term, Dom CType)]
ps) = do
      -- Ξ, i : I, Φ[δ i]|_f ⊢ Φ_f = field_ty
      -- Ξ ⊢ b : field_ty [i := i1][acc]
      -- Ξ ⊢ parallesS acc : Φ[δ i1]|_f
      -- Ξ , i : I ⊢ τ = [(\ j → δ (i ∨ j), φ ∨ ~ i, us] : Ξ
      -- Ξ , i : I ⊢ parallesS (acc[τ]) : Φ[δ i1]|_f
      -- Ξ, i : I ⊢ field_ty [parallesS (acc[τ])]
      let
        filled_ty :: Dom CType
filled_ty = forall a. DeBruijn a => [a] -> Substitution' a
parallelS (Substitution
tau forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` [Term]
acc) forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Dom CType
field_ty
      Term
b <- (Term, Dom CType) -> TCMT IO Term
mkBody (Term
fname,Dom CType
filled_ty)
      [Term]
bs <- [Term] -> [(Term, Dom CType)] -> TCMT IO [Term]
go (Term
b forall a. a -> [a] -> [a]
: [Term]
acc) [(Term, Dom CType)]
ps
      forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Term
b forall a. a -> [a] -> [a]
: [Term]
bs

  [Term]
bodys <- [Term] -> [(Term, Dom CType)] -> TCMT IO [Term]
go [] (forall a b. [a] -> [b] -> [(a, b)]
zip [Term]
the_fields (forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a b. (a, b) -> b
snd) forall a b. (a -> b) -> a -> b
$ forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom CType)
fsT_tel)) -- ∀ f.  Ξ, i : I, Φ[δ i]|_f ⊢ Φ[δ i]_f
  let
    -- Ξ, i : I ⊢ ... : Δ.Φ
    theSubst :: Substitution
theSubst = forall a. [a] -> [a]
reverse (Substitution
tau forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` [Term]
bodys) forall a. DeBruijn a => [a] -> Substitution' a -> Substitution' a
++# (forall a. Nat -> Substitution' a -> Substitution' a
liftS Nat
1 (forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
tel forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
deltaI)) forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params)
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ ((QName
theName, Tele (Dom Type)
tel, Substitution
theta forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Type
rtype, forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap CType -> Type
fromCType) [Dom CType]
clause_types, [Term]
bodys), Substitution
theSubst)
  where
    -- record type in 'exponentiated' context
    -- (params : Δ^I), i : I |- T[params i]
    rect' :: Type
rect' = forall {a}. Sized a => a -> Substitution
sub Tele (Dom Type)
params forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Type
rect
    -- Δ^I, i : I |- sub Δ : Δ
    sub :: a -> Substitution
sub a
tel = Nat -> Substitution
expS forall a b. (a -> b) -> a -> b
$ forall a. Sized a => a -> Nat
size a
tel

-- invariant: resulting tel Γ is such that Γ = (δ : Δ), (φ : I), (u : ...), (a0 : R δ))
--            where u and a0 have types matching the arguments of primHComp.
defineHCompForFields
  :: (Term -> QName -> Term) -- ^ how to apply a "projection" to a term
  -> QName       -- ^ some name, e.g. record name
  -> Telescope   -- ^ param types Δ
  -> Tele (Dom LType)   -- ^ fields' types Δ ⊢ Φ
  -> [Arg QName] -- ^ fields' names
  -> LType        -- ^ record type (δ : Δ) ⊢ R[δ]
  -> TCM ((QName, Telescope, Type, [Dom Type], [Term]),Substitution)
defineHCompForFields :: (Term -> QName -> Term)
-> QName
-> Tele (Dom Type)
-> Tele (Dom LType)
-> [Arg QName]
-> LType
-> TCM
     ((QName, Tele (Dom Type), Type, [Dom Type], [Term]), Substitution)
defineHCompForFields Term -> QName -> Term
applyProj QName
name Tele (Dom Type)
params Tele (Dom LType)
fsT [Arg QName]
fns LType
rect = do
  Type
interval <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType
  let delta :: Tele (Dom Type)
delta = Tele (Dom Type)
params
  Term
iz <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIZero
  Term
io <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primIOne
  Term
imin <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primIMin"
  Term
imax <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primIMax"
  Term
tIMax <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primIMax"
  Term
ineg <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primINeg"
  Term
hcomp <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
builtinHComp
  Term
transp <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
builtinTrans
  Term
por <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
ArgName -> m Term
getPrimitiveTerm ArgName
"primPOr"
  Term
one <- forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Term
primItIsOne
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"comp.rec" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
text forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show Tele (Dom Type)
params
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"comp.rec" Nat
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
text forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show Tele (Dom Type)
delta
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"comp.rec" Nat
10 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
text forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show Tele (Dom LType)
fsT

  let thePrefix :: ArgName
thePrefix = ArgName
"hcomp-"
  QName
theName <- ArgName -> TCMT IO QName
freshAbstractQName'_ forall a b. (a -> b) -> a -> b
$ ArgName
thePrefix forall a. [a] -> [a] -> [a]
++ forall a. Pretty a => a -> ArgName
P.prettyShow (QName -> Name
A.qnameName QName
name)

  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> ArgName -> m ()
reportSLn ArgName
"hcomp.rec" Nat
5 forall a b. (a -> b) -> a -> b
$ (ArgName
"Generated name: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show QName
theName forall a. [a] -> [a] -> [a]
++ ArgName
" " forall a. [a] -> [a] -> [a]
++ QName -> ArgName
showQNameId QName
theName)

  Type
theType <- (forall t. Abstract t => Tele (Dom Type) -> t -> t
abstract Tele (Dom Type)
delta forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a. [ArgName] -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
              NamesT (TCMT IO) Type
rect <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ LType -> Type
fromLType LType
rect
              forall (m :: * -> *).
(MonadFail m, MonadAddContext m, MonadDebug m) =>
ArgName
-> NamesT m Type
-> (NamesT m Term -> NamesT m Type)
-> NamesT m Type
nPi' ArgName
"phi" forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
phi ->
               forall (m :: * -> *).
(MonadFail m, MonadAddContext m, MonadDebug m) =>
ArgName
-> NamesT m Type
-> (NamesT m Term -> NamesT m Type)
-> NamesT m Type
nPi' ArgName
"i" forall (m :: * -> *).
(HasBuiltins m, MonadError TCErr m, MonadTCEnv m, ReadTCState m) =>
m Type
primIntervalType (\ NamesT (TCMT IO) Term
i ->
                forall (m :: * -> *).
(MonadAddContext m, HasBuiltins m, MonadDebug m) =>
ArgName
-> NamesT m Term
-> (NamesT m Term -> NamesT m Type)
-> NamesT m Type
pPi' ArgName
"o" NamesT (TCMT IO) Term
phi forall a b. (a -> b) -> a -> b
$ \ NamesT (TCMT IO) Term
_ -> NamesT (TCMT IO) Type
rect) forall (m :: * -> *). Applicative m => m Type -> m Type -> m Type
-->
               NamesT (TCMT IO) Type
rect forall (m :: * -> *). Applicative m => m Type -> m Type -> m Type
--> NamesT (TCMT IO) Type
rect

  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"hcomp.rec" Nat
20 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
theType
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"hcomp.rec" Nat
60 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
text forall a b. (a -> b) -> a -> b
$ ArgName
"sort = " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show (LType -> Level
lTypeLevel LType
rect)

  Language
lang <- forall (m :: * -> *). HasOptions m => m Language
getLanguage
  forall a. TCM a -> TCM a
noMutualBlock forall a b. (a -> b) -> a -> b
$ QName -> Definition -> TCM ()
addConstant QName
theName forall a b. (a -> b) -> a -> b
$
    (ArgInfo -> QName -> Type -> Language -> Defn -> Definition
defaultDefn ArgInfo
defaultArgInfo QName
theName Type
theType Language
lang
       (FunctionData -> Defn
FunctionDefn forall a b. (a -> b) -> a -> b
$ FunctionData
emptyFunctionData { _funTerminates :: Maybe Bool
_funTerminates = forall a. a -> Maybe a
Just Bool
True, _funIsKanOp :: Maybe QName
_funIsKanOp = forall a. a -> Maybe a
Just QName
name }))
      { defNoCompilation :: Bool
defNoCompilation = Bool
True }
  --   ⊢ Γ = gamma = (δ : Δ) (φ : I) (_ : (i : I) -> Partial φ (R δ)) (_ : R δ)
  -- Γ ⊢     rtype = R δ
  TelV Tele (Dom Type)
gamma Type
rtype <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
theType

  let -- Γ ⊢ R δ
      drect_gamma :: LType
drect_gamma = forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
delta) forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` LType
rect

  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"hcomp.rec" Nat
60 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
text forall a b. (a -> b) -> a -> b
$ ArgName
"sort = " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show (LType -> Level
lTypeLevel LType
drect_gamma)

  let

      -- (γ : Γ) ⊢ hcompR γ : rtype
      compTerm :: Term
compTerm = QName -> [Elim' Term] -> Term
Def QName
theName [] forall t. Apply t => t -> [Arg Term] -> t
`apply` forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
gamma

      -- (δ, φ, u, u0) : Γ ⊢ φ : I
      the_phi :: Term
the_phi = Nat -> Term
var Nat
2
      -- (δ, φ, u, u0) : Γ ⊢ u : (i : I) → [φ] → R (δ i)
      the_u :: Term
the_u   = Nat -> Term
var Nat
1
      -- (δ, φ, u, u0) : Γ ⊢ u0 : R (δ i0)
      the_u0 :: Term
the_u0  = Nat -> Term
var Nat
0

      -- ' (δ, φ, u, u0) : Γ ⊢ fillR Γ : (i : I) → rtype[ δ ↦ (\ j → δ (i ∧ j))]
      fillTerm :: Term
fillTerm = forall a. [ArgName] -> NamesT Fail a -> a
runNames [] forall a b. (a -> b) -> a -> b
$ do
        NamesT Fail Term
rect <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t a. Type'' t a -> a
unEl  forall b c a. (b -> c) -> (a -> b) -> a -> c
. LType -> Type
fromLType  forall a b. (a -> b) -> a -> b
$ LType
drect_gamma
        NamesT Fail Term
lvl  <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall b c a. (b -> c) -> (a -> b) -> a -> c
. Level -> Term
Level forall b c a. (b -> c) -> (a -> b) -> a -> c
. LType -> Level
lTypeLevel forall a b. (a -> b) -> a -> b
$ LType
drect_gamma
        [NamesT Fail (Arg Term)]
params     <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open forall a b. (a -> b) -> a -> b
$ forall a. Nat -> [a] -> [a]
take (forall a. Sized a => a -> Nat
size Tele (Dom Type)
delta) forall a b. (a -> b) -> a -> b
$ forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Tele (Dom Type)
gamma
        [NamesT Fail Term
phi,NamesT Fail Term
w,NamesT Fail Term
w0] <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open [Term
the_phi,Term
the_u,Term
the_u0]
        -- (δ : Δ, φ : I, w : .., w0 : R δ) ⊢
        -- ' fillR Γ = λ i → hcompR δ (φ ∨ ~ i) (\ j → [ φ ↦ w (i ∧ j) , ~ i ↦ w0 ]) w0
        --           = hfillR δ φ w w0
        forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT Fail Term
i -> do
          [Arg Term]
args <- forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence [NamesT Fail (Arg Term)]
params
          Term
psi  <- forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
imax forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
phi forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
ineg forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
i)
          Term
u <- forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"j" (\ NamesT Fail Term
j -> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
por forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> NamesT Fail Term
lvl
                                        forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
phi
                                        forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
ineg forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
i)
                                        forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"_" (\ NamesT Fail Term
o -> NamesT Fail Term
rect)
                                        forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT Fail Term
w forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
imin forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
i forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
j))
                                        forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"_" (\ NamesT Fail Term
o -> NamesT Fail Term
w0) -- TODO wait for i = 0
                       )
          Term
u0 <- NamesT Fail Term
w0
          forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ QName -> [Elim' Term] -> Term
Def QName
theName [] forall t. Apply t => t -> [Arg Term] -> t
`apply` ([Arg Term]
args forall a. [a] -> [a] -> [a]
++ [forall e. e -> Arg e
argN Term
psi, forall e. e -> Arg e
argN Term
u, forall e. e -> Arg e
argN Term
u0])

      -- (γ : Γ) ⊢ (flatten Φ)[n ↦ f_n (compR γ)]
      clause_types :: [Dom LType]
clause_types = forall a. DeBruijn a => [a] -> Substitution' a
parallelS [Term
compTerm Term -> QName -> Term
`applyProj` (forall e. Arg e -> e
unArg Arg QName
fn)
                               | Arg QName
fn <- forall a. [a] -> [a]
reverse [Arg QName]
fns] forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst`
                       forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel (forall a. Nat -> Substitution' a
raiseS (forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
delta) forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Tele (Dom LType)
fsT) -- Γ, Φ ⊢ flatten Φ
      -- Δ ⊢ Φ = fsT
      -- Γ, i : I ⊢ Φ'
      fsT' :: Tele (Dom LType)
fsT' = forall a. Nat -> Substitution' a
raiseS ((forall a. Sized a => a -> Nat
size Tele (Dom Type)
gamma forall a. Num a => a -> a -> a
- forall a. Sized a => a -> Nat
size Tele (Dom Type)
delta) forall a. Num a => a -> a -> a
+ Nat
1) forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst` Tele (Dom LType)
fsT

      -- Γ, i : I ⊢ (flatten Φ')[n ↦ f_n (fillR Γ i)]
      filled_types :: [Dom LType]
filled_types = forall a. DeBruijn a => [a] -> Substitution' a
parallelS [forall a. Subst a => Nat -> a -> a
raise Nat
1 Term
fillTerm forall t. Apply t => t -> [Arg Term] -> t
`apply` [forall e. e -> Arg e
argN forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
0] Term -> QName -> Term
`applyProj` (forall e. Arg e -> e
unArg Arg QName
fn)
                               | Arg QName
fn <- forall a. [a] -> [a]
reverse [Arg QName]
fns] forall a. Subst a => Substitution' (SubstArg a) -> a -> a
`applySubst`
                       forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel Tele (Dom LType)
fsT' -- Γ, i : I, Φ' ⊢ flatten Φ'


  NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
comp <- do
        let
          imax :: NamesT Fail Term -> NamesT Fail Term -> NamesT Fail Term
imax NamesT Fail Term
i NamesT Fail Term
j = forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
tIMax forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
i forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
j
        let forward :: NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
forward NamesT Fail Term
la NamesT Fail Term
bA NamesT Fail Term
r NamesT Fail Term
u = forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
transp forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" (\ NamesT Fail Term
i -> NamesT Fail Term
la forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT Fail Term
i NamesT Fail Term -> NamesT Fail Term -> NamesT Fail Term
`imax` NamesT Fail Term
r))
                                            forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" (\ NamesT Fail Term
i -> NamesT Fail Term
bA forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> (NamesT Fail Term
i NamesT Fail Term -> NamesT Fail Term -> NamesT Fail Term
`imax` NamesT Fail Term
r))
                                            forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
r
                                            forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
u
        forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ \ NamesT Fail Term
la NamesT Fail Term
bA NamesT Fail Term
phi NamesT Fail Term
u NamesT Fail Term
u0 ->
          forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
hcomp forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> (NamesT Fail Term
la forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> (NamesT Fail Term
bA forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
io) forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<#> NamesT Fail Term
phi
                      forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" (\ NamesT Fail Term
i -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT Fail Term
o ->
                              NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
forward NamesT Fail Term
la NamesT Fail Term
bA NamesT Fail Term
i (NamesT Fail Term
u forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
i forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<..> NamesT Fail Term
o))
                      forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
forward NamesT Fail Term
la NamesT Fail Term
bA (forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
iz) NamesT Fail Term
u0
  let
      mkBody :: (Arg QName, Dom LType) -> TCMT IO Term
mkBody (Arg QName
fname, Dom LType
filled_ty') = do
        let
          proj :: NamesT Fail Term -> NamesT Fail Term
proj NamesT Fail Term
t = (Term -> QName -> Term
`applyProj` forall e. Arg e -> e
unArg Arg QName
fname) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NamesT Fail Term
t
          filled_ty :: Term
filled_ty = ArgInfo -> Abs Term -> Term
Lam ArgInfo
defaultArgInfo (forall a. ArgName -> a -> Abs a
Abs ArgName
"i" forall a b. (a -> b) -> a -> b
$ (forall t a. Type'' t a -> a
unEl forall b c a. (b -> c) -> (a -> b) -> a -> c
. LType -> Type
fromLType forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t e. Dom' t e -> e
unDom) Dom LType
filled_ty')
          -- Γ ⊢ l : I -> Level of filled_ty
        Level
l <- forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce forall a b. (a -> b) -> a -> b
$ LType -> Level
lTypeLevel forall a b. (a -> b) -> a -> b
$ forall t e. Dom' t e -> e
unDom Dom LType
filled_ty'
        let lvl :: Term
lvl = ArgInfo -> Abs Term -> Term
Lam ArgInfo
defaultArgInfo (forall a. ArgName -> a -> Abs a
Abs ArgName
"i" forall a b. (a -> b) -> a -> b
$ Level -> Term
Level Level
l)
        forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. [ArgName] -> NamesT Fail a -> a
runNames [] forall a b. (a -> b) -> a -> b
$ do
             NamesT Fail Term
lvl <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
lvl
             [NamesT Fail Term
phi,NamesT Fail Term
w,NamesT Fail Term
w0] <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open [Term
the_phi,Term
the_u,Term
the_u0]
             NamesT Fail Term
filled_ty <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
filled_ty

             NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
-> NamesT Fail Term
comp NamesT Fail Term
lvl
                  NamesT Fail Term
filled_ty
                  NamesT Fail Term
phi
                  (forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
lam ArgName
"i" forall a b. (a -> b) -> a -> b
$ \ NamesT Fail Term
i -> forall (m :: * -> *).
MonadFail m =>
ArgName -> (NamesT m Term -> NamesT m Term) -> NamesT m Term
ilam ArgName
"o" forall a b. (a -> b) -> a -> b
$ \ NamesT Fail Term
o -> NamesT Fail Term -> NamesT Fail Term
proj forall a b. (a -> b) -> a -> b
$ NamesT Fail Term
w forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<@> NamesT Fail Term
i forall (m :: * -> *). Applicative m => m Term -> m Term -> m Term
<..> NamesT Fail Term
o) -- TODO wait for phi = 1
                  (NamesT Fail Term -> NamesT Fail Term
proj NamesT Fail Term
w0)

  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"hcomp.rec" Nat
60 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
text forall a b. (a -> b) -> a -> b
$ ArgName
"filled_types sorts:" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show (forall a b. (a -> b) -> [a] -> [b]
map (forall a. LensSort a => a -> Sort' Term
getSort forall b c a. (b -> c) -> (a -> b) -> a -> c
. LType -> Type
fromLType forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t e. Dom' t e -> e
unDom) [Dom LType]
filled_types)

  [Term]
bodys <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Arg QName, Dom LType) -> TCMT IO Term
mkBody (forall a b. [a] -> [b] -> [(a, b)]
zip [Arg QName]
fns [Dom LType]
filled_types)
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ ((QName
theName, Tele (Dom Type)
gamma, Type
rtype, forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap LType -> Type
fromLType) [Dom LType]
clause_types, [Term]
bodys),forall a. Substitution' a
IdS)


getGeneralizedParameters :: Set Name -> QName -> TCM [Maybe Name]
getGeneralizedParameters :: Set Name -> QName -> TCM [Maybe Name]
getGeneralizedParameters Set Name
gpars QName
name | forall a. Set a -> Bool
Set.null Set Name
gpars = forall (m :: * -> *) a. Monad m => a -> m a
return []
getGeneralizedParameters Set Name
gpars QName
name = do
  -- Drop the named parameters that shouldn't be in scope (if the user
  -- wrote a split data type)
  let inscope :: Name -> Maybe Name
inscope Name
x = Name
x forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ forall (f :: * -> *). Alternative f => Bool -> f ()
guard (forall a. Ord a => a -> Set a -> Bool
Set.member Name
x Set Name
gpars)
  forall a b. (a -> b) -> [a] -> [b]
map (forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Name -> Maybe Name
inscope) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Definition -> [Maybe Name]
defGeneralizedParams forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (m :: * -> *).
(Functor m, HasConstInfo m, HasOptions m, ReadTCState m,
 MonadTCEnv m, MonadDebug m) =>
Definition -> m Definition
instantiateDef forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
name)

-- | Bind the named generalized parameters.
bindGeneralizedParameters :: [Maybe Name] -> Type -> (Telescope -> Type -> TCM a) -> TCM a
bindGeneralizedParameters :: forall a.
[Maybe Name] -> Type -> (Tele (Dom Type) -> Type -> TCM a) -> TCM a
bindGeneralizedParameters [] Type
t Tele (Dom Type) -> Type -> TCM a
ret = Tele (Dom Type) -> Type -> TCM a
ret forall a. Tele a
EmptyTel Type
t
bindGeneralizedParameters (Maybe Name
name : [Maybe Name]
names) Type
t Tele (Dom Type) -> Type -> TCM a
ret =
  case forall t a. Type'' t a -> a
unEl Type
t of
    Pi Dom Type
a Abs Type
b -> TCM a -> TCM a
ext forall a b. (a -> b) -> a -> b
$ forall a.
[Maybe Name] -> Type -> (Tele (Dom Type) -> Type -> TCM a) -> TCM a
bindGeneralizedParameters [Maybe Name]
names (forall a. Abs a -> a
unAbs Abs Type
b) forall a b. (a -> b) -> a -> b
$ \ Tele (Dom Type)
tel Type
t -> Tele (Dom Type) -> Type -> TCM a
ret (forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
a (Tele (Dom Type)
tel forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Abs Type
b)) Type
t
      where
        ext :: TCM a -> TCM a
ext | Just Name
x <- Maybe Name
name = forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (Name
x, Dom Type
a)
            | Bool
otherwise      = forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (forall a. Abs a -> ArgName
absName Abs Type
b, Dom Type
a)
    Term
_      -> forall a. HasCallStack => a
__IMPOSSIBLE__

-- | Bind the parameters of a datatype.
--
--   We allow omission of hidden parameters at the definition site.
--   Example:
--   @
--     data D {a} (A : Set a) : Set a
--     data D A where
--       c : A -> D A
--   @

bindParameters
  :: Int            -- ^ Number of parameters
  -> [A.LamBinding] -- ^ Bindings from definition site.
  -> Type           -- ^ Pi-type of bindings coming from signature site.
  -> (Telescope -> Type -> TCM a)
     -- ^ Continuation, accepting parameter telescope and rest of type.
     --   The parameters are part of the context when the continutation is invoked.
  -> TCM a

bindParameters :: forall a.
Nat
-> [LamBinding]
-> Type
-> (Tele (Dom Type) -> Type -> TCM a)
-> TCM a
bindParameters Nat
0 [] Type
a Tele (Dom Type) -> Type -> TCM a
ret = Tele (Dom Type) -> Type -> TCM a
ret forall a. Tele a
EmptyTel Type
a

bindParameters Nat
0 (LamBinding
par : [LamBinding]
_) Type
_ Tele (Dom Type) -> Type -> TCM a
_ = forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange LamBinding
par forall a b. (a -> b) -> a -> b
$
  forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< do
    forall (m :: * -> *). Applicative m => ArgName -> m Doc
text ArgName
"Unexpected parameter" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyA LamBinding
par

bindParameters Nat
npars [] Type
t Tele (Dom Type) -> Type -> TCM a
ret =
  case forall t a. Type'' t a -> a
unEl Type
t of
    Pi Dom Type
a Abs Type
b | Bool -> Bool
not (forall a. LensHiding a => a -> Bool
visible Dom Type
a) -> do
              Name
x <- forall a (m :: * -> *).
(FreshName a, MonadFresh NameId m) =>
a -> m Name
freshName_ (forall a. Abs a -> ArgName
absName Abs Type
b)
              forall a.
Nat
-> [LamBinding]
-> Name
-> Dom Type
-> Abs Type
-> (Tele (Dom Type) -> Type -> TCM a)
-> TCM a
bindParameter Nat
npars [] Name
x Dom Type
a Abs Type
b Tele (Dom Type) -> Type -> TCM a
ret
           | Bool
otherwise ->
              forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<<
                forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCMT IO Doc
"Expected binding for parameter"
                    , forall (m :: * -> *). Applicative m => ArgName -> m Doc
text (forall a. Abs a -> ArgName
absName Abs Type
b) forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *). Applicative m => ArgName -> m Doc
text ArgName
":" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (forall t e. Dom' t e -> e
unDom Dom Type
a) ]
    Term
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__

bindParameters Nat
npars par :: [LamBinding]
par@(A.DomainFull (A.TBind Range
_ TypedBindingInfo
_ List1 (NamedArg Binder)
xs Type
e) : [LamBinding]
bs) Type
a Tele (Dom Type) -> Type -> TCM a
ret =
  forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange [LamBinding]
par forall a b. (a -> b) -> a -> b
$
  forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< do
    let s :: ArgName
s | forall (t :: * -> *) a. Foldable t => t a -> Nat
length List1 (NamedArg Binder)
xs forall a. Ord a => a -> a -> Bool
> Nat
1 = ArgName
"s"
          | Bool
otherwise     = ArgName
""
    forall (m :: * -> *). Applicative m => ArgName -> m Doc
text (ArgName
"Unexpected type signature for parameter" forall a. [a] -> [a] -> [a]
++ ArgName
s) forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyA List1 (NamedArg Binder)
xs)

bindParameters Nat
_ (A.DomainFull A.TLet{} : [LamBinding]
_) Type
_ Tele (Dom Type) -> Type -> TCM a
_ = forall a. HasCallStack => a
__IMPOSSIBLE__

bindParameters Nat
_ (par :: LamBinding
par@(A.DomainFree TacticAttr
_ NamedArg Binder
arg) : [LamBinding]
ps) Type
_ Tele (Dom Type) -> Type -> TCM a
_
  | forall a. LensModality a => a -> Modality
getModality NamedArg Binder
arg forall a. Eq a => a -> a -> Bool
/= Modality
defaultModality = forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange LamBinding
par forall a b. (a -> b) -> a -> b
$
     forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< do
       forall (m :: * -> *). Applicative m => ArgName -> m Doc
text ArgName
"Unexpected modality/relevance annotation in" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyA LamBinding
par

bindParameters Nat
npars ps0 :: [LamBinding]
ps0@(par :: LamBinding
par@(A.DomainFree TacticAttr
_ NamedArg Binder
arg) : [LamBinding]
ps) Type
t Tele (Dom Type) -> Type -> TCM a
ret = do
  let x :: Binder
x          = forall a. NamedArg a -> a
namedArg NamedArg Binder
arg
      TelV Tele (Dom Type)
tel Type
_ = Type -> TelV Type
telView' Type
t
  case forall e a. NamedArg e -> [Dom a] -> ImplicitInsertion
insertImplicit NamedArg Binder
arg forall a b. (a -> b) -> a -> b
$ forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom Type)
tel of
    ImplicitInsertion
NoInsertNeeded -> [LamBinding] -> Name -> TCM a
continue [LamBinding]
ps forall a b. (a -> b) -> a -> b
$ BindName -> Name
A.unBind forall a b. (a -> b) -> a -> b
$ forall a. Binder' a -> a
A.binderName Binder
x
    ImpInsert [Dom ()]
_    -> [LamBinding] -> Name -> TCM a
continue [LamBinding]
ps0 forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall a (m :: * -> *).
(FreshName a, MonadFresh NameId m) =>
a -> m Name
freshName_ (forall a. Abs a -> ArgName
absName Abs Type
b)
    ImplicitInsertion
BadImplicits   -> forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange LamBinding
par forall a b. (a -> b) -> a -> b
$
     forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< do
       forall (m :: * -> *). Applicative m => ArgName -> m Doc
text ArgName
"Unexpected parameter" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyA LamBinding
par
    NoSuchName ArgName
x   -> forall (m :: * -> *) x a.
(MonadTrace m, HasRange x) =>
x -> m a -> m a
setCurrentRange LamBinding
par forall a b. (a -> b) -> a -> b
$
      forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< do
        forall (m :: * -> *). Applicative m => ArgName -> m Doc
text (ArgName
"No parameter of name " forall a. [a] -> [a] -> [a]
++ ArgName
x)
  where
    Pi dom :: Dom Type
dom@(Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
info', unDom :: forall t e. Dom' t e -> e
unDom = Type
a}) Abs Type
b = forall t a. Type'' t a -> a
unEl Type
t -- TODO:: Defined but not used: info', a
    continue :: [LamBinding] -> Name -> TCM a
continue [LamBinding]
ps Name
x = forall a.
Nat
-> [LamBinding]
-> Name
-> Dom Type
-> Abs Type
-> (Tele (Dom Type) -> Type -> TCM a)
-> TCM a
bindParameter Nat
npars [LamBinding]
ps Name
x Dom Type
dom Abs Type
b Tele (Dom Type) -> Type -> TCM a
ret

bindParameter :: Int -> [A.LamBinding] -> Name -> Dom Type -> Abs Type -> (Telescope -> Type -> TCM a) -> TCM a
bindParameter :: forall a.
Nat
-> [LamBinding]
-> Name
-> Dom Type
-> Abs Type
-> (Tele (Dom Type) -> Type -> TCM a)
-> TCM a
bindParameter Nat
npars [LamBinding]
ps Name
x Dom Type
a Abs Type
b Tele (Dom Type) -> Type -> TCM a
ret =
  forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (Name
x, Dom Type
a) forall a b. (a -> b) -> a -> b
$
    forall a.
Nat
-> [LamBinding]
-> Type
-> (Tele (Dom Type) -> Type -> TCM a)
-> TCM a
bindParameters (Nat
npars forall a. Num a => a -> a -> a
- Nat
1) [LamBinding]
ps (forall a. Subst a => Abs a -> a
absBody Abs Type
b) forall a b. (a -> b) -> a -> b
$ \ Tele (Dom Type)
tel Type
s ->
      Tele (Dom Type) -> Type -> TCM a
ret (forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
a forall a b. (a -> b) -> a -> b
$ forall a. ArgName -> a -> Abs a
Abs (Name -> ArgName
nameToArgName Name
x) Tele (Dom Type)
tel) Type
s

-- | Check that the arguments to a constructor fits inside the sort of the datatype.
--   The third argument is the type of the constructor.
--
--   When @--without-K@ is active and the type is fibrant the
--   procedure also checks that the type is usable at the current
--   modality. See #4784 and #5434.
--
--   As a side effect, return the arity of the constructor.

fitsIn :: UniverseCheck -> [IsForced] -> Type -> Sort -> TCM Int
fitsIn :: UniverseCheck -> [IsForced] -> Type -> Sort' Term -> TCMT IO Nat
fitsIn UniverseCheck
uc [IsForced]
forceds Type
t Sort' Term
s = do
  forall (m :: * -> *).
MonadDebug m =>
ArgName -> Nat -> TCMT IO Doc -> m ()
reportSDoc ArgName
"tc.data.fits" Nat
10 forall a b. (a -> b) -> a -> b
$
    forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
sep [ TCMT IO Doc
"does" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t
        , TCMT IO Doc
"of sort" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (forall a. LensSort a => a -> Sort' Term
getSort Type
t)
        , TCMT IO Doc
"fit in" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Sort' Term
s forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
<+> TCMT IO Doc
"?"
        ]
  -- The code below would be simpler, but doesn't allow datatypes
  -- to be indexed by the universe level.
  -- s' <- instantiateFull (getSort t)
  -- noConstraints $ s' `leqSort` s

  Bool
withoutK <- forall (m :: * -> *). HasOptions m => m Bool
withoutKOption
  forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
withoutK forall a b. (a -> b) -> a -> b
$ do
    Quantity
q <- forall (m :: * -> *) a. MonadTCEnv m => Lens' a TCEnv -> m a
viewTC Lens' Quantity TCEnv
eQuantity
    MonadConstraint (TCMT IO) =>
Maybe (Sort' Term)
-> WhyCheckModality -> Modality -> Term -> TCM ()
usableAtModality' (forall a. a -> Maybe a
Just Sort' Term
s) WhyCheckModality
ConstructorType (forall a. LensQuantity a => Quantity -> a -> a
setQuantity Quantity
q Modality
defaultModality) (forall t a. Type'' t a -> a
unEl Type
t)

  Bool -> [IsForced] -> Type -> Sort' Term -> TCMT IO Nat
fitsIn' Bool
withoutK [IsForced]
forceds Type
t Sort' Term
s
  where
  fitsIn' :: Bool -> [IsForced] -> Type -> Sort' Term -> TCMT IO Nat
fitsIn' Bool
withoutK [IsForced]
forceds Type
t Sort' Term
s = do
    Maybe (Bool, Dom Type, Abs Type)
vt <- do
      Either (Dom Type, Abs Type) Type
t <- forall (m :: * -> *).
PureTCM m =>
Type -> m (Either (Dom Type, Abs Type) Type)
pathViewAsPi Type
t
      forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ case Either (Dom Type, Abs Type) Type
t of
                    Left (Dom Type
a,Abs Type
b)     -> forall a. a -> Maybe a
Just (Bool
True ,Dom Type
a,Abs Type
b)
                    Right (El Sort' Term
_ Term
t) | Pi Dom Type
a Abs Type
b <- Term
t
                                   -> forall a. a -> Maybe a
Just (Bool
False,Dom Type
a,Abs Type
b)
                    Either (Dom Type, Abs Type) Type
_              -> forall a. Maybe a
Nothing
    case Maybe (Bool, Dom Type, Abs Type)
vt of
      Just (Bool
isPath, Dom Type
dom, Abs Type
b) -> do
        let (IsForced
forced,[IsForced]
forceds') = [IsForced] -> (IsForced, [IsForced])
nextIsForced [IsForced]
forceds
        forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (IsForced -> Bool
isForced IsForced
forced Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
withoutK) forall a b. (a -> b) -> a -> b
$ do
          Sort' Term
sa <- forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce forall a b. (a -> b) -> a -> b
$ forall a. LensSort a => a -> Sort' Term
getSort Dom Type
dom
          forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Bool
isPath Bool -> Bool -> Bool
|| UniverseCheck
uc forall a. Eq a => a -> a -> Bool
== UniverseCheck
NoUniverseCheck Bool -> Bool -> Bool
|| Sort' Term
sa forall a. Eq a => a -> a -> Bool
== forall t. Sort' t
SizeUniv) forall a b. (a -> b) -> a -> b
$
            Sort' Term
sa forall (m :: * -> *).
MonadConversion m =>
Sort' Term -> Sort' Term -> m ()
`leqSort` Sort' Term
s
        forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext (forall a. Abs a -> ArgName
absName Abs Type
b, Dom Type
dom) forall a b. (a -> b) -> a -> b
$ do
          forall a. Enum a => a -> a
succ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Bool -> [IsForced] -> Type -> Sort' Term -> TCMT IO Nat
fitsIn' Bool
withoutK [IsForced]
forceds' (forall a. Subst a => Abs a -> a
absBody Abs Type
b) (forall a. Subst a => Nat -> a -> a
raise Nat
1 Sort' Term
s)
      Maybe (Bool, Dom Type, Abs Type)
_ -> do
        forall a. LensSort a => a -> Sort' Term
getSort Type
t forall (m :: * -> *).
MonadConversion m =>
Sort' Term -> Sort' Term -> m ()
`leqSort` Sort' Term
s
        forall (m :: * -> *) a. Monad m => a -> m a
return Nat
0

-- | When --without-K is enabled, we should check that the sorts of
--   the index types fit into the sort of the datatype.
checkIndexSorts :: Sort -> Telescope -> TCM ()
checkIndexSorts :: Sort' Term -> Tele (Dom Type) -> TCM ()
checkIndexSorts Sort' Term
s = \case
  Tele (Dom Type)
EmptyTel -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
  ExtendTel Dom Type
a Abs (Tele (Dom Type))
tel' -> do
    let sa :: Sort' Term
sa = forall a. LensSort a => a -> Sort' Term
getSort Dom Type
a
    -- Andreas, 2020-10-19, allow Size indices
    forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Sort' Term
sa forall a. Eq a => a -> a -> Bool
== forall t. Sort' t
SizeUniv) forall a b. (a -> b) -> a -> b
$ Sort' Term
sa forall (m :: * -> *).
MonadConversion m =>
Sort' Term -> Sort' Term -> m ()
`leqSort` Sort' Term
s
    forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Dom Type -> Abs a -> (a -> m b) -> m b
underAbstraction Dom Type
a Abs (Tele (Dom Type))
tel' forall a b. (a -> b) -> a -> b
$ Sort' Term -> Tele (Dom Type) -> TCM ()
checkIndexSorts (forall a. Subst a => Nat -> a -> a
raise Nat
1 Sort' Term
s)

-- | Return the parameters that share variables with the indices
-- nonLinearParameters :: Int -> Type -> TCM [Int]
-- nonLinearParameters nPars t =

data IsPathCons = PathCons | PointCons
  deriving (IsPathCons -> IsPathCons -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: IsPathCons -> IsPathCons -> Bool
$c/= :: IsPathCons -> IsPathCons -> Bool
== :: IsPathCons -> IsPathCons -> Bool
$c== :: IsPathCons -> IsPathCons -> Bool
Eq,Nat -> IsPathCons -> ArgName -> ArgName
[IsPathCons] -> ArgName -> ArgName
IsPathCons -> ArgName
forall a.
(Nat -> a -> ArgName -> ArgName)
-> (a -> ArgName) -> ([a] -> ArgName -> ArgName) -> Show a
showList :: [IsPathCons] -> ArgName -> ArgName
$cshowList :: [IsPathCons] -> ArgName -> ArgName
show :: IsPathCons -> ArgName
$cshow :: IsPathCons -> ArgName
showsPrec :: Nat -> IsPathCons -> ArgName -> ArgName
$cshowsPrec :: Nat -> IsPathCons -> ArgName -> ArgName
Show)

-- | Check that a type constructs something of the given datatype. The first
--   argument is the number of parameters to the datatype and the second the
--   number of additional non-parameters in the context (1 when generalizing, 0
--   otherwise).
--
constructs :: Int -> Int -> Type -> QName -> TCM IsPathCons
constructs :: Nat -> Nat -> Type -> QName -> TCM IsPathCons
constructs Nat
nofPars Nat
nofExtraVars Type
t QName
q = Nat -> Type -> TCM IsPathCons
constrT Nat
nofExtraVars Type
t
    where
        -- The number n counts the proper (non-parameter) constructor arguments.
        constrT :: Nat -> Type -> TCM IsPathCons
        constrT :: Nat -> Type -> TCM IsPathCons
constrT Nat
n Type
t = do
            Type
t <- forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Type
t
            Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type
pathV <- forall (m :: * -> *).
HasBuiltins m =>
m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi'whnf
            case forall t a. Type'' t a -> a
unEl Type
t of
                Pi Dom Type
_ (NoAbs ArgName
_ Type
b)  -> Nat -> Type -> TCM IsPathCons
constrT Nat
n Type
b
                Pi Dom Type
a Abs Type
b            -> forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Dom Type -> Abs a -> (a -> m b) -> m b
underAbstraction Dom Type
a Abs Type
b forall a b. (a -> b) -> a -> b
$ Nat -> Type -> TCM IsPathCons
constrT (Nat
n forall a. Num a => a -> a -> a
+ Nat
1)
                  -- OR: addCxtString (absName b) a $ constrT (n + 1) (absBody b)
                Term
_ | Left ((Dom Type
a,Abs Type
b),(Term, Term)
_) <- Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type
pathV Type
t -> do
                      IsPathCons
_ <- case Abs Type
b of
                             NoAbs ArgName
_ Type
b -> Nat -> Type -> TCM IsPathCons
constrT Nat
n Type
b
                             Abs Type
b         -> forall a (m :: * -> *) b.
(Subst a, MonadAddContext m) =>
Dom Type -> Abs a -> (a -> m b) -> m b
underAbstraction Dom Type
a Abs Type
b forall a b. (a -> b) -> a -> b
$ Nat -> Type -> TCM IsPathCons
constrT (Nat
n forall a. Num a => a -> a -> a
+ Nat
1)
                      forall (m :: * -> *) a. Monad m => a -> m a
return IsPathCons
PathCons
                Def QName
d [Elim' Term]
es | QName
d forall a. Eq a => a -> a -> Bool
== QName
q -> do
                  let vs :: [Arg Term]
vs = forall a. a -> Maybe a -> a
fromMaybe forall a. HasCallStack => a
__IMPOSSIBLE__ forall a b. (a -> b) -> a -> b
$ forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims [Elim' Term]
es
                  let ([Arg Term]
pars, [Arg Term]
ixs) = forall a. Nat -> [a] -> ([a], [a])
splitAt Nat
nofPars [Arg Term]
vs
                  -- check that the constructor parameters are the data parameters
                  forall {m :: * -> *}.
(MonadMetaSolver m, MonadWarning m, MonadStatistics m,
 MonadFresh ProblemId m, MonadFresh Nat m) =>
Nat -> [Arg Term] -> m ()
checkParams Nat
n [Arg Term]
pars
                  forall (m :: * -> *) a. Monad m => a -> m a
return IsPathCons
PointCons
                MetaV{} -> do
                  Definition
def <- forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
q
                  -- Analyse the type of q (name of the data type)
                  let td :: Type
td = Definition -> Type
defType Definition
def
                  TelV Tele (Dom Type)
tel Type
core <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
td
                  -- Construct the parameter arguments
                  -- The parameters are @n + nofPars - 1 .. n@
                  let us :: [Arg Term]
us = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\ Arg ArgName
arg Nat
x -> Nat -> Term
var Nat
x forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Arg ArgName
arg ) (forall a. TelToArgs a => a -> [Arg ArgName]
telToArgs Tele (Dom Type)
tel) forall a b. (a -> b) -> a -> b
$
                             forall a. Nat -> [a] -> [a]
take Nat
nofPars forall a b. (a -> b) -> a -> b
$ forall a. Integral a => a -> [a]
downFrom (Nat
nofPars forall a. Num a => a -> a -> a
+ Nat
n)
                  -- The indices are fresh metas
                  [Arg Term]
xs <- forall (m :: * -> *). MonadMetaSolver m => Type -> m [Arg Term]
newArgsMeta forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall a (m :: * -> *).
(PiApplyM a, MonadReduce m, HasBuiltins m) =>
Type -> a -> m Type
piApplyM Type
td [Arg Term]
us
                  let t' :: Type
t' = forall t a. Sort' t -> a -> Type'' t a
El (forall a. Subst a => Nat -> a -> a
raise Nat
n forall a b. (a -> b) -> a -> b
$ Defn -> Sort' Term
dataSort forall a b. (a -> b) -> a -> b
$ Definition -> Defn
theDef Definition
def) forall a b. (a -> b) -> a -> b
$ QName -> [Elim' Term] -> Term
Def QName
q forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a. Arg a -> Elim' a
Apply forall a b. (a -> b) -> a -> b
$ [Arg Term]
us forall a. [a] -> [a] -> [a]
++ [Arg Term]
xs
                  -- Andreas, 2017-11-07, issue #2840
                  -- We should not postpone here, otherwise we might upset the positivity checker.
                  forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM (forall (m :: * -> *).
(MonadConstraint m, MonadWarning m, MonadError TCErr m,
 MonadFresh ProblemId m) =>
m () -> m Bool
tryConversion forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadConversion m => Type -> Type -> m ()
equalType Type
t Type
t')
                      (Nat -> Type -> TCM IsPathCons
constrT Nat
n Type
t')
                      (forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ Type -> TypeError
ShouldEndInApplicationOfTheDatatype Type
t)
                Term
_ -> forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ Type -> TypeError
ShouldEndInApplicationOfTheDatatype Type
t

        checkParams :: Nat -> [Arg Term] -> m ()
checkParams Nat
n [Arg Term]
vs = forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m ()
zipWithM_ forall {m :: * -> *}.
(MonadMetaSolver m, MonadWarning m, MonadStatistics m,
 MonadFresh ProblemId m, MonadFresh Nat m) =>
Arg Term -> Nat -> m ()
sameVar [Arg Term]
vs [Nat]
ps
            where
                nvs :: Nat
nvs = forall (t :: * -> *) a. Foldable t => t a -> Nat
length [Arg Term]
vs
                ps :: [Nat]
ps  = forall a. [a] -> [a]
reverse forall a b. (a -> b) -> a -> b
$ forall a. Nat -> [a] -> [a]
take Nat
nvs [Nat
n..]

                sameVar :: Arg Term -> Nat -> m ()
sameVar Arg Term
arg Nat
i
                  -- skip irrelevant parameters
                  | forall a. LensRelevance a => a -> Bool
isIrrelevant Arg Term
arg = forall (m :: * -> *) a. Monad m => a -> m a
return ()
                  | Bool
otherwise = do
                    Type
t <- forall (m :: * -> *).
(Applicative m, MonadFail m, MonadTCEnv m) =>
Nat -> m Type
typeOfBV Nat
i
                    forall (m :: * -> *).
MonadConversion m =>
Type -> Term -> Term -> m ()
equalTerm Type
t (forall e. Arg e -> e
unArg Arg Term
arg) (Nat -> Term
var Nat
i)


-- | Is the type coinductive? Returns 'Nothing' if the answer cannot
-- be determined.

isCoinductive :: Type -> TCM (Maybe Bool)
isCoinductive :: Type -> TCM (Maybe Bool)
isCoinductive Type
t = do
  El Sort' Term
s Term
t <- forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Type
t
  case Term
t of
    Def QName
q [Elim' Term]
_ -> do
      Definition
def <- forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
q
      case Definition -> Defn
theDef Definition
def of
        Axiom       {} -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just Bool
False)
        DataOrRecSig{} -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
        Function    {} -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
        Datatype    {} -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just Bool
False)
        Record      {  recInduction :: Defn -> Maybe Induction
recInduction = Just Induction
CoInductive } -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just Bool
True)
        Record      {  recInduction :: Defn -> Maybe Induction
recInduction = Maybe Induction
_                } -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just Bool
False)
        GeneralizableVar{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
        Constructor {} -> forall a. HasCallStack => a
__IMPOSSIBLE__
        Primitive   {} -> forall a. HasCallStack => a
__IMPOSSIBLE__
        PrimitiveSort{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
        AbstractDefn{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
    Var   {} -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
    Lam   {} -> forall a. HasCallStack => a
__IMPOSSIBLE__
    Lit   {} -> forall a. HasCallStack => a
__IMPOSSIBLE__
    Level {} -> forall a. HasCallStack => a
__IMPOSSIBLE__
    Con   {} -> forall a. HasCallStack => a
__IMPOSSIBLE__
    Pi    {} -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just Bool
False)
    Sort  {} -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just Bool
False)
    MetaV {} -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
    DontCare{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
    Dummy ArgName
s [Elim' Term]
_  -> forall (m :: * -> *) a.
(HasCallStack, MonadDebug m) =>
ArgName -> m a
__IMPOSSIBLE_VERBOSE__ ArgName
s