{-# LANGUAGE CPP #-}
{-# LANGUAGE PatternSynonyms #-}
module Agda.Syntax.Internal
( module Agda.Syntax.Internal
, module Agda.Syntax.Internal.Blockers
, module Agda.Syntax.Internal.Elim
, module Agda.Syntax.Abstract.Name
, MetaId(..), ProblemId(..)
) where
import Prelude hiding (null)
import Control.Monad.Identity
import Control.DeepSeq
import Data.Function
import qualified Data.List as List
import Data.Maybe
import Data.Semigroup ( Semigroup, (<>), Sum(..) )
import qualified Data.Set as Set
import Data.Set (Set)
import Data.Traversable
import GHC.Generics (Generic)
import Agda.Syntax.Position
import Agda.Syntax.Common
import Agda.Syntax.Literal
import Agda.Syntax.Concrete.Pretty (prettyHiding)
import Agda.Syntax.Abstract.Name
import Agda.Syntax.Internal.Blockers
import Agda.Syntax.Internal.Elim
import Agda.Utils.CallStack
( CallStack
, HasCallStack
, prettyCallSite
, headCallSite
, withCallerCallStack
)
import Agda.Utils.Empty
import Agda.Utils.Functor
import Agda.Utils.Lens
import Agda.Utils.Null
import Agda.Utils.Size
import Agda.Utils.Pretty
import Agda.Utils.Tuple
import Agda.Utils.Impossible
data Dom' t e = Dom
{ forall t e. Dom' t e -> ArgInfo
domInfo :: ArgInfo
, forall t e. Dom' t e -> Maybe (WithOrigin (Ranged ArgName))
domName :: Maybe NamedName
, forall t e. Dom' t e -> Bool
domIsFinite :: Bool
, forall t e. Dom' t e -> Maybe t
domTactic :: Maybe t
, forall t e. Dom' t e -> e
unDom :: e
} deriving (Int -> Dom' t e -> ShowS
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
forall t e. (Show t, Show e) => Int -> Dom' t e -> ShowS
forall t e. (Show t, Show e) => [Dom' t e] -> ShowS
forall t e. (Show t, Show e) => Dom' t e -> ArgName
showList :: [Dom' t e] -> ShowS
$cshowList :: forall t e. (Show t, Show e) => [Dom' t e] -> ShowS
show :: Dom' t e -> ArgName
$cshow :: forall t e. (Show t, Show e) => Dom' t e -> ArgName
showsPrec :: Int -> Dom' t e -> ShowS
$cshowsPrec :: forall t e. (Show t, Show e) => Int -> Dom' t e -> ShowS
Show, forall a b. a -> Dom' t b -> Dom' t a
forall a b. (a -> b) -> Dom' t a -> Dom' t b
forall t a b. a -> Dom' t b -> Dom' t a
forall t a b. (a -> b) -> Dom' t a -> Dom' t b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Dom' t b -> Dom' t a
$c<$ :: forall t a b. a -> Dom' t b -> Dom' t a
fmap :: forall a b. (a -> b) -> Dom' t a -> Dom' t b
$cfmap :: forall t a b. (a -> b) -> Dom' t a -> Dom' t b
Functor, forall a. Dom' t a -> Bool
forall t a. Eq a => a -> Dom' t a -> Bool
forall t a. Num a => Dom' t a -> a
forall t a. Ord a => Dom' t a -> a
forall m a. Monoid m => (a -> m) -> Dom' t a -> m
forall t m. Monoid m => Dom' t m -> m
forall t e. Dom' t e -> Bool
forall t a. Dom' t a -> Int
forall t a. Dom' t a -> [a]
forall a b. (a -> b -> b) -> b -> Dom' t a -> b
forall t a. (a -> a -> a) -> Dom' t a -> a
forall t m a. Monoid m => (a -> m) -> Dom' t a -> m
forall t b a. (b -> a -> b) -> b -> Dom' t a -> b
forall t a b. (a -> b -> b) -> b -> Dom' t a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Dom' t a -> a
$cproduct :: forall t a. Num a => Dom' t a -> a
sum :: forall a. Num a => Dom' t a -> a
$csum :: forall t a. Num a => Dom' t a -> a
minimum :: forall a. Ord a => Dom' t a -> a
$cminimum :: forall t a. Ord a => Dom' t a -> a
maximum :: forall a. Ord a => Dom' t a -> a
$cmaximum :: forall t a. Ord a => Dom' t a -> a
elem :: forall a. Eq a => a -> Dom' t a -> Bool
$celem :: forall t a. Eq a => a -> Dom' t a -> Bool
length :: forall a. Dom' t a -> Int
$clength :: forall t a. Dom' t a -> Int
null :: forall a. Dom' t a -> Bool
$cnull :: forall t e. Dom' t e -> Bool
toList :: forall a. Dom' t a -> [a]
$ctoList :: forall t a. Dom' t a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Dom' t a -> a
$cfoldl1 :: forall t a. (a -> a -> a) -> Dom' t a -> a
foldr1 :: forall a. (a -> a -> a) -> Dom' t a -> a
$cfoldr1 :: forall t a. (a -> a -> a) -> Dom' t a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Dom' t a -> b
$cfoldl' :: forall t b a. (b -> a -> b) -> b -> Dom' t a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Dom' t a -> b
$cfoldl :: forall t b a. (b -> a -> b) -> b -> Dom' t a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Dom' t a -> b
$cfoldr' :: forall t a b. (a -> b -> b) -> b -> Dom' t a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Dom' t a -> b
$cfoldr :: forall t a b. (a -> b -> b) -> b -> Dom' t a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Dom' t a -> m
$cfoldMap' :: forall t m a. Monoid m => (a -> m) -> Dom' t a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Dom' t a -> m
$cfoldMap :: forall t m a. Monoid m => (a -> m) -> Dom' t a -> m
fold :: forall m. Monoid m => Dom' t m -> m
$cfold :: forall t m. Monoid m => Dom' t m -> m
Foldable, forall t. Functor (Dom' t)
forall t. Foldable (Dom' t)
forall t (m :: * -> *) a. Monad m => Dom' t (m a) -> m (Dom' t a)
forall t (f :: * -> *) a.
Applicative f =>
Dom' t (f a) -> f (Dom' t a)
forall t (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
forall t (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' t a -> f (Dom' t b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' t a -> f (Dom' t b)
sequence :: forall (m :: * -> *) a. Monad m => Dom' t (m a) -> m (Dom' t a)
$csequence :: forall t (m :: * -> *) a. Monad m => Dom' t (m a) -> m (Dom' t a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
$cmapM :: forall t (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Dom' t (f a) -> f (Dom' t a)
$csequenceA :: forall t (f :: * -> *) a.
Applicative f =>
Dom' t (f a) -> f (Dom' t a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' t a -> f (Dom' t b)
$ctraverse :: forall t (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Dom' t a -> f (Dom' t b)
Traversable)
type Dom = Dom' Term
instance Decoration (Dom' t) where
traverseF :: forall (m :: * -> *) a b.
Functor m =>
(a -> m b) -> Dom' t a -> m (Dom' t b)
traverseF a -> m b
f (Dom ArgInfo
ai Maybe (WithOrigin (Ranged ArgName))
x Bool
t Maybe t
b a
a) = forall t e.
ArgInfo
-> Maybe (WithOrigin (Ranged ArgName))
-> Bool
-> Maybe t
-> e
-> Dom' t e
Dom ArgInfo
ai Maybe (WithOrigin (Ranged ArgName))
x Bool
t Maybe t
b forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m b
f a
a
instance HasRange a => HasRange (Dom' t a) where
getRange :: Dom' t a -> Range
getRange = forall a. HasRange a => a -> Range
getRange forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t e. Dom' t e -> e
unDom
instance (KillRange t, KillRange a) => KillRange (Dom' t a) where
killRange :: KillRangeT (Dom' t a)
killRange (Dom ArgInfo
info Maybe (WithOrigin (Ranged ArgName))
x Bool
t Maybe t
b a
a) = forall a b c d e.
(KillRange a, KillRange b, KillRange c, KillRange d) =>
(a -> b -> c -> d -> e) -> a -> b -> c -> d -> e
killRange4 forall t e.
ArgInfo
-> Maybe (WithOrigin (Ranged ArgName))
-> Bool
-> Maybe t
-> e
-> Dom' t e
Dom ArgInfo
info Maybe (WithOrigin (Ranged ArgName))
x Bool
t Maybe t
b a
a
instance Eq a => Eq (Dom' t a) where
Dom (ArgInfo Hiding
h1 Modality
m1 Origin
_ FreeVariables
_ Annotation
a1) Maybe (WithOrigin (Ranged ArgName))
s1 Bool
f1 Maybe t
_ a
x1 == :: Dom' t a -> Dom' t a -> Bool
== Dom (ArgInfo Hiding
h2 Modality
m2 Origin
_ FreeVariables
_ Annotation
a2) Maybe (WithOrigin (Ranged ArgName))
s2 Bool
f2 Maybe t
_ a
x2 =
(Hiding
h1, Modality
m1, Annotation
a1, Maybe (WithOrigin (Ranged ArgName))
s1, Bool
f1, a
x1) forall a. Eq a => a -> a -> Bool
== (Hiding
h2, Modality
m2, Annotation
a2, Maybe (WithOrigin (Ranged ArgName))
s2, Bool
f2, a
x2)
instance LensNamed (Dom' t e) where
type NameOf (Dom' t e) = NamedName
lensNamed :: Lens' (Maybe (NameOf (Dom' t e))) (Dom' t e)
lensNamed Maybe (NameOf (Dom' t e)) -> f (Maybe (NameOf (Dom' t e)))
f Dom' t e
dom = Maybe (NameOf (Dom' t e)) -> f (Maybe (NameOf (Dom' t e)))
f (forall t e. Dom' t e -> Maybe (WithOrigin (Ranged ArgName))
domName Dom' t e
dom) forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Maybe (WithOrigin (Ranged ArgName))
nm -> Dom' t e
dom { domName :: Maybe (WithOrigin (Ranged ArgName))
domName = Maybe (WithOrigin (Ranged ArgName))
nm }
instance LensArgInfo (Dom' t e) where
getArgInfo :: Dom' t e -> ArgInfo
getArgInfo = forall t e. Dom' t e -> ArgInfo
domInfo
setArgInfo :: ArgInfo -> Dom' t e -> Dom' t e
setArgInfo ArgInfo
ai Dom' t e
dom = Dom' t e
dom { domInfo :: ArgInfo
domInfo = ArgInfo
ai }
mapArgInfo :: (ArgInfo -> ArgInfo) -> Dom' t e -> Dom' t e
mapArgInfo ArgInfo -> ArgInfo
f Dom' t e
dom = Dom' t e
dom { domInfo :: ArgInfo
domInfo = ArgInfo -> ArgInfo
f forall a b. (a -> b) -> a -> b
$ forall t e. Dom' t e -> ArgInfo
domInfo Dom' t e
dom }
instance LensHiding (Dom' t e) where
instance LensModality (Dom' t e) where
instance LensOrigin (Dom' t e) where
instance LensFreeVariables (Dom' t e) where
instance LensAnnotation (Dom' t e) where
instance LensRelevance (Dom' t e) where
instance LensQuantity (Dom' t e) where
instance LensCohesion (Dom' t e) where
argFromDom :: Dom' t a -> Arg a
argFromDom :: forall t a. Dom' t a -> Arg a
argFromDom Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
i, unDom :: forall t e. Dom' t e -> e
unDom = a
a} = forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i a
a
namedArgFromDom :: Dom' t a -> NamedArg a
namedArgFromDom :: forall t a. Dom' t a -> NamedArg a
namedArgFromDom Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
i, domName :: forall t e. Dom' t e -> Maybe (WithOrigin (Ranged ArgName))
domName = Maybe (WithOrigin (Ranged ArgName))
s, unDom :: forall t e. Dom' t e -> e
unDom = a
a} = forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i forall a b. (a -> b) -> a -> b
$ forall name a. Maybe name -> a -> Named name a
Named Maybe (WithOrigin (Ranged ArgName))
s a
a
domFromArg :: Arg a -> Dom a
domFromArg :: forall a. Arg a -> Dom a
domFromArg (Arg ArgInfo
i a
a) = forall t e.
ArgInfo
-> Maybe (WithOrigin (Ranged ArgName))
-> Bool
-> Maybe t
-> e
-> Dom' t e
Dom ArgInfo
i forall a. Maybe a
Nothing Bool
False forall a. Maybe a
Nothing a
a
domFromNamedArg :: NamedArg a -> Dom a
domFromNamedArg :: forall a. NamedArg a -> Dom a
domFromNamedArg (Arg ArgInfo
i Named_ a
a) = forall t e.
ArgInfo
-> Maybe (WithOrigin (Ranged ArgName))
-> Bool
-> Maybe t
-> e
-> Dom' t e
Dom ArgInfo
i (forall name a. Named name a -> Maybe name
nameOf Named_ a
a) Bool
False forall a. Maybe a
Nothing (forall name a. Named name a -> a
namedThing Named_ a
a)
defaultDom :: a -> Dom a
defaultDom :: forall a. a -> Dom a
defaultDom = forall a. ArgInfo -> a -> Dom a
defaultArgDom ArgInfo
defaultArgInfo
defaultArgDom :: ArgInfo -> a -> Dom a
defaultArgDom :: forall a. ArgInfo -> a -> Dom a
defaultArgDom ArgInfo
info a
x = forall a. Arg a -> Dom a
domFromArg (forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
info a
x)
defaultNamedArgDom :: ArgInfo -> String -> a -> Dom a
defaultNamedArgDom :: forall a. ArgInfo -> ArgName -> a -> Dom a
defaultNamedArgDom ArgInfo
info ArgName
s a
x = (forall a. ArgInfo -> a -> Dom a
defaultArgDom ArgInfo
info a
x) { domName :: Maybe (WithOrigin (Ranged ArgName))
domName = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a. Origin -> a -> WithOrigin a
WithOrigin Origin
Inserted forall a b. (a -> b) -> a -> b
$ forall a. a -> Ranged a
unranged ArgName
s }
type Args = [Arg Term]
type NamedArgs = [NamedArg Term]
data DataOrRecord
= IsData
| IsRecord PatternOrCopattern
deriving (Int -> DataOrRecord -> ShowS
[DataOrRecord] -> ShowS
DataOrRecord -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [DataOrRecord] -> ShowS
$cshowList :: [DataOrRecord] -> ShowS
show :: DataOrRecord -> ArgName
$cshow :: DataOrRecord -> ArgName
showsPrec :: Int -> DataOrRecord -> ShowS
$cshowsPrec :: Int -> DataOrRecord -> ShowS
Show, DataOrRecord -> DataOrRecord -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: DataOrRecord -> DataOrRecord -> Bool
$c/= :: DataOrRecord -> DataOrRecord -> Bool
== :: DataOrRecord -> DataOrRecord -> Bool
$c== :: DataOrRecord -> DataOrRecord -> Bool
Eq, forall x. Rep DataOrRecord x -> DataOrRecord
forall x. DataOrRecord -> Rep DataOrRecord x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep DataOrRecord x -> DataOrRecord
$cfrom :: forall x. DataOrRecord -> Rep DataOrRecord x
Generic)
data ConHead = ConHead
{ ConHead -> QName
conName :: QName
, ConHead -> DataOrRecord
conDataRecord :: DataOrRecord
, ConHead -> Induction
conInductive :: Induction
, ConHead -> [Arg QName]
conFields :: [Arg QName]
} deriving (Int -> ConHead -> ShowS
[ConHead] -> ShowS
ConHead -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [ConHead] -> ShowS
$cshowList :: [ConHead] -> ShowS
show :: ConHead -> ArgName
$cshow :: ConHead -> ArgName
showsPrec :: Int -> ConHead -> ShowS
$cshowsPrec :: Int -> ConHead -> ShowS
Show, forall x. Rep ConHead x -> ConHead
forall x. ConHead -> Rep ConHead x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep ConHead x -> ConHead
$cfrom :: forall x. ConHead -> Rep ConHead x
Generic)
instance Eq ConHead where
== :: ConHead -> ConHead -> Bool
(==) = forall a. Eq a => a -> a -> Bool
(==) forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` ConHead -> QName
conName
instance Ord ConHead where
<= :: ConHead -> ConHead -> Bool
(<=) = forall a. Ord a => a -> a -> Bool
(<=) forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` ConHead -> QName
conName
instance Pretty ConHead where
pretty :: ConHead -> Doc
pretty = forall a. Pretty a => a -> Doc
pretty forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConHead -> QName
conName
instance HasRange ConHead where
getRange :: ConHead -> Range
getRange = forall a. HasRange a => a -> Range
getRange forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConHead -> QName
conName
instance SetRange ConHead where
setRange :: Range -> ConHead -> ConHead
setRange Range
r = forall a. LensConName a => (QName -> QName) -> a -> a
mapConName (forall a. SetRange a => Range -> a -> a
setRange Range
r)
class LensConName a where
getConName :: a -> QName
setConName :: QName -> a -> a
setConName = forall a. LensConName a => (QName -> QName) -> a -> a
mapConName forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. a -> b -> a
const
mapConName :: (QName -> QName) -> a -> a
mapConName QName -> QName
f a
a = forall a. LensConName a => QName -> a -> a
setConName (QName -> QName
f (forall a. LensConName a => a -> QName
getConName a
a)) a
a
instance LensConName ConHead where
getConName :: ConHead -> QName
getConName = ConHead -> QName
conName
setConName :: QName -> ConHead -> ConHead
setConName QName
c ConHead
con = ConHead
con { conName :: QName
conName = QName
c }
data Term = Var {-# UNPACK #-} !Int Elims
| Lam ArgInfo (Abs Term)
| Lit Literal
| Def QName Elims
| Con ConHead ConInfo Elims
| Pi (Dom Type) (Abs Type)
| Sort Sort
| Level Level
| MetaV {-# UNPACK #-} !MetaId Elims
| DontCare Term
| Dummy String Elims
deriving Int -> Term -> ShowS
[Term] -> ShowS
Term -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Term] -> ShowS
$cshowList :: [Term] -> ShowS
show :: Term -> ArgName
$cshow :: Term -> ArgName
showsPrec :: Int -> Term -> ShowS
$cshowsPrec :: Int -> Term -> ShowS
Show
type ConInfo = ConOrigin
type Elim = Elim' Term
type Elims = [Elim]
data Abs a = Abs { forall a. Abs a -> ArgName
absName :: ArgName, forall a. Abs a -> a
unAbs :: a }
| NoAbs { absName :: ArgName, unAbs :: a }
deriving (forall a b. a -> Abs b -> Abs a
forall a b. (a -> b) -> Abs a -> Abs b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Abs b -> Abs a
$c<$ :: forall a b. a -> Abs b -> Abs a
fmap :: forall a b. (a -> b) -> Abs a -> Abs b
$cfmap :: forall a b. (a -> b) -> Abs a -> Abs b
Functor, forall a. Eq a => a -> Abs a -> Bool
forall a. Num a => Abs a -> a
forall a. Ord a => Abs a -> a
forall m. Monoid m => Abs m -> m
forall a. Abs a -> Bool
forall a. Abs a -> Int
forall a. Abs a -> [a]
forall a. (a -> a -> a) -> Abs a -> a
forall m a. Monoid m => (a -> m) -> Abs a -> m
forall b a. (b -> a -> b) -> b -> Abs a -> b
forall a b. (a -> b -> b) -> b -> Abs a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Abs a -> a
$cproduct :: forall a. Num a => Abs a -> a
sum :: forall a. Num a => Abs a -> a
$csum :: forall a. Num a => Abs a -> a
minimum :: forall a. Ord a => Abs a -> a
$cminimum :: forall a. Ord a => Abs a -> a
maximum :: forall a. Ord a => Abs a -> a
$cmaximum :: forall a. Ord a => Abs a -> a
elem :: forall a. Eq a => a -> Abs a -> Bool
$celem :: forall a. Eq a => a -> Abs a -> Bool
length :: forall a. Abs a -> Int
$clength :: forall a. Abs a -> Int
null :: forall a. Abs a -> Bool
$cnull :: forall a. Abs a -> Bool
toList :: forall a. Abs a -> [a]
$ctoList :: forall a. Abs a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Abs a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Abs a -> a
foldr1 :: forall a. (a -> a -> a) -> Abs a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Abs a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Abs a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Abs a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Abs a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Abs a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Abs a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Abs a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Abs a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Abs a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Abs a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Abs a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Abs a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Abs a -> m
fold :: forall m. Monoid m => Abs m -> m
$cfold :: forall m. Monoid m => Abs m -> m
Foldable, Functor Abs
Foldable Abs
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Abs (m a) -> m (Abs a)
forall (f :: * -> *) a. Applicative f => Abs (f a) -> f (Abs a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Abs a -> m (Abs b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Abs a -> f (Abs b)
sequence :: forall (m :: * -> *) a. Monad m => Abs (m a) -> m (Abs a)
$csequence :: forall (m :: * -> *) a. Monad m => Abs (m a) -> m (Abs a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Abs a -> m (Abs b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Abs a -> m (Abs b)
sequenceA :: forall (f :: * -> *) a. Applicative f => Abs (f a) -> f (Abs a)
$csequenceA :: forall (f :: * -> *) a. Applicative f => Abs (f a) -> f (Abs a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Abs a -> f (Abs b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Abs a -> f (Abs b)
Traversable, forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (Abs a) x -> Abs a
forall a x. Abs a -> Rep (Abs a) x
$cto :: forall a x. Rep (Abs a) x -> Abs a
$cfrom :: forall a x. Abs a -> Rep (Abs a) x
Generic)
instance Decoration Abs where
traverseF :: forall (m :: * -> *) a b.
Functor m =>
(a -> m b) -> Abs a -> m (Abs b)
traverseF a -> m b
f (Abs ArgName
x a
a) = forall a. ArgName -> a -> Abs a
Abs ArgName
x forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m b
f a
a
traverseF a -> m b
f (NoAbs ArgName
x a
a) = forall a. ArgName -> a -> Abs a
NoAbs ArgName
x forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m b
f a
a
data Type'' t a = El { forall t a. Type'' t a -> Sort' t
_getSort :: Sort' t, forall t a. Type'' t a -> a
unEl :: a }
deriving (Int -> Type'' t a -> ShowS
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
forall t a. (Show t, Show a) => Int -> Type'' t a -> ShowS
forall t a. (Show t, Show a) => [Type'' t a] -> ShowS
forall t a. (Show t, Show a) => Type'' t a -> ArgName
showList :: [Type'' t a] -> ShowS
$cshowList :: forall t a. (Show t, Show a) => [Type'' t a] -> ShowS
show :: Type'' t a -> ArgName
$cshow :: forall t a. (Show t, Show a) => Type'' t a -> ArgName
showsPrec :: Int -> Type'' t a -> ShowS
$cshowsPrec :: forall t a. (Show t, Show a) => Int -> Type'' t a -> ShowS
Show, forall a b. a -> Type'' t b -> Type'' t a
forall a b. (a -> b) -> Type'' t a -> Type'' t b
forall t a b. a -> Type'' t b -> Type'' t a
forall t a b. (a -> b) -> Type'' t a -> Type'' t b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Type'' t b -> Type'' t a
$c<$ :: forall t a b. a -> Type'' t b -> Type'' t a
fmap :: forall a b. (a -> b) -> Type'' t a -> Type'' t b
$cfmap :: forall t a b. (a -> b) -> Type'' t a -> Type'' t b
Functor, forall a. Type'' t a -> Bool
forall t a. Eq a => a -> Type'' t a -> Bool
forall t a. Num a => Type'' t a -> a
forall t a. Ord a => Type'' t a -> a
forall m a. Monoid m => (a -> m) -> Type'' t a -> m
forall t m. Monoid m => Type'' t m -> m
forall t a. Type'' t a -> Bool
forall t a. Type'' t a -> Int
forall t a. Type'' t a -> [a]
forall a b. (a -> b -> b) -> b -> Type'' t a -> b
forall t a. (a -> a -> a) -> Type'' t a -> a
forall t m a. Monoid m => (a -> m) -> Type'' t a -> m
forall t b a. (b -> a -> b) -> b -> Type'' t a -> b
forall t a b. (a -> b -> b) -> b -> Type'' t a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Type'' t a -> a
$cproduct :: forall t a. Num a => Type'' t a -> a
sum :: forall a. Num a => Type'' t a -> a
$csum :: forall t a. Num a => Type'' t a -> a
minimum :: forall a. Ord a => Type'' t a -> a
$cminimum :: forall t a. Ord a => Type'' t a -> a
maximum :: forall a. Ord a => Type'' t a -> a
$cmaximum :: forall t a. Ord a => Type'' t a -> a
elem :: forall a. Eq a => a -> Type'' t a -> Bool
$celem :: forall t a. Eq a => a -> Type'' t a -> Bool
length :: forall a. Type'' t a -> Int
$clength :: forall t a. Type'' t a -> Int
null :: forall a. Type'' t a -> Bool
$cnull :: forall t a. Type'' t a -> Bool
toList :: forall a. Type'' t a -> [a]
$ctoList :: forall t a. Type'' t a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Type'' t a -> a
$cfoldl1 :: forall t a. (a -> a -> a) -> Type'' t a -> a
foldr1 :: forall a. (a -> a -> a) -> Type'' t a -> a
$cfoldr1 :: forall t a. (a -> a -> a) -> Type'' t a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Type'' t a -> b
$cfoldl' :: forall t b a. (b -> a -> b) -> b -> Type'' t a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Type'' t a -> b
$cfoldl :: forall t b a. (b -> a -> b) -> b -> Type'' t a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Type'' t a -> b
$cfoldr' :: forall t a b. (a -> b -> b) -> b -> Type'' t a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Type'' t a -> b
$cfoldr :: forall t a b. (a -> b -> b) -> b -> Type'' t a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Type'' t a -> m
$cfoldMap' :: forall t m a. Monoid m => (a -> m) -> Type'' t a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Type'' t a -> m
$cfoldMap :: forall t m a. Monoid m => (a -> m) -> Type'' t a -> m
fold :: forall m. Monoid m => Type'' t m -> m
$cfold :: forall t m. Monoid m => Type'' t m -> m
Foldable, forall t. Functor (Type'' t)
forall t. Foldable (Type'' t)
forall t (m :: * -> *) a.
Monad m =>
Type'' t (m a) -> m (Type'' t a)
forall t (f :: * -> *) a.
Applicative f =>
Type'' t (f a) -> f (Type'' t a)
forall t (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
forall t (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Type'' t a -> f (Type'' t b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Type'' t a -> f (Type'' t b)
sequence :: forall (m :: * -> *) a. Monad m => Type'' t (m a) -> m (Type'' t a)
$csequence :: forall t (m :: * -> *) a.
Monad m =>
Type'' t (m a) -> m (Type'' t a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
$cmapM :: forall t (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Type'' t (f a) -> f (Type'' t a)
$csequenceA :: forall t (f :: * -> *) a.
Applicative f =>
Type'' t (f a) -> f (Type'' t a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Type'' t a -> f (Type'' t b)
$ctraverse :: forall t (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Type'' t a -> f (Type'' t b)
Traversable)
type Type' a = Type'' Term a
type Type = Type' Term
instance Decoration (Type'' t) where
traverseF :: forall (m :: * -> *) a b.
Functor m =>
(a -> m b) -> Type'' t a -> m (Type'' t b)
traverseF a -> m b
f (El Sort' t
s a
a) = forall t a. Sort' t -> a -> Type'' t a
El Sort' t
s forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> m b
f a
a
class LensSort a where
lensSort :: Lens' Sort a
getSort :: a -> Sort
getSort a
a = a
a forall o i. o -> Lens' i o -> i
^. forall a. LensSort a => Lens' Sort a
lensSort
instance LensSort Sort where
lensSort :: Lens' Sort Sort
lensSort Sort -> f Sort
f Sort
s = Sort -> f Sort
f Sort
s forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Sort
s' -> Sort
s'
instance LensSort (Type' a) where
lensSort :: Lens' Sort (Type' a)
lensSort Sort -> f Sort
f (El Sort
s a
a) = Sort -> f Sort
f Sort
s forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Sort
s' -> forall t a. Sort' t -> a -> Type'' t a
El Sort
s' a
a
instance LensSort a => LensSort (Dom a) where
lensSort :: Lens' Sort (Dom a)
lensSort = forall (t :: * -> *) (m :: * -> *) a b.
(Decoration t, Functor m) =>
(a -> m b) -> t a -> m (t b)
traverseF forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. LensSort a => Lens' Sort a
lensSort
instance LensSort a => LensSort (Arg a) where
lensSort :: Lens' Sort (Arg a)
lensSort = forall (t :: * -> *) (m :: * -> *) a b.
(Decoration t, Functor m) =>
(a -> m b) -> t a -> m (t b)
traverseF forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. LensSort a => Lens' Sort a
lensSort
data Tele a = EmptyTel
| ExtendTel a (Abs (Tele a))
deriving (Int -> Tele a -> ShowS
forall a. Show a => Int -> Tele a -> ShowS
forall a. Show a => [Tele a] -> ShowS
forall a. Show a => Tele a -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Tele a] -> ShowS
$cshowList :: forall a. Show a => [Tele a] -> ShowS
show :: Tele a -> ArgName
$cshow :: forall a. Show a => Tele a -> ArgName
showsPrec :: Int -> Tele a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> Tele a -> ShowS
Show, forall a b. a -> Tele b -> Tele a
forall a b. (a -> b) -> Tele a -> Tele b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Tele b -> Tele a
$c<$ :: forall a b. a -> Tele b -> Tele a
fmap :: forall a b. (a -> b) -> Tele a -> Tele b
$cfmap :: forall a b. (a -> b) -> Tele a -> Tele b
Functor, forall a. Eq a => a -> Tele a -> Bool
forall a. Num a => Tele a -> a
forall a. Ord a => Tele a -> a
forall m. Monoid m => Tele m -> m
forall a. Tele a -> Bool
forall a. Tele a -> Int
forall a. Tele a -> [a]
forall a. (a -> a -> a) -> Tele a -> a
forall m a. Monoid m => (a -> m) -> Tele a -> m
forall b a. (b -> a -> b) -> b -> Tele a -> b
forall a b. (a -> b -> b) -> b -> Tele a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Tele a -> a
$cproduct :: forall a. Num a => Tele a -> a
sum :: forall a. Num a => Tele a -> a
$csum :: forall a. Num a => Tele a -> a
minimum :: forall a. Ord a => Tele a -> a
$cminimum :: forall a. Ord a => Tele a -> a
maximum :: forall a. Ord a => Tele a -> a
$cmaximum :: forall a. Ord a => Tele a -> a
elem :: forall a. Eq a => a -> Tele a -> Bool
$celem :: forall a. Eq a => a -> Tele a -> Bool
length :: forall a. Tele a -> Int
$clength :: forall a. Tele a -> Int
null :: forall a. Tele a -> Bool
$cnull :: forall a. Tele a -> Bool
toList :: forall a. Tele a -> [a]
$ctoList :: forall a. Tele a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Tele a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Tele a -> a
foldr1 :: forall a. (a -> a -> a) -> Tele a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Tele a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Tele a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Tele a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Tele a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Tele a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Tele a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Tele a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Tele a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Tele a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Tele a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Tele a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Tele a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Tele a -> m
fold :: forall m. Monoid m => Tele m -> m
$cfold :: forall m. Monoid m => Tele m -> m
Foldable, Functor Tele
Foldable Tele
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Tele (m a) -> m (Tele a)
forall (f :: * -> *) a. Applicative f => Tele (f a) -> f (Tele a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tele a -> m (Tele b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tele a -> f (Tele b)
sequence :: forall (m :: * -> *) a. Monad m => Tele (m a) -> m (Tele a)
$csequence :: forall (m :: * -> *) a. Monad m => Tele (m a) -> m (Tele a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tele a -> m (Tele b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Tele a -> m (Tele b)
sequenceA :: forall (f :: * -> *) a. Applicative f => Tele (f a) -> f (Tele a)
$csequenceA :: forall (f :: * -> *) a. Applicative f => Tele (f a) -> f (Tele a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tele a -> f (Tele b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Tele a -> f (Tele b)
Traversable, forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (Tele a) x -> Tele a
forall a x. Tele a -> Rep (Tele a) x
$cto :: forall a x. Rep (Tele a) x -> Tele a
$cfrom :: forall a x. Tele a -> Rep (Tele a) x
Generic)
type Telescope = Tele (Dom Type)
data IsFibrant = IsFibrant | IsStrict
deriving (Int -> IsFibrant -> ShowS
[IsFibrant] -> ShowS
IsFibrant -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [IsFibrant] -> ShowS
$cshowList :: [IsFibrant] -> ShowS
show :: IsFibrant -> ArgName
$cshow :: IsFibrant -> ArgName
showsPrec :: Int -> IsFibrant -> ShowS
$cshowsPrec :: Int -> IsFibrant -> ShowS
Show, IsFibrant -> IsFibrant -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: IsFibrant -> IsFibrant -> Bool
$c/= :: IsFibrant -> IsFibrant -> Bool
== :: IsFibrant -> IsFibrant -> Bool
$c== :: IsFibrant -> IsFibrant -> Bool
Eq, Eq IsFibrant
IsFibrant -> IsFibrant -> Bool
IsFibrant -> IsFibrant -> Ordering
IsFibrant -> IsFibrant -> IsFibrant
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: IsFibrant -> IsFibrant -> IsFibrant
$cmin :: IsFibrant -> IsFibrant -> IsFibrant
max :: IsFibrant -> IsFibrant -> IsFibrant
$cmax :: IsFibrant -> IsFibrant -> IsFibrant
>= :: IsFibrant -> IsFibrant -> Bool
$c>= :: IsFibrant -> IsFibrant -> Bool
> :: IsFibrant -> IsFibrant -> Bool
$c> :: IsFibrant -> IsFibrant -> Bool
<= :: IsFibrant -> IsFibrant -> Bool
$c<= :: IsFibrant -> IsFibrant -> Bool
< :: IsFibrant -> IsFibrant -> Bool
$c< :: IsFibrant -> IsFibrant -> Bool
compare :: IsFibrant -> IsFibrant -> Ordering
$ccompare :: IsFibrant -> IsFibrant -> Ordering
Ord, forall x. Rep IsFibrant x -> IsFibrant
forall x. IsFibrant -> Rep IsFibrant x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep IsFibrant x -> IsFibrant
$cfrom :: forall x. IsFibrant -> Rep IsFibrant x
Generic)
data Sort' t
= Type (Level' t)
| Prop (Level' t)
| Inf IsFibrant !Integer
| SSet (Level' t)
| SizeUniv
| LockUniv
| IntervalUniv
| PiSort (Dom' t t) (Sort' t) (Abs (Sort' t))
| FunSort (Sort' t) (Sort' t)
| UnivSort (Sort' t)
| MetaS {-# UNPACK #-} !MetaId [Elim' t]
| DefS QName [Elim' t]
| DummyS String
deriving Int -> Sort' t -> ShowS
forall t. Show t => Int -> Sort' t -> ShowS
forall t. Show t => [Sort' t] -> ShowS
forall t. Show t => Sort' t -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Sort' t] -> ShowS
$cshowList :: forall t. Show t => [Sort' t] -> ShowS
show :: Sort' t -> ArgName
$cshow :: forall t. Show t => Sort' t -> ArgName
showsPrec :: Int -> Sort' t -> ShowS
$cshowsPrec :: forall t. Show t => Int -> Sort' t -> ShowS
Show
type Sort = Sort' Term
data Level' t = Max !Integer [PlusLevel' t]
deriving (Int -> Level' t -> ShowS
forall t. Show t => Int -> Level' t -> ShowS
forall t. Show t => [Level' t] -> ShowS
forall t. Show t => Level' t -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Level' t] -> ShowS
$cshowList :: forall t. Show t => [Level' t] -> ShowS
show :: Level' t -> ArgName
$cshow :: forall t. Show t => Level' t -> ArgName
showsPrec :: Int -> Level' t -> ShowS
$cshowsPrec :: forall t. Show t => Int -> Level' t -> ShowS
Show, forall a b. a -> Level' b -> Level' a
forall a b. (a -> b) -> Level' a -> Level' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Level' b -> Level' a
$c<$ :: forall a b. a -> Level' b -> Level' a
fmap :: forall a b. (a -> b) -> Level' a -> Level' b
$cfmap :: forall a b. (a -> b) -> Level' a -> Level' b
Functor, forall a. Eq a => a -> Level' a -> Bool
forall a. Num a => Level' a -> a
forall a. Ord a => Level' a -> a
forall m. Monoid m => Level' m -> m
forall a. Level' a -> Bool
forall a. Level' a -> Int
forall a. Level' a -> [a]
forall a. (a -> a -> a) -> Level' a -> a
forall m a. Monoid m => (a -> m) -> Level' a -> m
forall b a. (b -> a -> b) -> b -> Level' a -> b
forall a b. (a -> b -> b) -> b -> Level' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Level' a -> a
$cproduct :: forall a. Num a => Level' a -> a
sum :: forall a. Num a => Level' a -> a
$csum :: forall a. Num a => Level' a -> a
minimum :: forall a. Ord a => Level' a -> a
$cminimum :: forall a. Ord a => Level' a -> a
maximum :: forall a. Ord a => Level' a -> a
$cmaximum :: forall a. Ord a => Level' a -> a
elem :: forall a. Eq a => a -> Level' a -> Bool
$celem :: forall a. Eq a => a -> Level' a -> Bool
length :: forall a. Level' a -> Int
$clength :: forall a. Level' a -> Int
null :: forall a. Level' a -> Bool
$cnull :: forall a. Level' a -> Bool
toList :: forall a. Level' a -> [a]
$ctoList :: forall a. Level' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Level' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Level' a -> a
foldr1 :: forall a. (a -> a -> a) -> Level' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Level' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Level' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Level' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Level' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Level' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Level' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Level' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Level' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Level' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Level' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Level' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Level' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Level' a -> m
fold :: forall m. Monoid m => Level' m -> m
$cfold :: forall m. Monoid m => Level' m -> m
Foldable, Functor Level'
Foldable Level'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Level' (m a) -> m (Level' a)
forall (f :: * -> *) a.
Applicative f =>
Level' (f a) -> f (Level' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Level' a -> m (Level' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Level' a -> f (Level' b)
sequence :: forall (m :: * -> *) a. Monad m => Level' (m a) -> m (Level' a)
$csequence :: forall (m :: * -> *) a. Monad m => Level' (m a) -> m (Level' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Level' a -> m (Level' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Level' a -> m (Level' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Level' (f a) -> f (Level' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
Level' (f a) -> f (Level' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Level' a -> f (Level' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Level' a -> f (Level' b)
Traversable)
type Level = Level' Term
data PlusLevel' t = Plus !Integer t
deriving (Int -> PlusLevel' t -> ShowS
forall t. Show t => Int -> PlusLevel' t -> ShowS
forall t. Show t => [PlusLevel' t] -> ShowS
forall t. Show t => PlusLevel' t -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [PlusLevel' t] -> ShowS
$cshowList :: forall t. Show t => [PlusLevel' t] -> ShowS
show :: PlusLevel' t -> ArgName
$cshow :: forall t. Show t => PlusLevel' t -> ArgName
showsPrec :: Int -> PlusLevel' t -> ShowS
$cshowsPrec :: forall t. Show t => Int -> PlusLevel' t -> ShowS
Show, forall a b. a -> PlusLevel' b -> PlusLevel' a
forall a b. (a -> b) -> PlusLevel' a -> PlusLevel' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> PlusLevel' b -> PlusLevel' a
$c<$ :: forall a b. a -> PlusLevel' b -> PlusLevel' a
fmap :: forall a b. (a -> b) -> PlusLevel' a -> PlusLevel' b
$cfmap :: forall a b. (a -> b) -> PlusLevel' a -> PlusLevel' b
Functor, forall a. Eq a => a -> PlusLevel' a -> Bool
forall a. Num a => PlusLevel' a -> a
forall a. Ord a => PlusLevel' a -> a
forall m. Monoid m => PlusLevel' m -> m
forall a. PlusLevel' a -> Bool
forall a. PlusLevel' a -> Int
forall a. PlusLevel' a -> [a]
forall a. (a -> a -> a) -> PlusLevel' a -> a
forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => PlusLevel' a -> a
$cproduct :: forall a. Num a => PlusLevel' a -> a
sum :: forall a. Num a => PlusLevel' a -> a
$csum :: forall a. Num a => PlusLevel' a -> a
minimum :: forall a. Ord a => PlusLevel' a -> a
$cminimum :: forall a. Ord a => PlusLevel' a -> a
maximum :: forall a. Ord a => PlusLevel' a -> a
$cmaximum :: forall a. Ord a => PlusLevel' a -> a
elem :: forall a. Eq a => a -> PlusLevel' a -> Bool
$celem :: forall a. Eq a => a -> PlusLevel' a -> Bool
length :: forall a. PlusLevel' a -> Int
$clength :: forall a. PlusLevel' a -> Int
null :: forall a. PlusLevel' a -> Bool
$cnull :: forall a. PlusLevel' a -> Bool
toList :: forall a. PlusLevel' a -> [a]
$ctoList :: forall a. PlusLevel' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> PlusLevel' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> PlusLevel' a -> a
foldr1 :: forall a. (a -> a -> a) -> PlusLevel' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> PlusLevel' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> PlusLevel' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> PlusLevel' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> PlusLevel' a -> m
fold :: forall m. Monoid m => PlusLevel' m -> m
$cfold :: forall m. Monoid m => PlusLevel' m -> m
Foldable, Functor PlusLevel'
Foldable PlusLevel'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a.
Monad m =>
PlusLevel' (m a) -> m (PlusLevel' a)
forall (f :: * -> *) a.
Applicative f =>
PlusLevel' (f a) -> f (PlusLevel' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PlusLevel' a -> m (PlusLevel' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PlusLevel' a -> f (PlusLevel' b)
sequence :: forall (m :: * -> *) a.
Monad m =>
PlusLevel' (m a) -> m (PlusLevel' a)
$csequence :: forall (m :: * -> *) a.
Monad m =>
PlusLevel' (m a) -> m (PlusLevel' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PlusLevel' a -> m (PlusLevel' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> PlusLevel' a -> m (PlusLevel' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
PlusLevel' (f a) -> f (PlusLevel' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
PlusLevel' (f a) -> f (PlusLevel' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PlusLevel' a -> f (PlusLevel' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> PlusLevel' a -> f (PlusLevel' b)
Traversable)
type PlusLevel = PlusLevel' Term
type LevelAtom = Term
newtype BraveTerm = BraveTerm { BraveTerm -> Term
unBrave :: Term } deriving Int -> BraveTerm -> ShowS
[BraveTerm] -> ShowS
BraveTerm -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [BraveTerm] -> ShowS
$cshowList :: [BraveTerm] -> ShowS
show :: BraveTerm -> ArgName
$cshow :: BraveTerm -> ArgName
showsPrec :: Int -> BraveTerm -> ShowS
$cshowsPrec :: Int -> BraveTerm -> ShowS
Show
type Blocked = Blocked' Term
type NotBlocked = NotBlocked' Term
type Blocked_ = Blocked ()
type NAPs = [NamedArg DeBruijnPattern]
data Clause = Clause
{ Clause -> Range
clauseLHSRange :: Range
, Clause -> Range
clauseFullRange :: Range
, Clause -> Telescope
clauseTel :: Telescope
, Clause -> NAPs
namedClausePats :: NAPs
, Clause -> Maybe Term
clauseBody :: Maybe Term
, Clause -> Maybe (Arg Type)
clauseType :: Maybe (Arg Type)
, Clause -> Bool
clauseCatchall :: Bool
, Clause -> Maybe Bool
clauseExact :: Maybe Bool
, Clause -> Maybe Bool
clauseRecursive :: Maybe Bool
, Clause -> Maybe Bool
clauseUnreachable :: Maybe Bool
, Clause -> ExpandedEllipsis
clauseEllipsis :: ExpandedEllipsis
, Clause -> Maybe ModuleName
clauseWhereModule :: Maybe ModuleName
}
deriving (Int -> Clause -> ShowS
[Clause] -> ShowS
Clause -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Clause] -> ShowS
$cshowList :: [Clause] -> ShowS
show :: Clause -> ArgName
$cshow :: Clause -> ArgName
showsPrec :: Int -> Clause -> ShowS
$cshowsPrec :: Int -> Clause -> ShowS
Show, forall x. Rep Clause x -> Clause
forall x. Clause -> Rep Clause x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep Clause x -> Clause
$cfrom :: forall x. Clause -> Rep Clause x
Generic)
clausePats :: Clause -> [Arg DeBruijnPattern]
clausePats :: Clause -> [Arg DeBruijnPattern]
clausePats = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall name a. Named name a -> a
namedThing) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Clause -> NAPs
namedClausePats
instance HasRange Clause where
getRange :: Clause -> Range
getRange = Clause -> Range
clauseLHSRange
type PatVarName = ArgName
patVarNameToString :: PatVarName -> String
patVarNameToString :: ShowS
patVarNameToString = ShowS
argNameToString
nameToPatVarName :: Name -> PatVarName
nameToPatVarName :: Name -> ArgName
nameToPatVarName = Name -> ArgName
nameToArgName
data PatternInfo = PatternInfo
{ PatternInfo -> PatOrigin
patOrigin :: PatOrigin
, PatternInfo -> [Name]
patAsNames :: [Name]
} deriving (Int -> PatternInfo -> ShowS
[PatternInfo] -> ShowS
PatternInfo -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [PatternInfo] -> ShowS
$cshowList :: [PatternInfo] -> ShowS
show :: PatternInfo -> ArgName
$cshow :: PatternInfo -> ArgName
showsPrec :: Int -> PatternInfo -> ShowS
$cshowsPrec :: Int -> PatternInfo -> ShowS
Show, PatternInfo -> PatternInfo -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: PatternInfo -> PatternInfo -> Bool
$c/= :: PatternInfo -> PatternInfo -> Bool
== :: PatternInfo -> PatternInfo -> Bool
$c== :: PatternInfo -> PatternInfo -> Bool
Eq, forall x. Rep PatternInfo x -> PatternInfo
forall x. PatternInfo -> Rep PatternInfo x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep PatternInfo x -> PatternInfo
$cfrom :: forall x. PatternInfo -> Rep PatternInfo x
Generic)
defaultPatternInfo :: PatternInfo
defaultPatternInfo :: PatternInfo
defaultPatternInfo = PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
PatOSystem []
data PatOrigin
= PatOSystem
| PatOSplit
| PatOVar Name
| PatODot
| PatOWild
| PatOCon
| PatORec
| PatOLit
| PatOAbsurd
deriving (Int -> PatOrigin -> ShowS
[PatOrigin] -> ShowS
PatOrigin -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [PatOrigin] -> ShowS
$cshowList :: [PatOrigin] -> ShowS
show :: PatOrigin -> ArgName
$cshow :: PatOrigin -> ArgName
showsPrec :: Int -> PatOrigin -> ShowS
$cshowsPrec :: Int -> PatOrigin -> ShowS
Show, PatOrigin -> PatOrigin -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: PatOrigin -> PatOrigin -> Bool
$c/= :: PatOrigin -> PatOrigin -> Bool
== :: PatOrigin -> PatOrigin -> Bool
$c== :: PatOrigin -> PatOrigin -> Bool
Eq, forall x. Rep PatOrigin x -> PatOrigin
forall x. PatOrigin -> Rep PatOrigin x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep PatOrigin x -> PatOrigin
$cfrom :: forall x. PatOrigin -> Rep PatOrigin x
Generic)
data Pattern' x
= VarP PatternInfo x
| DotP PatternInfo Term
| ConP ConHead ConPatternInfo [NamedArg (Pattern' x)]
| LitP PatternInfo Literal
| ProjP ProjOrigin QName
| IApplyP PatternInfo Term Term x
| DefP PatternInfo QName [NamedArg (Pattern' x)]
deriving (Int -> Pattern' x -> ShowS
forall x. Show x => Int -> Pattern' x -> ShowS
forall x. Show x => [Pattern' x] -> ShowS
forall x. Show x => Pattern' x -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Pattern' x] -> ShowS
$cshowList :: forall x. Show x => [Pattern' x] -> ShowS
show :: Pattern' x -> ArgName
$cshow :: forall x. Show x => Pattern' x -> ArgName
showsPrec :: Int -> Pattern' x -> ShowS
$cshowsPrec :: forall x. Show x => Int -> Pattern' x -> ShowS
Show, forall a b. a -> Pattern' b -> Pattern' a
forall a b. (a -> b) -> Pattern' a -> Pattern' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Pattern' b -> Pattern' a
$c<$ :: forall a b. a -> Pattern' b -> Pattern' a
fmap :: forall a b. (a -> b) -> Pattern' a -> Pattern' b
$cfmap :: forall a b. (a -> b) -> Pattern' a -> Pattern' b
Functor, forall a. Eq a => a -> Pattern' a -> Bool
forall a. Num a => Pattern' a -> a
forall a. Ord a => Pattern' a -> a
forall m. Monoid m => Pattern' m -> m
forall a. Pattern' a -> Bool
forall a. Pattern' a -> Int
forall a. Pattern' a -> [a]
forall a. (a -> a -> a) -> Pattern' a -> a
forall m a. Monoid m => (a -> m) -> Pattern' a -> m
forall b a. (b -> a -> b) -> b -> Pattern' a -> b
forall a b. (a -> b -> b) -> b -> Pattern' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Pattern' a -> a
$cproduct :: forall a. Num a => Pattern' a -> a
sum :: forall a. Num a => Pattern' a -> a
$csum :: forall a. Num a => Pattern' a -> a
minimum :: forall a. Ord a => Pattern' a -> a
$cminimum :: forall a. Ord a => Pattern' a -> a
maximum :: forall a. Ord a => Pattern' a -> a
$cmaximum :: forall a. Ord a => Pattern' a -> a
elem :: forall a. Eq a => a -> Pattern' a -> Bool
$celem :: forall a. Eq a => a -> Pattern' a -> Bool
length :: forall a. Pattern' a -> Int
$clength :: forall a. Pattern' a -> Int
null :: forall a. Pattern' a -> Bool
$cnull :: forall a. Pattern' a -> Bool
toList :: forall a. Pattern' a -> [a]
$ctoList :: forall a. Pattern' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Pattern' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Pattern' a -> a
foldr1 :: forall a. (a -> a -> a) -> Pattern' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Pattern' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Pattern' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Pattern' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Pattern' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Pattern' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Pattern' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Pattern' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Pattern' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Pattern' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Pattern' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Pattern' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Pattern' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Pattern' a -> m
fold :: forall m. Monoid m => Pattern' m -> m
$cfold :: forall m. Monoid m => Pattern' m -> m
Foldable, Functor Pattern'
Foldable Pattern'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a. Monad m => Pattern' (m a) -> m (Pattern' a)
forall (f :: * -> *) a.
Applicative f =>
Pattern' (f a) -> f (Pattern' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Pattern' a -> m (Pattern' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Pattern' a -> f (Pattern' b)
sequence :: forall (m :: * -> *) a. Monad m => Pattern' (m a) -> m (Pattern' a)
$csequence :: forall (m :: * -> *) a. Monad m => Pattern' (m a) -> m (Pattern' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Pattern' a -> m (Pattern' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Pattern' a -> m (Pattern' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Pattern' (f a) -> f (Pattern' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
Pattern' (f a) -> f (Pattern' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Pattern' a -> f (Pattern' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Pattern' a -> f (Pattern' b)
Traversable, forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall x x. Rep (Pattern' x) x -> Pattern' x
forall x x. Pattern' x -> Rep (Pattern' x) x
$cto :: forall x x. Rep (Pattern' x) x -> Pattern' x
$cfrom :: forall x x. Pattern' x -> Rep (Pattern' x) x
Generic)
type Pattern = Pattern' PatVarName
varP :: a -> Pattern' a
varP :: forall a. a -> Pattern' a
varP = forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
defaultPatternInfo
dotP :: Term -> Pattern' a
dotP :: forall a. Term -> Pattern' a
dotP = forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
defaultPatternInfo
litP :: Literal -> Pattern' a
litP :: forall a. Literal -> Pattern' a
litP = forall x. PatternInfo -> Literal -> Pattern' x
LitP PatternInfo
defaultPatternInfo
data DBPatVar = DBPatVar
{ DBPatVar -> ArgName
dbPatVarName :: PatVarName
, DBPatVar -> Int
dbPatVarIndex :: !Int
} deriving (Int -> DBPatVar -> ShowS
[DBPatVar] -> ShowS
DBPatVar -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [DBPatVar] -> ShowS
$cshowList :: [DBPatVar] -> ShowS
show :: DBPatVar -> ArgName
$cshow :: DBPatVar -> ArgName
showsPrec :: Int -> DBPatVar -> ShowS
$cshowsPrec :: Int -> DBPatVar -> ShowS
Show, DBPatVar -> DBPatVar -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: DBPatVar -> DBPatVar -> Bool
$c/= :: DBPatVar -> DBPatVar -> Bool
== :: DBPatVar -> DBPatVar -> Bool
$c== :: DBPatVar -> DBPatVar -> Bool
Eq, forall x. Rep DBPatVar x -> DBPatVar
forall x. DBPatVar -> Rep DBPatVar x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep DBPatVar x -> DBPatVar
$cfrom :: forall x. DBPatVar -> Rep DBPatVar x
Generic)
type DeBruijnPattern = Pattern' DBPatVar
namedVarP :: PatVarName -> Named_ Pattern
namedVarP :: ArgName -> Named_ Pattern
namedVarP ArgName
x = forall name a. Maybe name -> a -> Named name a
Named Maybe (WithOrigin (Ranged ArgName))
named forall a b. (a -> b) -> a -> b
$ forall a. a -> Pattern' a
varP ArgName
x
where named :: Maybe (WithOrigin (Ranged ArgName))
named = if forall a. Underscore a => a -> Bool
isUnderscore ArgName
x then forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a. Origin -> a -> WithOrigin a
WithOrigin Origin
Inserted forall a b. (a -> b) -> a -> b
$ forall a. a -> Ranged a
unranged ArgName
x
namedDBVarP :: Int -> PatVarName -> Named_ DeBruijnPattern
namedDBVarP :: Int -> ArgName -> Named_ DeBruijnPattern
namedDBVarP Int
m = (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap) (\ArgName
x -> ArgName -> Int -> DBPatVar
DBPatVar ArgName
x Int
m) forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> Named_ Pattern
namedVarP
absurdP :: Int -> DeBruijnPattern
absurdP :: Int -> DeBruijnPattern
absurdP = forall x. PatternInfo -> x -> Pattern' x
VarP (PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
PatOAbsurd []) forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> Int -> DBPatVar
DBPatVar ArgName
absurdPatternName
data ConPatternInfo = ConPatternInfo
{ ConPatternInfo -> PatternInfo
conPInfo :: PatternInfo
, ConPatternInfo -> Bool
conPRecord :: Bool
, ConPatternInfo -> Bool
conPFallThrough :: Bool
, ConPatternInfo -> Maybe (Arg Type)
conPType :: Maybe (Arg Type)
, ConPatternInfo -> Bool
conPLazy :: Bool
}
deriving (Int -> ConPatternInfo -> ShowS
[ConPatternInfo] -> ShowS
ConPatternInfo -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [ConPatternInfo] -> ShowS
$cshowList :: [ConPatternInfo] -> ShowS
show :: ConPatternInfo -> ArgName
$cshow :: ConPatternInfo -> ArgName
showsPrec :: Int -> ConPatternInfo -> ShowS
$cshowsPrec :: Int -> ConPatternInfo -> ShowS
Show, forall x. Rep ConPatternInfo x -> ConPatternInfo
forall x. ConPatternInfo -> Rep ConPatternInfo x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cto :: forall x. Rep ConPatternInfo x -> ConPatternInfo
$cfrom :: forall x. ConPatternInfo -> Rep ConPatternInfo x
Generic)
noConPatternInfo :: ConPatternInfo
noConPatternInfo :: ConPatternInfo
noConPatternInfo = PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo PatternInfo
defaultPatternInfo Bool
False Bool
False forall a. Maybe a
Nothing Bool
False
toConPatternInfo :: ConInfo -> ConPatternInfo
toConPatternInfo :: ConInfo -> ConPatternInfo
toConPatternInfo ConInfo
ConORec = ConPatternInfo
noConPatternInfo{ conPInfo :: PatternInfo
conPInfo = PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
PatORec [] , conPRecord :: Bool
conPRecord = Bool
True }
toConPatternInfo ConInfo
_ = ConPatternInfo
noConPatternInfo
fromConPatternInfo :: ConPatternInfo -> ConInfo
fromConPatternInfo :: ConPatternInfo -> ConInfo
fromConPatternInfo ConPatternInfo
i = PatOrigin -> ConInfo
patToConO forall a b. (a -> b) -> a -> b
$ PatternInfo -> PatOrigin
patOrigin forall a b. (a -> b) -> a -> b
$ ConPatternInfo -> PatternInfo
conPInfo ConPatternInfo
i
where
patToConO :: PatOrigin -> ConOrigin
patToConO :: PatOrigin -> ConInfo
patToConO = \case
PatOrigin
PatOSystem -> ConInfo
ConOSystem
PatOrigin
PatOSplit -> ConInfo
ConOSplit
PatOVar{} -> ConInfo
ConOSystem
PatOrigin
PatODot -> ConInfo
ConOSystem
PatOrigin
PatOWild -> ConInfo
ConOSystem
PatOrigin
PatOCon -> ConInfo
ConOCon
PatOrigin
PatORec -> ConInfo
ConORec
PatOrigin
PatOLit -> ConInfo
ConOCon
PatOrigin
PatOAbsurd -> ConInfo
ConOSystem
class PatternVars a where
type PatternVarOut a
patternVars :: a -> [Arg (Either (PatternVarOut a) Term)]
instance PatternVars (Arg (Pattern' a)) where
type PatternVarOut (Arg (Pattern' a)) = a
patternVars :: Arg (Pattern' a)
-> [Arg (Either (PatternVarOut (Arg (Pattern' a))) Term)]
patternVars (Arg ArgInfo
i (VarP PatternInfo
_ a
x) ) = [forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i forall a b. (a -> b) -> a -> b
$ forall a b. a -> Either a b
Left a
x]
patternVars (Arg ArgInfo
i (DotP PatternInfo
_ Term
t) ) = [forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i forall a b. (a -> b) -> a -> b
$ forall a b. b -> Either a b
Right Term
t]
patternVars (Arg ArgInfo
_ (ConP ConHead
_ ConPatternInfo
_ [NamedArg (Pattern' a)]
ps)) = forall a.
PatternVars a =>
a -> [Arg (Either (PatternVarOut a) Term)]
patternVars [NamedArg (Pattern' a)]
ps
patternVars (Arg ArgInfo
_ (DefP PatternInfo
_ QName
_ [NamedArg (Pattern' a)]
ps)) = forall a.
PatternVars a =>
a -> [Arg (Either (PatternVarOut a) Term)]
patternVars [NamedArg (Pattern' a)]
ps
patternVars (Arg ArgInfo
_ (LitP PatternInfo
_ Literal
_) ) = []
patternVars (Arg ArgInfo
_ ProjP{} ) = []
patternVars (Arg ArgInfo
i (IApplyP PatternInfo
_ Term
_ Term
_ a
x)) = [forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
i forall a b. (a -> b) -> a -> b
$ forall a b. a -> Either a b
Left a
x]
instance PatternVars (NamedArg (Pattern' a)) where
type PatternVarOut (NamedArg (Pattern' a)) = a
patternVars :: NamedArg (Pattern' a)
-> [Arg (Either (PatternVarOut (NamedArg (Pattern' a))) Term)]
patternVars = forall a.
PatternVars a =>
a -> [Arg (Either (PatternVarOut a) Term)]
patternVars forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall name a. Named name a -> a
namedThing
instance PatternVars a => PatternVars [a] where
type PatternVarOut [a] = PatternVarOut a
patternVars :: [a] -> [Arg (Either (PatternVarOut [a]) Term)]
patternVars = forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap forall a.
PatternVars a =>
a -> [Arg (Either (PatternVarOut a) Term)]
patternVars
patternInfo :: Pattern' x -> Maybe PatternInfo
patternInfo :: forall x. Pattern' x -> Maybe PatternInfo
patternInfo (VarP PatternInfo
i x
_) = forall a. a -> Maybe a
Just PatternInfo
i
patternInfo (DotP PatternInfo
i Term
_) = forall a. a -> Maybe a
Just PatternInfo
i
patternInfo (LitP PatternInfo
i Literal
_) = forall a. a -> Maybe a
Just PatternInfo
i
patternInfo (ConP ConHead
_ ConPatternInfo
ci [NamedArg (Pattern' x)]
_) = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ ConPatternInfo -> PatternInfo
conPInfo ConPatternInfo
ci
patternInfo ProjP{} = forall a. Maybe a
Nothing
patternInfo (IApplyP PatternInfo
i Term
_ Term
_ x
_) = forall a. a -> Maybe a
Just PatternInfo
i
patternInfo (DefP PatternInfo
i QName
_ [NamedArg (Pattern' x)]
_) = forall a. a -> Maybe a
Just PatternInfo
i
patternOrigin :: Pattern' x -> Maybe PatOrigin
patternOrigin :: forall x. Pattern' x -> Maybe PatOrigin
patternOrigin = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap PatternInfo -> PatOrigin
patOrigin forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall x. Pattern' x -> Maybe PatternInfo
patternInfo
properlyMatching :: Pattern' a -> Bool
properlyMatching :: forall a. Pattern' a -> Bool
properlyMatching = forall a. Bool -> Bool -> Pattern' a -> Bool
properlyMatching' Bool
True Bool
True
properlyMatching'
:: Bool
-> Bool
-> Pattern' a
-> Bool
properlyMatching' :: forall a. Bool -> Bool -> Pattern' a -> Bool
properlyMatching' Bool
absP Bool
projP = \case
Pattern' a
p | Bool
absP Bool -> Bool -> Bool
&& forall x. Pattern' x -> Maybe PatOrigin
patternOrigin Pattern' a
p forall a. Eq a => a -> a -> Bool
== forall a. a -> Maybe a
Just PatOrigin
PatOAbsurd -> Bool
True
ConP ConHead
_ ConPatternInfo
ci [NamedArg (Pattern' a)]
ps
| ConPatternInfo -> Bool
conPRecord ConPatternInfo
ci -> forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
List.any (forall a. Pattern' a -> Bool
properlyMatching forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. NamedArg a -> a
namedArg) [NamedArg (Pattern' a)]
ps
| Bool
otherwise -> Bool
True
LitP{} -> Bool
True
DefP{} -> Bool
True
ProjP{} -> Bool
projP
VarP{} -> Bool
False
DotP{} -> Bool
False
IApplyP{} -> Bool
False
instance IsProjP (Pattern' a) where
isProjP :: Pattern' a -> Maybe (ProjOrigin, AmbiguousQName)
isProjP = \case
ProjP ProjOrigin
o QName
d -> forall a. a -> Maybe a
Just (ProjOrigin
o, QName -> AmbiguousQName
unambiguous QName
d)
Pattern' a
_ -> forall a. Maybe a
Nothing
data Substitution' a
= IdS
| EmptyS Impossible
| a :# Substitution' a
| Strengthen Impossible !Int (Substitution' a)
| Wk !Int (Substitution' a)
| Lift !Int (Substitution' a)
deriving ( Int -> Substitution' a -> ShowS
forall a. Show a => Int -> Substitution' a -> ShowS
forall a. Show a => [Substitution' a] -> ShowS
forall a. Show a => Substitution' a -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [Substitution' a] -> ShowS
$cshowList :: forall a. Show a => [Substitution' a] -> ShowS
show :: Substitution' a -> ArgName
$cshow :: forall a. Show a => Substitution' a -> ArgName
showsPrec :: Int -> Substitution' a -> ShowS
$cshowsPrec :: forall a. Show a => Int -> Substitution' a -> ShowS
Show
, forall a b. a -> Substitution' b -> Substitution' a
forall a b. (a -> b) -> Substitution' a -> Substitution' b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> Substitution' b -> Substitution' a
$c<$ :: forall a b. a -> Substitution' b -> Substitution' a
fmap :: forall a b. (a -> b) -> Substitution' a -> Substitution' b
$cfmap :: forall a b. (a -> b) -> Substitution' a -> Substitution' b
Functor
, forall a. Eq a => a -> Substitution' a -> Bool
forall a. Num a => Substitution' a -> a
forall a. Ord a => Substitution' a -> a
forall m. Monoid m => Substitution' m -> m
forall a. Substitution' a -> Bool
forall a. Substitution' a -> Int
forall a. Substitution' a -> [a]
forall a. (a -> a -> a) -> Substitution' a -> a
forall m a. Monoid m => (a -> m) -> Substitution' a -> m
forall b a. (b -> a -> b) -> b -> Substitution' a -> b
forall a b. (a -> b -> b) -> b -> Substitution' a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => Substitution' a -> a
$cproduct :: forall a. Num a => Substitution' a -> a
sum :: forall a. Num a => Substitution' a -> a
$csum :: forall a. Num a => Substitution' a -> a
minimum :: forall a. Ord a => Substitution' a -> a
$cminimum :: forall a. Ord a => Substitution' a -> a
maximum :: forall a. Ord a => Substitution' a -> a
$cmaximum :: forall a. Ord a => Substitution' a -> a
elem :: forall a. Eq a => a -> Substitution' a -> Bool
$celem :: forall a. Eq a => a -> Substitution' a -> Bool
length :: forall a. Substitution' a -> Int
$clength :: forall a. Substitution' a -> Int
null :: forall a. Substitution' a -> Bool
$cnull :: forall a. Substitution' a -> Bool
toList :: forall a. Substitution' a -> [a]
$ctoList :: forall a. Substitution' a -> [a]
foldl1 :: forall a. (a -> a -> a) -> Substitution' a -> a
$cfoldl1 :: forall a. (a -> a -> a) -> Substitution' a -> a
foldr1 :: forall a. (a -> a -> a) -> Substitution' a -> a
$cfoldr1 :: forall a. (a -> a -> a) -> Substitution' a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> Substitution' a -> b
$cfoldl' :: forall b a. (b -> a -> b) -> b -> Substitution' a -> b
foldl :: forall b a. (b -> a -> b) -> b -> Substitution' a -> b
$cfoldl :: forall b a. (b -> a -> b) -> b -> Substitution' a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> Substitution' a -> b
$cfoldr' :: forall a b. (a -> b -> b) -> b -> Substitution' a -> b
foldr :: forall a b. (a -> b -> b) -> b -> Substitution' a -> b
$cfoldr :: forall a b. (a -> b -> b) -> b -> Substitution' a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> Substitution' a -> m
$cfoldMap' :: forall m a. Monoid m => (a -> m) -> Substitution' a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Substitution' a -> m
$cfoldMap :: forall m a. Monoid m => (a -> m) -> Substitution' a -> m
fold :: forall m. Monoid m => Substitution' m -> m
$cfold :: forall m. Monoid m => Substitution' m -> m
Foldable
, Functor Substitution'
Foldable Substitution'
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (m :: * -> *) a.
Monad m =>
Substitution' (m a) -> m (Substitution' a)
forall (f :: * -> *) a.
Applicative f =>
Substitution' (f a) -> f (Substitution' a)
forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Substitution' a -> m (Substitution' b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Substitution' a -> f (Substitution' b)
sequence :: forall (m :: * -> *) a.
Monad m =>
Substitution' (m a) -> m (Substitution' a)
$csequence :: forall (m :: * -> *) a.
Monad m =>
Substitution' (m a) -> m (Substitution' a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Substitution' a -> m (Substitution' b)
$cmapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> Substitution' a -> m (Substitution' b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
Substitution' (f a) -> f (Substitution' a)
$csequenceA :: forall (f :: * -> *) a.
Applicative f =>
Substitution' (f a) -> f (Substitution' a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Substitution' a -> f (Substitution' b)
$ctraverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Substitution' a -> f (Substitution' b)
Traversable
, forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (Substitution' a) x -> Substitution' a
forall a x. Substitution' a -> Rep (Substitution' a) x
$cto :: forall a x. Rep (Substitution' a) x -> Substitution' a
$cfrom :: forall a x. Substitution' a -> Rep (Substitution' a) x
Generic
)
type Substitution = Substitution' Term
type PatternSubstitution = Substitution' DeBruijnPattern
infixr 4 :#
instance Null (Substitution' a) where
empty :: Substitution' a
empty = forall a. Substitution' a
IdS
null :: Substitution' a -> Bool
null Substitution' a
IdS = Bool
True
null Substitution' a
_ = Bool
False
data EqualityView
= EqualityViewType EqualityTypeData
| OtherType Type
| IdiomType Type
data EqualityTypeData = EqualityTypeData
{ EqualityTypeData -> Sort
_eqtSort :: Sort
, EqualityTypeData -> QName
_eqtName :: QName
, EqualityTypeData -> Args
_eqtParams :: Args
, EqualityTypeData -> Arg Term
_eqtType :: Arg Term
, EqualityTypeData -> Arg Term
_eqtLhs :: Arg Term
, EqualityTypeData -> Arg Term
_eqtRhs :: Arg Term
}
pattern EqualityType
:: Sort
-> QName
-> Args
-> Arg Term
-> Arg Term
-> Arg Term
-> EqualityView
pattern $bEqualityType :: Sort
-> QName
-> Args
-> Arg Term
-> Arg Term
-> Arg Term
-> EqualityView
$mEqualityType :: forall {r}.
EqualityView
-> (Sort -> QName -> Args -> Arg Term -> Arg Term -> Arg Term -> r)
-> ((# #) -> r)
-> r
EqualityType{ EqualityView -> Sort
eqtSort, EqualityView -> QName
eqtName, EqualityView -> Args
eqtParams, EqualityView -> Arg Term
eqtType, EqualityView -> Arg Term
eqtLhs, EqualityView -> Arg Term
eqtRhs } =
EqualityViewType (EqualityTypeData eqtSort eqtName eqtParams eqtType eqtLhs eqtRhs)
#if __GLASGOW_HASKELL__ >= 802
{-# COMPLETE EqualityType, OtherType, IdiomType #-}
#endif
isEqualityType :: EqualityView -> Bool
isEqualityType :: EqualityView -> Bool
isEqualityType EqualityType{} = Bool
True
isEqualityType OtherType{} = Bool
False
isEqualityType IdiomType{} = Bool
False
data PathView
= PathType
{ PathView -> Sort
pathSort :: Sort
, PathView -> QName
pathName :: QName
, PathView -> Arg Term
pathLevel :: Arg Term
, PathView -> Arg Term
pathType :: Arg Term
, PathView -> Arg Term
pathLhs :: Arg Term
, PathView -> Arg Term
pathRhs :: Arg Term
}
| OType Type
isPathType :: PathView -> Bool
isPathType :: PathView -> Bool
isPathType PathType{} = Bool
True
isPathType OType{} = Bool
False
data IntervalView
= IZero
| IOne
| IMin (Arg Term) (Arg Term)
| IMax (Arg Term) (Arg Term)
| INeg (Arg Term)
| OTerm Term
deriving Int -> IntervalView -> ShowS
[IntervalView] -> ShowS
IntervalView -> ArgName
forall a.
(Int -> a -> ShowS) -> (a -> ArgName) -> ([a] -> ShowS) -> Show a
showList :: [IntervalView] -> ShowS
$cshowList :: [IntervalView] -> ShowS
show :: IntervalView -> ArgName
$cshow :: IntervalView -> ArgName
showsPrec :: Int -> IntervalView -> ShowS
$cshowsPrec :: Int -> IntervalView -> ShowS
Show
isIOne :: IntervalView -> Bool
isIOne :: IntervalView -> Bool
isIOne IntervalView
IOne = Bool
True
isIOne IntervalView
_ = Bool
False
absurdBody :: Abs Term
absurdBody :: Abs Term
absurdBody = forall a. ArgName -> a -> Abs a
Abs ArgName
absurdPatternName forall a b. (a -> b) -> a -> b
$ Int -> Elims -> Term
Var Int
0 []
isAbsurdBody :: Abs Term -> Bool
isAbsurdBody :: Abs Term -> Bool
isAbsurdBody (Abs ArgName
x (Var Int
0 [])) = ArgName -> Bool
isAbsurdPatternName ArgName
x
isAbsurdBody Abs Term
_ = Bool
False
absurdPatternName :: PatVarName
absurdPatternName :: ArgName
absurdPatternName = ArgName
"()"
isAbsurdPatternName :: PatVarName -> Bool
isAbsurdPatternName :: ArgName -> Bool
isAbsurdPatternName ArgName
x = ArgName
x forall a. Eq a => a -> a -> Bool
== ArgName
absurdPatternName
var :: Nat -> Term
var :: Int -> Term
var Int
i | Int
i forall a. Ord a => a -> a -> Bool
>= Int
0 = Int -> Elims -> Term
Var Int
i []
| Bool
otherwise = forall a. HasCallStack => a
__IMPOSSIBLE__
dontCare :: Term -> Term
dontCare :: Term -> Term
dontCare Term
v =
case Term
v of
DontCare{} -> Term
v
Term
_ -> Term -> Term
DontCare Term
v
type DummyTermKind = String
dummyLocName :: CallStack -> String
dummyLocName :: CallStack -> ArgName
dummyLocName CallStack
cs = forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall a. HasCallStack => a
__IMPOSSIBLE__ CallSite -> ArgName
prettyCallSite (CallStack -> Maybe CallSite
headCallSite CallStack
cs)
dummyTermWith :: DummyTermKind -> CallStack -> Term
dummyTermWith :: ArgName -> CallStack -> Term
dummyTermWith ArgName
kind CallStack
cs = forall a b c. (a -> b -> c) -> b -> a -> c
flip ArgName -> Elims -> Term
Dummy [] forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [ArgName
kind, ArgName
": ", CallStack -> ArgName
dummyLocName CallStack
cs]
dummyLevel :: CallStack -> Level
dummyLevel :: CallStack -> Level
dummyLevel = forall t. t -> Level' t
atomicLevel forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> CallStack -> Term
dummyTermWith ArgName
"dummyLevel"
dummyTerm :: CallStack -> Term
dummyTerm :: CallStack -> Term
dummyTerm = ArgName -> CallStack -> Term
dummyTermWith ArgName
"dummyTerm"
__DUMMY_TERM__ :: HasCallStack => Term
__DUMMY_TERM__ :: HasCallStack => Term
__DUMMY_TERM__ = forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Term
dummyTerm
__DUMMY_LEVEL__ :: HasCallStack => Level
__DUMMY_LEVEL__ :: HasCallStack => Level
__DUMMY_LEVEL__ = forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Level
dummyLevel
dummySort :: CallStack -> Sort
dummySort :: CallStack -> Sort
dummySort = forall t. ArgName -> Sort' t
DummyS forall b c a. (b -> c) -> (a -> b) -> a -> c
. CallStack -> ArgName
dummyLocName
__DUMMY_SORT__ :: HasCallStack => Sort
__DUMMY_SORT__ :: HasCallStack => Sort
__DUMMY_SORT__ = forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Sort
dummySort
dummyType :: CallStack -> Type
dummyType :: CallStack -> Type
dummyType CallStack
cs = forall t a. Sort' t -> a -> Type'' t a
El (CallStack -> Sort
dummySort CallStack
cs) forall a b. (a -> b) -> a -> b
$ ArgName -> CallStack -> Term
dummyTermWith ArgName
"dummyType" CallStack
cs
__DUMMY_TYPE__ :: HasCallStack => Type
__DUMMY_TYPE__ :: HasCallStack => Type
__DUMMY_TYPE__ = forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Type
dummyType
dummyDom :: CallStack -> Dom Type
dummyDom :: CallStack -> Dom' Term Type
dummyDom = forall a. a -> Dom a
defaultDom forall b c a. (b -> c) -> (a -> b) -> a -> c
. CallStack -> Type
dummyType
__DUMMY_DOM__ :: HasCallStack => Dom Type
__DUMMY_DOM__ :: HasCallStack => Dom' Term Type
__DUMMY_DOM__ = forall b. HasCallStack => (CallStack -> b) -> b
withCallerCallStack CallStack -> Dom' Term Type
dummyDom
pattern ClosedLevel :: Integer -> Level
pattern $bClosedLevel :: Integer -> Level
$mClosedLevel :: forall {r}. Level -> (Integer -> r) -> ((# #) -> r) -> r
ClosedLevel n = Max n []
atomicLevel :: t -> Level' t
atomicLevel :: forall t. t -> Level' t
atomicLevel t
a = forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
0 [ forall t. Integer -> t -> PlusLevel' t
Plus Integer
0 t
a ]
varSort :: Int -> Sort
varSort :: Int -> Sort
varSort Int
n = forall t. Level' t -> Sort' t
Type forall a b. (a -> b) -> a -> b
$ forall t. t -> Level' t
atomicLevel forall a b. (a -> b) -> a -> b
$ Int -> Term
var Int
n
tmSort :: Term -> Sort
tmSort :: Term -> Sort
tmSort Term
t = forall t. Level' t -> Sort' t
Type forall a b. (a -> b) -> a -> b
$ forall t. t -> Level' t
atomicLevel Term
t
tmSSort :: Term -> Sort
tmSSort :: Term -> Sort
tmSSort Term
t = forall t. Level' t -> Sort' t
SSet forall a b. (a -> b) -> a -> b
$ forall t. t -> Level' t
atomicLevel Term
t
levelPlus :: Integer -> Level -> Level
levelPlus :: Integer -> Level -> Level
levelPlus Integer
m (Max Integer
n [PlusLevel]
as) = forall t. Integer -> [PlusLevel' t] -> Level' t
Max (Integer
m forall a. Num a => a -> a -> a
+ Integer
n) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map PlusLevel -> PlusLevel
pplus [PlusLevel]
as
where pplus :: PlusLevel -> PlusLevel
pplus (Plus Integer
n Term
l) = forall t. Integer -> t -> PlusLevel' t
Plus (Integer
m forall a. Num a => a -> a -> a
+ Integer
n) Term
l
levelSuc :: Level -> Level
levelSuc :: Level -> Level
levelSuc = Integer -> Level -> Level
levelPlus Integer
1
mkType :: Integer -> Sort
mkType :: Integer -> Sort
mkType Integer
n = forall t. Level' t -> Sort' t
Type forall a b. (a -> b) -> a -> b
$ Integer -> Level
ClosedLevel Integer
n
mkProp :: Integer -> Sort
mkProp :: Integer -> Sort
mkProp Integer
n = forall t. Level' t -> Sort' t
Prop forall a b. (a -> b) -> a -> b
$ Integer -> Level
ClosedLevel Integer
n
mkSSet :: Integer -> Sort
mkSSet :: Integer -> Sort
mkSSet Integer
n = forall t. Level' t -> Sort' t
SSet forall a b. (a -> b) -> a -> b
$ Integer -> Level
ClosedLevel Integer
n
isSort :: Term -> Maybe Sort
isSort :: Term -> Maybe Sort
isSort = \case
Sort Sort
s -> forall a. a -> Maybe a
Just Sort
s
Term
_ -> forall a. Maybe a
Nothing
impossibleTerm :: CallStack -> Term
impossibleTerm :: CallStack -> Term
impossibleTerm = forall a b c. (a -> b -> c) -> b -> a -> c
flip ArgName -> Elims -> Term
Dummy [] forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Show a => a -> ArgName
show forall b c a. (b -> c) -> (a -> b) -> a -> c
. CallStack -> Impossible
Impossible
mapAbsNamesM :: Applicative m => (ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM :: forall (m :: * -> *) a.
Applicative m =>
(ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM ArgName -> m ArgName
f Tele a
EmptyTel = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Tele a
EmptyTel
mapAbsNamesM ArgName -> m ArgName
f (ExtendTel a
a ( Abs ArgName
x Tele a
b)) = forall a. a -> Abs (Tele a) -> Tele a
ExtendTel a
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ( forall a. ArgName -> a -> Abs a
Abs forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ArgName -> m ArgName
f ArgName
x forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (m :: * -> *) a.
Applicative m =>
(ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM ArgName -> m ArgName
f Tele a
b)
mapAbsNamesM ArgName -> m ArgName
f (ExtendTel a
a (NoAbs ArgName
x Tele a
b)) = forall a. a -> Abs (Tele a) -> Tele a
ExtendTel a
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall a. ArgName -> a -> Abs a
NoAbs forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ArgName -> m ArgName
f ArgName
x forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (m :: * -> *) a.
Applicative m =>
(ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM ArgName -> m ArgName
f Tele a
b)
mapAbsNames :: (ArgName -> ArgName) -> Tele a -> Tele a
mapAbsNames :: forall a. ShowS -> Tele a -> Tele a
mapAbsNames ShowS
f = forall a. Identity a -> a
runIdentity forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *) a.
Applicative m =>
(ArgName -> m ArgName) -> Tele a -> m (Tele a)
mapAbsNamesM (forall a. a -> Identity a
Identity forall b c a. (b -> c) -> (a -> b) -> a -> c
. ShowS
f)
replaceEmptyName :: ArgName -> Tele a -> Tele a
replaceEmptyName :: forall a. ArgName -> Tele a -> Tele a
replaceEmptyName ArgName
x = forall a. ShowS -> Tele a -> Tele a
mapAbsNames forall a b. (a -> b) -> a -> b
$ \ ArgName
y -> if forall a. Null a => a -> Bool
null ArgName
y then ArgName
x else ArgName
y
type ListTel' a = [Dom (a, Type)]
type ListTel = ListTel' ArgName
telFromList' :: (a -> ArgName) -> ListTel' a -> Telescope
telFromList' :: forall a. (a -> ArgName) -> ListTel' a -> Telescope
telFromList' a -> ArgName
f = forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
List.foldr Dom' Term (a, Type) -> Telescope -> Telescope
extTel forall a. Tele a
EmptyTel
where
extTel :: Dom' Term (a, Type) -> Telescope -> Telescope
extTel dom :: Dom' Term (a, Type)
dom@Dom{unDom :: forall t e. Dom' t e -> e
unDom = (a
x, Type
a)} = forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (Dom' Term (a, Type)
dom{unDom :: Type
unDom = Type
a}) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. ArgName -> a -> Abs a
Abs (a -> ArgName
f a
x)
telFromList :: ListTel -> Telescope
telFromList :: ListTel -> Telescope
telFromList = forall a. (a -> ArgName) -> ListTel' a -> Telescope
telFromList' forall a. a -> a
id
telToList :: Tele (Dom t) -> [Dom (ArgName,t)]
telToList :: forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom t)
EmptyTel = []
telToList (ExtendTel Dom t
arg (Abs ArgName
x Tele (Dom t)
tel)) = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (ArgName
x,) Dom t
arg forall a. a -> [a] -> [a]
: forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom t)
tel
telToList (ExtendTel Dom t
_ NoAbs{} ) = forall a. HasCallStack => a
__IMPOSSIBLE__
listTel :: Lens' ListTel Telescope
listTel :: Lens' ListTel Telescope
listTel ListTel -> f ListTel
f = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ListTel -> Telescope
telFromList forall b c a. (b -> c) -> (a -> b) -> a -> c
. ListTel -> f ListTel
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList
class TelToArgs a where
telToArgs :: a -> [Arg ArgName]
instance TelToArgs ListTel where
telToArgs :: ListTel -> [Arg ArgName]
telToArgs = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a -> b) -> a -> b
$ \ Dom (ArgName, Type)
dom -> forall e. ArgInfo -> e -> Arg e
Arg (forall t e. Dom' t e -> ArgInfo
domInfo Dom (ArgName, Type)
dom) (forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall t e. Dom' t e -> e
unDom Dom (ArgName, Type)
dom)
instance TelToArgs Telescope where
telToArgs :: Telescope -> [Arg ArgName]
telToArgs = forall a. TelToArgs a => a -> [Arg ArgName]
telToArgs forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList
class SgTel a where
sgTel :: a -> Telescope
instance SgTel (ArgName, Dom Type) where
sgTel :: (ArgName, Dom' Term Type) -> Telescope
sgTel (ArgName
x, !Dom' Term Type
dom) = forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom' Term Type
dom forall a b. (a -> b) -> a -> b
$ forall a. ArgName -> a -> Abs a
Abs ArgName
x forall a. Tele a
EmptyTel
instance SgTel (Dom (ArgName, Type)) where
sgTel :: Dom (ArgName, Type) -> Telescope
sgTel Dom (ArgName, Type)
dom = forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (forall a b. (a, b) -> b
snd forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom (ArgName, Type)
dom) forall a b. (a -> b) -> a -> b
$ forall a. ArgName -> a -> Abs a
Abs (forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall t e. Dom' t e -> e
unDom Dom (ArgName, Type)
dom) forall a. Tele a
EmptyTel
instance SgTel (Dom Type) where
sgTel :: Dom' Term Type -> Telescope
sgTel Dom' Term Type
dom = forall a. SgTel a => a -> Telescope
sgTel (ShowS
stringToArgName ArgName
"_", Dom' Term Type
dom)
stripDontCare :: Term -> Term
stripDontCare :: Term -> Term
stripDontCare = \case
DontCare Term
v -> Term
v
Term
v -> Term
v
arity :: Type -> Nat
arity :: Type -> Int
arity Type
t = case forall t a. Type'' t a -> a
unEl Type
t of
Pi Dom' Term Type
_ Abs Type
b -> Int
1 forall a. Num a => a -> a -> a
+ Type -> Int
arity (forall a. Abs a -> a
unAbs Abs Type
b)
Term
_ -> Int
0
class Suggest a where
suggestName :: a -> Maybe String
instance Suggest String where
suggestName :: ArgName -> Maybe ArgName
suggestName ArgName
"_" = forall a. Maybe a
Nothing
suggestName ArgName
x = forall a. a -> Maybe a
Just ArgName
x
instance Suggest (Abs b) where
suggestName :: Abs b -> Maybe ArgName
suggestName = forall a. Suggest a => a -> Maybe ArgName
suggestName forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Abs a -> ArgName
absName
instance Suggest Name where
suggestName :: Name -> Maybe ArgName
suggestName = forall a. Suggest a => a -> Maybe ArgName
suggestName forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> ArgName
nameToArgName
instance Suggest Term where
suggestName :: Term -> Maybe ArgName
suggestName (Lam ArgInfo
_ Abs Term
v) = forall a. Suggest a => a -> Maybe ArgName
suggestName Abs Term
v
suggestName Term
_ = forall a. Maybe a
Nothing
data Suggestion = forall a. Suggest a => Suggestion a
suggests :: [Suggestion] -> String
suggests :: [Suggestion] -> ArgName
suggests [] = ArgName
"x"
suggests (Suggestion a
x : [Suggestion]
xs) = forall a. a -> Maybe a -> a
fromMaybe ([Suggestion] -> ArgName
suggests [Suggestion]
xs) forall a b. (a -> b) -> a -> b
$ forall a. Suggest a => a -> Maybe ArgName
suggestName a
x
unSpine :: Term -> Term
unSpine :: Term -> Term
unSpine = (ProjOrigin -> Bool) -> Term -> Term
unSpine' forall a b. (a -> b) -> a -> b
$ forall a b. a -> b -> a
const Bool
True
unSpine' :: (ProjOrigin -> Bool) -> Term -> Term
unSpine' :: (ProjOrigin -> Bool) -> Term -> Term
unSpine' ProjOrigin -> Bool
p Term
v =
case Term -> Maybe (Elims -> Term, Elims)
hasElims Term
v of
Just (Elims -> Term
h, Elims
es) -> (Elims -> Term) -> Elims -> Elims -> Term
loop Elims -> Term
h [] Elims
es
Maybe (Elims -> Term, Elims)
Nothing -> Term
v
where
loop :: (Elims -> Term) -> Elims -> Elims -> Term
loop :: (Elims -> Term) -> Elims -> Elims -> Term
loop Elims -> Term
h Elims
res Elims
es =
case Elims
es of
[] -> Term
v
Proj ProjOrigin
o QName
f : Elims
es' | ProjOrigin -> Bool
p ProjOrigin
o -> (Elims -> Term) -> Elims -> Elims -> Term
loop (QName -> Elims -> Term
Def QName
f) [forall a. Arg a -> Elim' a
Apply (forall a. a -> Arg a
defaultArg Term
v)] Elims
es'
Elim' Term
e : Elims
es' -> (Elims -> Term) -> Elims -> Elims -> Term
loop Elims -> Term
h (Elim' Term
e forall a. a -> [a] -> [a]
: Elims
res) Elims
es'
where v :: Term
v = Elims -> Term
h forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
reverse Elims
res
hasElims :: Term -> Maybe (Elims -> Term, Elims)
hasElims :: Term -> Maybe (Elims -> Term, Elims)
hasElims Term
v =
case Term
v of
Var Int
i Elims
es -> forall a. a -> Maybe a
Just (Int -> Elims -> Term
Var Int
i, Elims
es)
Def QName
f Elims
es -> forall a. a -> Maybe a
Just (QName -> Elims -> Term
Def QName
f, Elims
es)
MetaV MetaId
x Elims
es -> forall a. a -> Maybe a
Just (MetaId -> Elims -> Term
MetaV MetaId
x, Elims
es)
Con{} -> forall a. Maybe a
Nothing
Lit{} -> forall a. Maybe a
Nothing
Lam ArgInfo
h (Abs ArgName
_ Term
v) | forall a. LensHiding a => a -> Bool
visible ArgInfo
h -> case Term
v of
Var Int
0 [Proj ProjOrigin
_o QName
f] -> forall a. a -> Maybe a
Just (QName -> Elims -> Term
Def QName
f, [])
Term
_ -> forall a. Maybe a
Nothing
Lam{} -> forall a. Maybe a
Nothing
Pi{} -> forall a. Maybe a
Nothing
Sort{} -> forall a. Maybe a
Nothing
Level{} -> forall a. Maybe a
Nothing
DontCare{} -> forall a. Maybe a
Nothing
Dummy{} -> forall a. Maybe a
Nothing
instance Null (Tele a) where
empty :: Tele a
empty = forall a. Tele a
EmptyTel
null :: Tele a -> Bool
null Tele a
EmptyTel = Bool
True
null ExtendTel{} = Bool
False
instance Null Clause where
empty :: Clause
empty = Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Maybe ModuleName
-> Clause
Clause forall a. Null a => a
empty forall a. Null a => a
empty forall a. Null a => a
empty forall a. Null a => a
empty forall a. Null a => a
empty forall a. Null a => a
empty Bool
False forall a. Maybe a
Nothing forall a. Maybe a
Nothing forall a. Maybe a
Nothing forall a. Null a => a
empty forall a. Null a => a
empty
null :: Clause -> Bool
null (Clause Range
_ Range
_ Telescope
tel NAPs
pats Maybe Term
body Maybe (Arg Type)
_ Bool
_ Maybe Bool
_ Maybe Bool
_ Maybe Bool
_ ExpandedEllipsis
_ Maybe ModuleName
wm)
= forall a. Null a => a -> Bool
null Telescope
tel
Bool -> Bool -> Bool
&& forall a. Null a => a -> Bool
null NAPs
pats
Bool -> Bool -> Bool
&& forall a. Null a => a -> Bool
null Maybe Term
body
Bool -> Bool -> Bool
&& forall a. Null a => a -> Bool
null Maybe ModuleName
wm
instance Show a => Show (Abs a) where
showsPrec :: Int -> Abs a -> ShowS
showsPrec Int
p (Abs ArgName
x a
a) = Bool -> ShowS -> ShowS
showParen (Int
p forall a. Ord a => a -> a -> Bool
> Int
0) forall a b. (a -> b) -> a -> b
$
ArgName -> ShowS
showString ArgName
"Abs " forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Show a => a -> ShowS
shows ArgName
x forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> ShowS
showString ArgName
" " forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Show a => Int -> a -> ShowS
showsPrec Int
10 a
a
showsPrec Int
p (NoAbs ArgName
x a
a) = Bool -> ShowS -> ShowS
showParen (Int
p forall a. Ord a => a -> a -> Bool
> Int
0) forall a b. (a -> b) -> a -> b
$
ArgName -> ShowS
showString ArgName
"NoAbs " forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Show a => a -> ShowS
shows ArgName
x forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> ShowS
showString ArgName
" " forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Show a => Int -> a -> ShowS
showsPrec Int
10 a
a
instance Sized (Tele a) where
size :: Tele a -> Int
size Tele a
EmptyTel = Int
0
size (ExtendTel a
_ Abs (Tele a)
tel) = Int
1 forall a. Num a => a -> a -> a
+ forall a. Sized a => a -> Int
size Abs (Tele a)
tel
instance Sized a => Sized (Abs a) where
size :: Abs a -> Int
size = forall a. Sized a => a -> Int
size forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Abs a -> a
unAbs
class TermSize a where
termSize :: a -> Int
termSize = forall a. Sum a -> a
getSum forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. TermSize a => a -> Sum Int
tsize
tsize :: a -> Sum Int
instance {-# OVERLAPPABLE #-} (Foldable t, TermSize a) => TermSize (t a) where
tsize :: t a -> Sum Int
tsize = forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap forall a. TermSize a => a -> Sum Int
tsize
instance TermSize Term where
tsize :: Term -> Sum Int
tsize = \case
Var Int
_ Elims
vs -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Elims
vs
Def QName
_ Elims
vs -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Elims
vs
Con ConHead
_ ConInfo
_ Elims
vs -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Elims
vs
MetaV MetaId
_ Elims
vs -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Elims
vs
Level Level
l -> forall a. TermSize a => a -> Sum Int
tsize Level
l
Lam ArgInfo
_ Abs Term
f -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Abs Term
f
Lit Literal
_ -> Sum Int
1
Pi Dom' Term Type
a Abs Type
b -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Dom' Term Type
a forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Abs Type
b
Sort Sort
s -> forall a. TermSize a => a -> Sum Int
tsize Sort
s
DontCare Term
mv -> forall a. TermSize a => a -> Sum Int
tsize Term
mv
Dummy{} -> Sum Int
1
instance TermSize Sort where
tsize :: Sort -> Sum Int
tsize = \case
Type Level
l -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Level
l
Prop Level
l -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Level
l
Inf IsFibrant
_ Integer
_ -> Sum Int
1
SSet Level
l -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Level
l
Sort
SizeUniv -> Sum Int
1
Sort
LockUniv -> Sum Int
1
Sort
IntervalUniv -> Sum Int
1
PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Dom' Term Term
a forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Sort
s1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Abs Sort
s2
FunSort Sort
s1 Sort
s2 -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Sort
s1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Sort
s2
UnivSort Sort
s -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Sort
s
MetaS MetaId
_ Elims
es -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Elims
es
DefS QName
_ Elims
es -> Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Elims
es
DummyS{} -> Sum Int
1
instance TermSize Level where
tsize :: Level -> Sum Int
tsize (Max Integer
_ [PlusLevel]
as) = Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize [PlusLevel]
as
instance TermSize PlusLevel where
tsize :: PlusLevel -> Sum Int
tsize (Plus Integer
_ Term
a) = forall a. TermSize a => a -> Sum Int
tsize Term
a
instance TermSize a => TermSize (Substitution' a) where
tsize :: Substitution' a -> Sum Int
tsize Substitution' a
IdS = Sum Int
1
tsize (EmptyS Impossible
_) = Sum Int
1
tsize (Wk Int
_ Substitution' a
rho) = Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Substitution' a
rho
tsize (a
t :# Substitution' a
rho) = Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize a
t forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Substitution' a
rho
tsize (Strengthen Impossible
_ Int
_ Substitution' a
rho) = Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Substitution' a
rho
tsize (Lift Int
_ Substitution' a
rho) = Sum Int
1 forall a. Num a => a -> a -> a
+ forall a. TermSize a => a -> Sum Int
tsize Substitution' a
rho
instance KillRange DataOrRecord where
killRange :: KillRangeT DataOrRecord
killRange = forall a. a -> a
id
instance KillRange ConHead where
killRange :: ConHead -> ConHead
killRange (ConHead QName
c DataOrRecord
d Induction
i [Arg QName]
fs) = forall a b c d e.
(KillRange a, KillRange b, KillRange c, KillRange d) =>
(a -> b -> c -> d -> e) -> a -> b -> c -> d -> e
killRange4 QName -> DataOrRecord -> Induction -> [Arg QName] -> ConHead
ConHead QName
c DataOrRecord
d Induction
i [Arg QName]
fs
instance KillRange Term where
killRange :: Term -> Term
killRange = \case
Var Int
i Elims
vs -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (Int -> Elims -> Term
Var Int
i) Elims
vs
Def QName
c Elims
vs -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 QName -> Elims -> Term
Def QName
c Elims
vs
Con ConHead
c ConInfo
ci Elims
vs -> forall a b c d.
(KillRange a, KillRange b, KillRange c) =>
(a -> b -> c -> d) -> a -> b -> c -> d
killRange3 ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci Elims
vs
MetaV MetaId
m Elims
vs -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (MetaId -> Elims -> Term
MetaV MetaId
m) Elims
vs
Lam ArgInfo
i Abs Term
f -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 ArgInfo -> Abs Term -> Term
Lam ArgInfo
i Abs Term
f
Lit Literal
l -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Literal -> Term
Lit Literal
l
Level Level
l -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Level -> Term
Level Level
l
Pi Dom' Term Type
a Abs Type
b -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 Dom' Term Type -> Abs Type -> Term
Pi Dom' Term Type
a Abs Type
b
Sort Sort
s -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Sort -> Term
Sort Sort
s
DontCare Term
mv -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 Term -> Term
DontCare Term
mv
v :: Term
v@Dummy{} -> Term
v
instance KillRange Level where
killRange :: Level -> Level
killRange (Max Integer
n [PlusLevel]
as) = forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
n) [PlusLevel]
as
instance KillRange PlusLevel where
killRange :: PlusLevel -> PlusLevel
killRange (Plus Integer
n Term
l) = forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (forall t. Integer -> t -> PlusLevel' t
Plus Integer
n) Term
l
instance (KillRange a) => KillRange (Type' a) where
killRange :: KillRangeT (Type' a)
killRange (El Sort
s a
v) = forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 forall t a. Sort' t -> a -> Type'' t a
El Sort
s a
v
instance KillRange Sort where
killRange :: Sort -> Sort
killRange = \case
Inf IsFibrant
f Integer
n -> forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f Integer
n
Sort
SizeUniv -> forall t. Sort' t
SizeUniv
Sort
LockUniv -> forall t. Sort' t
LockUniv
Sort
IntervalUniv -> forall t. Sort' t
IntervalUniv
Type Level
a -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 forall t. Level' t -> Sort' t
Type Level
a
Prop Level
a -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 forall t. Level' t -> Sort' t
Prop Level
a
SSet Level
a -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 forall t. Level' t -> Sort' t
SSet Level
a
PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> forall a b c d.
(KillRange a, KillRange b, KillRange c) =>
(a -> b -> c -> d) -> a -> b -> c -> d
killRange3 forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2
FunSort Sort
s1 Sort
s2 -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 Sort
s2
UnivSort Sort
s -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 forall t. Sort' t -> Sort' t
UnivSort Sort
s
MetaS MetaId
x Elims
es -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x) Elims
es
DefS QName
d Elims
es -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d Elims
es
s :: Sort
s@DummyS{} -> Sort
s
instance KillRange Substitution where
killRange :: KillRangeT Substitution
killRange Substitution
IdS = forall a. Substitution' a
IdS
killRange (EmptyS Impossible
err) = forall a. Impossible -> Substitution' a
EmptyS Impossible
err
killRange (Wk Int
n Substitution
rho) = forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (forall a. Int -> Substitution' a -> Substitution' a
Wk Int
n) Substitution
rho
killRange (Term
t :# Substitution
rho) = forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 forall a. a -> Substitution' a -> Substitution' a
(:#) Term
t Substitution
rho
killRange (Strengthen Impossible
err Int
n Substitution
rho) = forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (forall a. Impossible -> Int -> Substitution' a -> Substitution' a
Strengthen Impossible
err Int
n) Substitution
rho
killRange (Lift Int
n Substitution
rho) = forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (forall a. Int -> Substitution' a -> Substitution' a
Lift Int
n) Substitution
rho
instance KillRange PatOrigin where
killRange :: KillRangeT PatOrigin
killRange = forall a. a -> a
id
instance KillRange PatternInfo where
killRange :: KillRangeT PatternInfo
killRange (PatternInfo PatOrigin
o [Name]
xs) = forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 PatOrigin -> [Name] -> PatternInfo
PatternInfo PatOrigin
o [Name]
xs
instance KillRange ConPatternInfo where
killRange :: KillRangeT ConPatternInfo
killRange (ConPatternInfo PatternInfo
i Bool
mr Bool
b Maybe (Arg Type)
mt Bool
lz) = forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo PatternInfo
i Bool
mr Bool
b) Maybe (Arg Type)
mt Bool
lz
instance KillRange DBPatVar where
killRange :: KillRangeT DBPatVar
killRange (DBPatVar ArgName
x Int
i) = forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 ArgName -> Int -> DBPatVar
DBPatVar ArgName
x Int
i
instance KillRange a => KillRange (Pattern' a) where
killRange :: KillRangeT (Pattern' a)
killRange Pattern' a
p =
case Pattern' a
p of
VarP PatternInfo
o a
x -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
o a
x
DotP PatternInfo
o Term
v -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
o Term
v
ConP ConHead
con ConPatternInfo
info [NamedArg (Pattern' a)]
ps -> forall a b c d.
(KillRange a, KillRange b, KillRange c) =>
(a -> b -> c -> d) -> a -> b -> c -> d
killRange3 forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
con ConPatternInfo
info [NamedArg (Pattern' a)]
ps
LitP PatternInfo
o Literal
l -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 forall x. PatternInfo -> Literal -> Pattern' x
LitP PatternInfo
o Literal
l
ProjP ProjOrigin
o QName
q -> forall a b. KillRange a => (a -> b) -> a -> b
killRange1 (forall x. ProjOrigin -> QName -> Pattern' x
ProjP ProjOrigin
o) QName
q
IApplyP PatternInfo
o Term
u Term
t a
x -> forall a b c d.
(KillRange a, KillRange b, KillRange c) =>
(a -> b -> c -> d) -> a -> b -> c -> d
killRange3 (forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
o) Term
u Term
t a
x
DefP PatternInfo
o QName
q [NamedArg (Pattern' a)]
ps -> forall a b c.
(KillRange a, KillRange b) =>
(a -> b -> c) -> a -> b -> c
killRange2 (forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
o) QName
q [NamedArg (Pattern' a)]
ps
instance KillRange Clause where
killRange :: KillRangeT Clause
killRange (Clause Range
rl Range
rf Telescope
tel NAPs
ps Maybe Term
body Maybe (Arg Type)
t Bool
catchall Maybe Bool
exact Maybe Bool
recursive Maybe Bool
unreachable ExpandedEllipsis
ell Maybe ModuleName
wm) =
forall a b c d e f g h i j k l.
(KillRange a, KillRange b, KillRange c, KillRange d, KillRange e,
KillRange f, KillRange g, KillRange h, KillRange i, KillRange j,
KillRange k) =>
(a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l)
-> a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l
killRange11 Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Maybe ModuleName
-> Clause
Clause Range
rl Range
rf Telescope
tel NAPs
ps Maybe Term
body Maybe (Arg Type)
t Bool
catchall Maybe Bool
exact Maybe Bool
recursive Maybe Bool
unreachable ExpandedEllipsis
ell Maybe ModuleName
wm
instance KillRange a => KillRange (Tele a) where
killRange :: KillRangeT (Tele a)
killRange = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. KillRange a => KillRangeT a
killRange
instance KillRange a => KillRange (Blocked a) where
killRange :: KillRangeT (Blocked a)
killRange = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. KillRange a => KillRangeT a
killRange
instance KillRange a => KillRange (Abs a) where
killRange :: KillRangeT (Abs a)
killRange = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. KillRange a => KillRangeT a
killRange
instance Pretty a => Pretty (Substitution' a) where
prettyPrec :: Int -> Substitution' a -> Doc
prettyPrec = forall {t} {a}.
(Ord t, Num t, Pretty a) =>
t -> Substitution' a -> Doc
pr
where
pr :: t -> Substitution' a -> Doc
pr t
p Substitution' a
rho = case Substitution' a
rho of
Substitution' a
IdS -> Doc
"idS"
EmptyS Impossible
err -> Doc
"emptyS"
a
t :# Substitution' a
rho -> Bool -> Doc -> Doc
mparens (t
p forall a. Ord a => a -> a -> Bool
> t
2) forall a b. (a -> b) -> a -> b
$
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ t -> Substitution' a -> Doc
pr t
2 Substitution' a
rho forall a. Semigroup a => a -> a -> a
<> Doc
",", forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
3 a
t ]
Strengthen Impossible
_ Int
n Substitution' a
rho -> Bool -> Doc -> Doc
mparens (t
p forall a. Ord a => a -> a -> Bool
> t
9) forall a b. (a -> b) -> a -> b
$
ArgName -> Doc
text (ArgName
"strS " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Int
n) Doc -> Doc -> Doc
<+> t -> Substitution' a -> Doc
pr t
10 Substitution' a
rho
Wk Int
n Substitution' a
rho -> Bool -> Doc -> Doc
mparens (t
p forall a. Ord a => a -> a -> Bool
> t
9) forall a b. (a -> b) -> a -> b
$
ArgName -> Doc
text (ArgName
"wkS " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Int
n) Doc -> Doc -> Doc
<+> t -> Substitution' a -> Doc
pr t
10 Substitution' a
rho
Lift Int
n Substitution' a
rho -> Bool -> Doc -> Doc
mparens (t
p forall a. Ord a => a -> a -> Bool
> t
9) forall a b. (a -> b) -> a -> b
$
ArgName -> Doc
text (ArgName
"liftS " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Int
n) Doc -> Doc -> Doc
<+> t -> Substitution' a -> Doc
pr t
10 Substitution' a
rho
instance Pretty Term where
prettyPrec :: Int -> Term -> Doc
prettyPrec Int
p Term
v =
case Term
v of
Var Int
x Elims
els -> ArgName -> Doc
text (ArgName
"@" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Int
x) Doc -> Elims -> Doc
`pApp` Elims
els
Lam ArgInfo
ai Abs Term
b ->
Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
0) forall a b. (a -> b) -> a -> b
$
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ Doc
"λ" Doc -> Doc -> Doc
<+> forall a. LensHiding a => a -> (Doc -> Doc) -> Doc -> Doc
prettyHiding ArgInfo
ai forall a. a -> a
id (ArgName -> Doc
text forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Abs a -> ArgName
absName forall a b. (a -> b) -> a -> b
$ Abs Term
b) Doc -> Doc -> Doc
<+> Doc
"->"
, Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ forall a. Pretty a => a -> Doc
pretty (forall a. Abs a -> a
unAbs Abs Term
b) ]
Lit Literal
l -> forall a. Pretty a => a -> Doc
pretty Literal
l
Def QName
q Elims
els -> forall a. Pretty a => a -> Doc
pretty QName
q Doc -> Elims -> Doc
`pApp` Elims
els
Con ConHead
c ConInfo
ci Elims
vs -> forall a. Pretty a => a -> Doc
pretty (ConHead -> QName
conName ConHead
c) Doc -> Elims -> Doc
`pApp` Elims
vs
Pi Dom' Term Type
a (NoAbs ArgName
_ Type
b) -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
0) forall a b. (a -> b) -> a -> b
$
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
1 (forall t e. Dom' t e -> e
unDom Dom' Term Type
a) Doc -> Doc -> Doc
<+> Doc
"->"
, Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ forall a. Pretty a => a -> Doc
pretty Type
b ]
Pi Dom' Term Type
a Abs Type
b -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
0) forall a b. (a -> b) -> a -> b
$
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ forall a. LensHiding a => a -> Doc -> Doc
pDom (forall t e. Dom' t e -> ArgInfo
domInfo Dom' Term Type
a) (ArgName -> Doc
text (forall a. Abs a -> ArgName
absName Abs Type
b) Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty (forall t e. Dom' t e -> e
unDom Dom' Term Type
a)) Doc -> Doc -> Doc
<+> Doc
"->"
, Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ forall a. Pretty a => a -> Doc
pretty (forall a. Abs a -> a
unAbs Abs Type
b) ]
Sort Sort
s -> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Sort
s
Level Level
l -> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Level
l
MetaV MetaId
x Elims
els -> forall a. Pretty a => a -> Doc
pretty MetaId
x Doc -> Elims -> Doc
`pApp` Elims
els
DontCare Term
v -> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Term
v
Dummy ArgName
s Elims
es -> Doc -> Doc
parens (ArgName -> Doc
text ArgName
s) Doc -> Elims -> Doc
`pApp` Elims
es
where
pApp :: Doc -> Elims -> Doc
pApp Doc
d Elims
els = Bool -> Doc -> Doc
mparens (Bool -> Bool
not (forall a. Null a => a -> Bool
null Elims
els) Bool -> Bool -> Bool
&& Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [Doc
d, Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep (forall a b. (a -> b) -> [a] -> [b]
map (forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) Elims
els)]
instance Pretty t => Pretty (Abs t) where
pretty :: Abs t -> Doc
pretty (Abs ArgName
x t
t) = Doc
"Abs" Doc -> Doc -> Doc
<+> (ArgName -> Doc
text ArgName
x forall a. Semigroup a => a -> a -> a
<> Doc
".") Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty t
t
pretty (NoAbs ArgName
x t
t) = Doc
"NoAbs" Doc -> Doc -> Doc
<+> (ArgName -> Doc
text ArgName
x forall a. Semigroup a => a -> a -> a
<> Doc
".") Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty t
t
instance (Pretty t, Pretty e) => Pretty (Dom' t e) where
pretty :: Dom' t e -> Doc
pretty Dom' t e
dom = Doc
pTac Doc -> Doc -> Doc
<+> forall a. LensHiding a => a -> Doc -> Doc
pDom Dom' t e
dom (forall a. Pretty a => a -> Doc
pretty forall a b. (a -> b) -> a -> b
$ forall t e. Dom' t e -> e
unDom Dom' t e
dom)
where
pTac :: Doc
pTac | Just t
t <- forall t e. Dom' t e -> Maybe t
domTactic Dom' t e
dom = Doc
"@" forall a. Semigroup a => a -> a -> a
<> Doc -> Doc
parens (Doc
"tactic" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty t
t)
| Bool
otherwise = forall a. Null a => a
empty
pDom :: LensHiding a => a -> Doc -> Doc
pDom :: forall a. LensHiding a => a -> Doc -> Doc
pDom a
i =
case forall a. LensHiding a => a -> Hiding
getHiding a
i of
Hiding
NotHidden -> Doc -> Doc
parens
Hiding
Hidden -> Doc -> Doc
braces
Instance{} -> Doc -> Doc
braces forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> Doc
braces
instance Pretty Clause where
pretty :: Clause -> Doc
pretty Clause{clauseTel :: Clause -> Telescope
clauseTel = Telescope
tel, namedClausePats :: Clause -> NAPs
namedClausePats = NAPs
ps, clauseBody :: Clause -> Maybe Term
clauseBody = Maybe Term
b, clauseType :: Clause -> Maybe (Arg Type)
clauseType = Maybe (Arg Type)
t} =
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ forall a. Pretty a => a -> Doc
pretty Telescope
tel Doc -> Doc -> Doc
<+> Doc
"|-"
, Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep (forall a b. (a -> b) -> [a] -> [b]
map (forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) NAPs
ps) Doc -> Doc -> Doc
<+> Doc
"="
, Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ forall {a} {a}. (Pretty a, Pretty a) => Maybe a -> Maybe a -> Doc
pBody Maybe Term
b Maybe (Arg Type)
t ] ]
where
pBody :: Maybe a -> Maybe a -> Doc
pBody Maybe a
Nothing Maybe a
_ = Doc
"(absurd)"
pBody (Just a
b) Maybe a
Nothing = forall a. Pretty a => a -> Doc
pretty a
b
pBody (Just a
b) (Just a
t) = forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ forall a. Pretty a => a -> Doc
pretty a
b Doc -> Doc -> Doc
<+> Doc
":", Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ forall a. Pretty a => a -> Doc
pretty a
t ]
instance Pretty a => Pretty (Tele (Dom a)) where
pretty :: Tele (Dom a) -> Doc
pretty Tele (Dom a)
tel = forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep [ forall a. LensHiding a => a -> Doc -> Doc
pDom Dom a
a (ArgName -> Doc
text ArgName
x Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty (forall t e. Dom' t e -> e
unDom Dom a
a)) | (ArgName
x, Dom a
a) <- forall {b}. Tele b -> [(ArgName, b)]
telToList Tele (Dom a)
tel ]
where
telToList :: Tele b -> [(ArgName, b)]
telToList Tele b
EmptyTel = []
telToList (ExtendTel b
a Abs (Tele b)
tel) = (forall a. Abs a -> ArgName
absName Abs (Tele b)
tel, b
a) forall a. a -> [a] -> [a]
: Tele b -> [(ArgName, b)]
telToList (forall a. Abs a -> a
unAbs Abs (Tele b)
tel)
prettyPrecLevelSucs :: Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs :: Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs Int
p Integer
0 Int -> Doc
d = Int -> Doc
d Int
p
prettyPrecLevelSucs Int
p Integer
n Int -> Doc
d = Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$ Doc
"lsuc" Doc -> Doc -> Doc
<+> Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs Int
10 (Integer
n forall a. Num a => a -> a -> a
- Integer
1) Int -> Doc
d
instance Pretty Level where
prettyPrec :: Int -> Level -> Doc
prettyPrec Int
p (Max Integer
n [PlusLevel]
as) =
case [PlusLevel]
as of
[] -> Doc
prettyN
[PlusLevel
a] | Integer
n forall a. Eq a => a -> a -> Bool
== Integer
0 -> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p PlusLevel
a
[PlusLevel]
_ -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
List.foldr1 (\Doc
a Doc
b -> Doc
"lub" Doc -> Doc -> Doc
<+> Doc
a Doc -> Doc -> Doc
<+> Doc
b) forall a b. (a -> b) -> a -> b
$
[ Doc
prettyN | Integer
n forall a. Ord a => a -> a -> Bool
> Integer
0 ] forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
map (forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) [PlusLevel]
as
where
prettyN :: Doc
prettyN = Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs Int
p Integer
n (forall a b. a -> b -> a
const Doc
"lzero")
instance Pretty PlusLevel where
prettyPrec :: Int -> PlusLevel -> Doc
prettyPrec Int
p (Plus Integer
n Term
a) = Int -> Integer -> (Int -> Doc) -> Doc
prettyPrecLevelSucs Int
p Integer
n forall a b. (a -> b) -> a -> b
$ \Int
p -> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Term
a
instance Pretty Sort where
prettyPrec :: Int -> Sort -> Doc
prettyPrec Int
p Sort
s =
case Sort
s of
Type (ClosedLevel Integer
0) -> Doc
"Set"
Type (ClosedLevel Integer
n) -> ArgName -> Doc
text forall a b. (a -> b) -> a -> b
$ ArgName
"Set" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Integer
n
Type Level
l -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$ Doc
"Set" Doc -> Doc -> Doc
<+> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Level
l
Prop (ClosedLevel Integer
0) -> Doc
"Prop"
Prop (ClosedLevel Integer
n) -> ArgName -> Doc
text forall a b. (a -> b) -> a -> b
$ ArgName
"Prop" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Integer
n
Prop Level
l -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$ Doc
"Prop" Doc -> Doc -> Doc
<+> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Level
l
Inf IsFibrant
f Integer
0 -> ArgName -> Doc
text forall a b. (a -> b) -> a -> b
$ IsFibrant -> ShowS
addS IsFibrant
f ArgName
"Setω"
Inf IsFibrant
f Integer
n -> ArgName -> Doc
text forall a b. (a -> b) -> a -> b
$ IsFibrant -> ShowS
addS IsFibrant
f ArgName
"Setω" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Integer
n
SSet Level
l -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$ Doc
"SSet" Doc -> Doc -> Doc
<+> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Level
l
Sort
SizeUniv -> Doc
"SizeUniv"
Sort
LockUniv -> Doc
"LockUniv"
Sort
IntervalUniv -> Doc
"IntervalUniv"
PiSort Dom' Term Term
a Sort
s1 Abs Sort
s2 -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$
Doc
"piSort" Doc -> Doc -> Doc
<+> forall a. LensHiding a => a -> Doc -> Doc
pDom (forall t e. Dom' t e -> ArgInfo
domInfo Dom' Term Term
a) (ArgName -> Doc
text (forall a. Abs a -> ArgName
absName Abs Sort
s2) Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty (forall t e. Dom' t e -> e
unDom Dom' Term Term
a) Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty Sort
s1)
Doc -> Doc -> Doc
<+> Doc -> Doc
parens (forall a. Pretty a => a -> Doc
pretty (forall a. Abs a -> a
unAbs Abs Sort
s2))
FunSort Sort
a Sort
b -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$
Doc
"funSort" Doc -> Doc -> Doc
<+> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Sort
a Doc -> Doc -> Doc
<+> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Sort
b
UnivSort Sort
s -> Bool -> Doc -> Doc
mparens (Int
p forall a. Ord a => a -> a -> Bool
> Int
9) forall a b. (a -> b) -> a -> b
$ Doc
"univSort" Doc -> Doc -> Doc
<+> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Sort
s
MetaS MetaId
x Elims
es -> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p forall a b. (a -> b) -> a -> b
$ MetaId -> Elims -> Term
MetaV MetaId
x Elims
es
DefS QName
d Elims
es -> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p forall a b. (a -> b) -> a -> b
$ QName -> Elims -> Term
Def QName
d Elims
es
DummyS ArgName
s -> Doc -> Doc
parens forall a b. (a -> b) -> a -> b
$ ArgName -> Doc
text ArgName
s
where
addS :: IsFibrant -> ShowS
addS IsFibrant
IsFibrant ArgName
t = ArgName
t
addS IsFibrant
IsStrict ArgName
t = ArgName
"S" forall a. [a] -> [a] -> [a]
++ ArgName
t
instance Pretty Type where
prettyPrec :: Int -> Type -> Doc
prettyPrec Int
p (El Sort
_ Term
a) = forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
p Term
a
instance Pretty DBPatVar where
prettyPrec :: Int -> DBPatVar -> Doc
prettyPrec Int
_ DBPatVar
x = ArgName -> Doc
text forall a b. (a -> b) -> a -> b
$ ShowS
patVarNameToString (DBPatVar -> ArgName
dbPatVarName DBPatVar
x) forall a. [a] -> [a] -> [a]
++ ArgName
"@" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show (DBPatVar -> Int
dbPatVarIndex DBPatVar
x)
instance Pretty a => Pretty (Pattern' a) where
prettyPrec :: Int -> Pattern' a -> Doc
prettyPrec Int
n (VarP PatternInfo
_o a
x) = forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
n a
x
prettyPrec Int
_ (DotP PatternInfo
_o Term
t) = Doc
"." forall a. Semigroup a => a -> a -> a
<> forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10 Term
t
prettyPrec Int
n (ConP ConHead
c ConPatternInfo
i [NamedArg (Pattern' a)]
nps)= Bool -> Doc -> Doc
mparens (Int
n forall a. Ord a => a -> a -> Bool
> Int
0 Bool -> Bool -> Bool
&& Bool -> Bool
not (forall a. Null a => a -> Bool
null [NamedArg (Pattern' a)]
nps)) forall a b. (a -> b) -> a -> b
$
(Doc
lazy forall a. Semigroup a => a -> a -> a
<> forall a. Pretty a => a -> Doc
pretty (ConHead -> QName
conName ConHead
c)) Doc -> Doc -> Doc
<+> forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep (forall a b. (a -> b) -> [a] -> [b]
map (forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) [Arg (Pattern' a)]
ps)
where ps :: [Arg (Pattern' a)]
ps = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall name a. Named name a -> a
namedThing) [NamedArg (Pattern' a)]
nps
lazy :: Doc
lazy | ConPatternInfo -> Bool
conPLazy ConPatternInfo
i = Doc
"~"
| Bool
otherwise = forall a. Null a => a
empty
prettyPrec Int
n (DefP PatternInfo
o QName
q [NamedArg (Pattern' a)]
nps)= Bool -> Doc -> Doc
mparens (Int
n forall a. Ord a => a -> a -> Bool
> Int
0 Bool -> Bool -> Bool
&& Bool -> Bool
not (forall a. Null a => a -> Bool
null [NamedArg (Pattern' a)]
nps)) forall a b. (a -> b) -> a -> b
$
forall a. Pretty a => a -> Doc
pretty QName
q Doc -> Doc -> Doc
<+> forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep (forall a b. (a -> b) -> [a] -> [b]
map (forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
10) [Arg (Pattern' a)]
ps)
where ps :: [Arg (Pattern' a)]
ps = forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall name a. Named name a -> a
namedThing) [NamedArg (Pattern' a)]
nps
prettyPrec Int
_ (LitP PatternInfo
_ Literal
l) = forall a. Pretty a => a -> Doc
pretty Literal
l
prettyPrec Int
_ (ProjP ProjOrigin
_o QName
q) = ArgName -> Doc
text (ArgName
"." forall a. [a] -> [a] -> [a]
++ forall a. Pretty a => a -> ArgName
prettyShow QName
q)
prettyPrec Int
n (IApplyP PatternInfo
_o Term
_ Term
_ a
x) = forall a. Pretty a => Int -> a -> Doc
prettyPrec Int
n a
x
instance Pretty a => Pretty (Blocked a) where
pretty :: Blocked a -> Doc
pretty (Blocked Blocker
x a
a) = (Doc
"[" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty a
a Doc -> Doc -> Doc
<+> Doc
"]") forall a. Semigroup a => a -> a -> a
<> forall a. Pretty a => a -> Doc
pretty Blocker
x
pretty (NotBlocked NotBlocked' Term
_ a
x) = forall a. Pretty a => a -> Doc
pretty a
x
instance NFData Term where
rnf :: Term -> ()
rnf = \case
Var Int
_ Elims
es -> forall a. NFData a => a -> ()
rnf Elims
es
Lam ArgInfo
_ Abs Term
b -> forall a. NFData a => a -> ()
rnf (forall a. Abs a -> a
unAbs Abs Term
b)
Lit Literal
l -> forall a. NFData a => a -> ()
rnf Literal
l
Def QName
_ Elims
es -> forall a. NFData a => a -> ()
rnf Elims
es
Con ConHead
_ ConInfo
_ Elims
vs -> forall a. NFData a => a -> ()
rnf Elims
vs
Pi Dom' Term Type
a Abs Type
b -> forall a. NFData a => a -> ()
rnf (forall t e. Dom' t e -> e
unDom Dom' Term Type
a, forall a. Abs a -> a
unAbs Abs Type
b)
Sort Sort
s -> forall a. NFData a => a -> ()
rnf Sort
s
Level Level
l -> forall a. NFData a => a -> ()
rnf Level
l
MetaV MetaId
_ Elims
es -> forall a. NFData a => a -> ()
rnf Elims
es
DontCare Term
v -> forall a. NFData a => a -> ()
rnf Term
v
Dummy ArgName
_ Elims
es -> forall a. NFData a => a -> ()
rnf Elims
es
instance NFData Type where
rnf :: Type -> ()
rnf (El Sort
s Term
v) = forall a. NFData a => a -> ()
rnf (Sort
s, Term
v)
instance NFData Sort where
rnf :: Sort -> ()
rnf = \case
Type Level
l -> forall a. NFData a => a -> ()
rnf Level
l
Prop Level
l -> forall a. NFData a => a -> ()
rnf Level
l
Inf IsFibrant
_ Integer
_ -> ()
SSet Level
l -> forall a. NFData a => a -> ()
rnf Level
l
Sort
SizeUniv -> ()
Sort
LockUniv -> ()
Sort
IntervalUniv -> ()
PiSort Dom' Term Term
a Sort
b Abs Sort
c -> forall a. NFData a => a -> ()
rnf (Dom' Term Term
a, Sort
b, forall a. Abs a -> a
unAbs Abs Sort
c)
FunSort Sort
a Sort
b -> forall a. NFData a => a -> ()
rnf (Sort
a, Sort
b)
UnivSort Sort
a -> forall a. NFData a => a -> ()
rnf Sort
a
MetaS MetaId
_ Elims
es -> forall a. NFData a => a -> ()
rnf Elims
es
DefS QName
_ Elims
es -> forall a. NFData a => a -> ()
rnf Elims
es
DummyS ArgName
_ -> ()
instance NFData Level where
rnf :: Level -> ()
rnf (Max Integer
n [PlusLevel]
as) = forall a. NFData a => a -> ()
rnf (Integer
n, [PlusLevel]
as)
instance NFData PlusLevel where
rnf :: PlusLevel -> ()
rnf (Plus Integer
n Term
l) = forall a. NFData a => a -> ()
rnf (Integer
n, Term
l)
instance NFData e => NFData (Dom e) where
rnf :: Dom e -> ()
rnf (Dom ArgInfo
a Maybe (WithOrigin (Ranged ArgName))
c Bool
d Maybe Term
e e
f) = forall a. NFData a => a -> ()
rnf ArgInfo
a seq :: forall a b. a -> b -> b
`seq` forall a. NFData a => a -> ()
rnf Maybe (WithOrigin (Ranged ArgName))
c seq :: forall a b. a -> b -> b
`seq` forall a. NFData a => a -> ()
rnf Bool
d seq :: forall a b. a -> b -> b
`seq` forall a. NFData a => a -> ()
rnf Maybe Term
e seq :: forall a b. a -> b -> b
`seq` forall a. NFData a => a -> ()
rnf e
f
instance NFData DataOrRecord
instance NFData ConHead
instance NFData a => NFData (Abs a)
instance NFData a => NFData (Tele a)
instance NFData IsFibrant
instance NFData Clause
instance NFData PatternInfo
instance NFData PatOrigin
instance NFData x => NFData (Pattern' x)
instance NFData DBPatVar
instance NFData ConPatternInfo
instance NFData a => NFData (Substitution' a)