{-# LANGUAGE NondecreasingIndentation #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Agda.Interaction.BasicOps where
import Prelude hiding (null)
import Control.Arrow ( first )
import Control.Monad ( (>=>), forM, guard )
import Control.Monad.Except
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Identity
import qualified Data.Map as Map
import qualified Data.Map.Strict as MapS
import qualified Data.Set as Set
import qualified Data.List as List
import Data.Maybe
import Data.Monoid
import Data.Function (on)
import Data.Text (Text)
import qualified Data.Text as T
import Agda.Interaction.Base
import Agda.Interaction.Options
import Agda.Interaction.Response (Goals, ResponseContextEntry(..))
import qualified Agda.Syntax.Concrete as C
import Agda.Syntax.Position
import Agda.Syntax.Abstract as A hiding (Open, Apply, Assign)
import Agda.Syntax.Abstract.Views as A
import Agda.Syntax.Abstract.Pretty
import Agda.Syntax.Common
import Agda.Syntax.Info (MetaInfo(..),emptyMetaInfo,exprNoRange,defaultAppInfo_,defaultAppInfo)
import qualified Agda.Syntax.Info as Info
import Agda.Syntax.Internal as I
import Agda.Syntax.Literal
import Agda.Syntax.Translation.InternalToAbstract
import Agda.Syntax.Translation.AbstractToConcrete
import Agda.Syntax.Translation.ConcreteToAbstract
import Agda.Syntax.Scope.Base
import Agda.Syntax.Scope.Monad
import Agda.Syntax.Fixity(Precedence(..), argumentCtx_)
import Agda.Syntax.Parser
import Agda.TheTypeChecker
import Agda.TypeChecking.ReconstructParameters
import Agda.TypeChecking.Constraints
import Agda.TypeChecking.Conversion
import Agda.TypeChecking.Errors ( getAllWarnings, stringTCErr, Verbalize(..) )
import Agda.TypeChecking.Monad as M hiding (MetaInfo)
import Agda.TypeChecking.MetaVars
import Agda.TypeChecking.MetaVars.Mention
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Telescope
import Agda.TypeChecking.With
import Agda.TypeChecking.Coverage
import Agda.TypeChecking.Coverage.Match ( SplitPattern )
import Agda.TypeChecking.Records
import Agda.TypeChecking.Irrelevance (wakeIrrelevantVars)
import Agda.TypeChecking.Pretty ( PrettyTCM, prettyTCM )
import Agda.TypeChecking.Pretty.Constraint (prettyRangeConstraint)
import Agda.TypeChecking.IApplyConfluence
import Agda.TypeChecking.Primitive
import Agda.TypeChecking.Names
import Agda.TypeChecking.Free
import Agda.TypeChecking.CheckInternal
import Agda.TypeChecking.SizedTypes.Solve
import qualified Agda.TypeChecking.Pretty as TP
import Agda.TypeChecking.Warnings
( runPM, warning, WhichWarnings(..), classifyWarnings, isMetaTCWarning
, WarningsAndNonFatalErrors, emptyWarningsAndNonFatalErrors )
import Agda.Termination.TermCheck (termMutual)
import Agda.Utils.Functor
import Agda.Utils.Lens
import Agda.Utils.List
import Agda.Utils.List1 (List1, pattern (:|))
import qualified Agda.Utils.List1 as List1
import Agda.Utils.Maybe
import qualified Agda.Utils.Maybe.Strict as Strict
import Agda.Utils.Monad
import Agda.Utils.Null
import Agda.Utils.Pretty as P
import Agda.Utils.Permutation
import Agda.Utils.Size
import Agda.Utils.String
import Agda.Utils.Impossible
import qualified Agda.Utils.SmallSet as SmallSet
import Agda.TypeChecking.ProjectionLike (reduceProjectionLike)
parseExpr :: Range -> String -> TCM C.Expr
parseExpr :: Range -> ArgName -> TCM Expr
parseExpr Range
rng ArgName
s = do
(C.ExprWhere Expr
e WhereClause
wh, CohesionAttributes
coh) <-
forall a. PM a -> TCM a
runPM forall a b. (a -> b) -> a -> b
$ forall a.
Parser a -> Position -> ArgName -> PM (a, CohesionAttributes)
parsePosString Parser ExprWhere
exprWhereParser Position
pos ArgName
s
CohesionAttributes -> ScopeM ()
checkCohesionAttributes CohesionAttributes
coh
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (forall a. Null a => a -> Bool
null WhereClause
wh) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ ArgName -> TypeError
GenericError forall a b. (a -> b) -> a -> b
$
ArgName
"where clauses are not supported in holes"
forall (m :: * -> *) a. Monad m => a -> m a
return Expr
e
where pos :: Position
pos = forall a. a -> Maybe a -> a
fromMaybe (Maybe RangeFile -> Position
startPos forall a. Maybe a
Nothing) forall a b. (a -> b) -> a -> b
$ forall a. Range' a -> Maybe (Position' a)
rStart Range
rng
parseExprIn :: InteractionId -> Range -> String -> TCM Expr
parseExprIn :: InteractionId -> Range -> ArgName -> TCM Expr
parseExprIn InteractionId
ii Range
rng ArgName
s = do
MetaId
mId <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii
forall (m :: * -> *). MonadMetaSolver m => MetaId -> Range -> m ()
updateMetaVarRange MetaId
mId Range
rng
Closure Range
mi <- MetaVariable -> Closure Range
getMetaInfo forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
mId
Expr
e <- Range -> ArgName -> TCM Expr
parseExpr Range
rng ArgName
s
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
Closure Range -> m a -> m a
withMetaInfo Closure Range
mi forall a b. (a -> b) -> a -> b
$
forall c. ToAbstract c => ScopeInfo -> c -> ScopeM (AbsOfCon c)
concreteToAbstract (forall a. Closure a -> ScopeInfo
clScope Closure Range
mi) Expr
e
giveExpr :: UseForce -> Maybe InteractionId -> MetaId -> Expr -> TCM Term
giveExpr :: UseForce -> Maybe InteractionId -> MetaId -> Expr -> TCM Term
giveExpr UseForce
force Maybe InteractionId
mii MetaId
mi Expr
e = do
MetaVariable
mv <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
mi
let t :: Type
t = case MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mv of
IsSort{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
HasType MetaId
_ Comparison
_ Type
t -> Type
t
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
20 forall a b. (a -> b) -> a -> b
$
TCMT IO Doc
"give: meta type =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t
Args
ctx <- forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
Type
t' <- Type
t forall a (m :: * -> *).
(PiApplyM a, MonadReduce m, HasBuiltins m) =>
Type -> a -> m Type
`piApplyM` forall a. Permutation -> [a] -> [a]
permute (Int -> Permutation -> Permutation
takeP (forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
ctx) forall a b. (a -> b) -> a -> b
$ MetaVariable -> Permutation
mvPermutation MetaVariable
mv) Args
ctx
forall (m :: * -> *) a. MonadTrace m => Call -> m a -> m a
traceCall (Comparison -> Expr -> Type -> Call
CheckExprCall Comparison
CmpLeq Expr
e Type
t') forall a b. (a -> b) -> a -> b
$ do
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
20 forall a b. (a -> b) -> a -> b
$ do
AbstractMode
a <- forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> AbstractMode
envAbstractMode
forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.hsep
[ forall (m :: * -> *). Applicative m => ArgName -> m Doc
TP.text (ArgName
"give(" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show AbstractMode
a forall a. [a] -> [a] -> [a]
++ ArgName
"): instantiated meta type =")
, forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t'
]
Term
v <- forall (m :: * -> *) a b.
MonadTCEnv m =>
Lens' a TCEnv -> (a -> a) -> m b -> m b
locallyTC Lens' (Maybe MutualId) TCEnv
eMutualBlock (forall a b. a -> b -> a
const forall a. Maybe a
Nothing) forall a b. (a -> b) -> a -> b
$
Expr -> Type -> TCM Term
checkExpr Expr
e Type
t'
case MetaVariable -> MetaInstantiation
mvInstantiation MetaVariable
mv of
InstV{} -> forall (m :: * -> *). Monad m => m Bool -> m () -> m ()
unlessM ((Relevance
Irrelevant forall a. Eq a => a -> a -> Bool
==) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC forall a. LensRelevance a => a -> Relevance
getRelevance) forall a b. (a -> b) -> a -> b
$ do
Term
v' <- forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate forall a b. (a -> b) -> a -> b
$ MetaId -> Elims -> Term
MetaV MetaId
mi forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a. Arg a -> Elim' a
Apply Args
ctx
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.sep
[ TCMT IO Doc
"meta was already set to value v' = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v'
, TCMT IO Doc
"now comparing it to given value v = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Term
v
, TCMT IO Doc
"in context " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
ctx)
]
forall (m :: * -> *).
MonadConversion m =>
Type -> Term -> Term -> m ()
equalTerm Type
t' Term
v Term
v'
MetaInstantiation
_ -> do
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> ArgName -> m ()
reportSLn ArgName
"interaction.give" Int
20 ArgName
"give: meta unassigned, assigning..."
Args
args <- forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
forall (m :: * -> *) a. MonadTCEnv m => m a -> m a
nowSolvingConstraints forall a b. (a -> b) -> a -> b
$ CompareDirection
-> MetaId -> Args -> Term -> CompareAs -> ScopeM ()
assign CompareDirection
DirEq MetaId
mi Args
args Term
v (Type -> CompareAs
AsTermsOf Type
t')
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"give: meta variable updated!"
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (UseForce
force forall a. Eq a => a -> a -> Bool
== UseForce
WithForce) forall a b. (a -> b) -> a -> b
$ Maybe InteractionId -> ScopeM ()
redoChecks Maybe InteractionId
mii
forall (m :: * -> *). MonadMetaSolver m => MetaId -> m ()
wakeupConstraints MetaId
mi
DefaultToInfty -> ScopeM ()
solveSizeConstraints DefaultToInfty
DontDefaultToInfty
Bool
cubical <- forall a. Maybe a -> Bool
isJust forall b c a. (b -> c) -> (a -> b) -> a -> c
. PragmaOptions -> Maybe Cubical
optCubical forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Bool
cubical Bool -> Bool -> Bool
|| UseForce
force forall a. Eq a => a -> a -> Bool
== UseForce
WithForce) forall a b. (a -> b) -> a -> b
$ do
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"give: double checking"
Term
vfull <- forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull Term
v
forall (m :: * -> *).
MonadCheckInternal m =>
Term -> Comparison -> Type -> m ()
checkInternal Term
vfull Comparison
CmpLeq Type
t'
forall (m :: * -> *) a. Monad m => a -> m a
return Term
v
redoChecks :: Maybe InteractionId -> TCM ()
redoChecks :: Maybe InteractionId -> ScopeM ()
redoChecks Maybe InteractionId
Nothing = forall (m :: * -> *) a. Monad m => a -> m a
return ()
redoChecks (Just InteractionId
ii) = do
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> ArgName -> m ()
reportSLn ArgName
"interaction.give" Int
20 forall a b. (a -> b) -> a -> b
$
ArgName
"give: redoing termination check for function surrounding " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show InteractionId
ii
InteractionPoint
ip <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m) =>
InteractionId -> m InteractionPoint
lookupInteractionPoint InteractionId
ii
case InteractionPoint -> IPClause
ipClause InteractionPoint
ip of
IPClause
IPNoClause -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
IPClause{ipcQName :: IPClause -> QName
ipcQName = QName
f} -> do
MutualId
mb <- QName -> TCM MutualId
mutualBlockOf QName
f
Result
terErrs <- forall (m :: * -> *) a.
MonadTCEnv m =>
(TCEnv -> TCEnv) -> m a -> m a
localTC (\ TCEnv
e -> TCEnv
e { envMutualBlock :: Maybe MutualId
envMutualBlock = forall a. a -> Maybe a
Just MutualId
mb }) forall a b. (a -> b) -> a -> b
$ [QName] -> TCMT IO Result
termMutual []
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (forall a. Null a => a -> Bool
null Result
terErrs) forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *).
(HasCallStack, MonadWarning m) =>
Warning -> m ()
warning forall a b. (a -> b) -> a -> b
$ Result -> Warning
TerminationIssue Result
terErrs
give
:: UseForce
-> InteractionId
-> Maybe Range
-> Expr
-> TCM Expr
give :: UseForce -> InteractionId -> Maybe Range -> Expr -> TCM Expr
give UseForce
force InteractionId
ii Maybe Range
mr Expr
e = forall (tcm :: * -> *) a. MonadTCM tcm => TCM a -> tcm a
liftTCM forall a b. (a -> b) -> a -> b
$ do
MetaId
mi <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii
forall (m :: * -> *) a. Monad m => Maybe a -> (a -> m ()) -> m ()
whenJust Maybe Range
mr forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadMetaSolver m => MetaId -> Range -> m ()
updateMetaVarRange MetaId
mi
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
10 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"giving expression" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Expr
e
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
50 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
TP.text forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show forall a b. (a -> b) -> a -> b
$ forall a. ExprLike a => a -> a
deepUnscope Expr
e
Term
_ <- forall (m :: * -> *) a.
(MonadDebug m, MonadFail m, ReadTCState m, MonadError TCErr m,
MonadTCEnv m, MonadTrace m) =>
InteractionId -> m a -> m a
withInteractionId InteractionId
ii forall a b. (a -> b) -> a -> b
$ do
forall (m :: * -> *).
MonadMetaSolver m =>
MetaId -> RunMetaOccursCheck -> m ()
setMetaOccursCheck MetaId
mi RunMetaOccursCheck
DontRunMetaOccursCheck
UseForce -> Maybe InteractionId -> MetaId -> Expr -> TCM Term
giveExpr UseForce
force (forall a. a -> Maybe a
Just InteractionId
ii) MetaId
mi Expr
e
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \ case
PatternErr{} -> forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< do
forall (m :: * -> *) a.
(MonadDebug m, MonadFail m, ReadTCState m, MonadError TCErr m,
MonadTCEnv m, MonadTrace m) =>
InteractionId -> m a -> m a
withInteractionId InteractionId
ii forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Failed to give" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Expr
e
TCErr
err -> forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err
forall (m :: * -> *).
MonadInteractionPoints m =>
InteractionId -> m ()
removeInteractionPoint InteractionId
ii
forall (m :: * -> *) a. Monad m => a -> m a
return Expr
e
elaborate_give
:: Rewrite
-> UseForce
-> InteractionId
-> Maybe Range
-> Expr
-> TCM Expr
elaborate_give :: Rewrite
-> UseForce -> InteractionId -> Maybe Range -> Expr -> TCM Expr
elaborate_give Rewrite
norm UseForce
force InteractionId
ii Maybe Range
mr Expr
e = forall (m :: * -> *) a.
(MonadDebug m, MonadFail m, ReadTCState m, MonadError TCErr m,
MonadTCEnv m, MonadTrace m) =>
InteractionId -> m a -> m a
withInteractionId InteractionId
ii forall a b. (a -> b) -> a -> b
$ do
MetaId
mi <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii
forall (m :: * -> *) a. Monad m => Maybe a -> (a -> m ()) -> m ()
whenJust Maybe Range
mr forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). MonadMetaSolver m => MetaId -> Range -> m ()
updateMetaVarRange MetaId
mi
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
10 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"giving expression" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Expr
e
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.give" Int
50 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
TP.text forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show forall a b. (a -> b) -> a -> b
$ forall a. ExprLike a => a -> a
deepUnscope Expr
e
Term
v <- forall (m :: * -> *) a.
(MonadDebug m, MonadFail m, ReadTCState m, MonadError TCErr m,
MonadTCEnv m, MonadTrace m) =>
InteractionId -> m a -> m a
withInteractionId InteractionId
ii forall a b. (a -> b) -> a -> b
$ do
forall (m :: * -> *).
MonadMetaSolver m =>
MetaId -> RunMetaOccursCheck -> m ()
setMetaOccursCheck MetaId
mi RunMetaOccursCheck
DontRunMetaOccursCheck
forall (m :: * -> *) a b.
MonadTCEnv m =>
Lens' a TCEnv -> (a -> a) -> m b -> m b
locallyTC Lens' Bool TCEnv
eCurrentlyElaborating (forall a b. a -> b -> a
const Bool
True) forall a b. (a -> b) -> a -> b
$
UseForce -> Maybe InteractionId -> MetaId -> Expr -> TCM Term
giveExpr UseForce
force (forall a. a -> Maybe a
Just InteractionId
ii) MetaId
mi Expr
e
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \ case
PatternErr{} -> forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall b c a. (b -> c) -> (a -> b) -> a -> c
. Doc -> TypeError
GenericDocError forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< do
forall (m :: * -> *) a.
(MonadDebug m, MonadFail m, ReadTCState m, MonadError TCErr m,
MonadTCEnv m, MonadTrace m) =>
InteractionId -> m a -> m a
withInteractionId InteractionId
ii forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"Failed to give" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Expr
e
TCErr
err -> forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError TCErr
err
MetaVariable
mv <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
mi
Term
nv <- forall (m :: * -> *). PureTCM m => Term -> m Term
reduceProjectionLike forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm Term
v
forall (m :: * -> *) a b.
MonadTCEnv m =>
Lens' a TCEnv -> (a -> a) -> m b -> m b
locallyTC Lens' Bool TCEnv
ePrintMetasBare (forall a b. a -> b -> a
const Bool
True) forall a b. (a -> b) -> a -> b
$ forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
nv
refine
:: UseForce
-> InteractionId
-> Maybe Range
-> Expr
-> TCM Expr
refine :: UseForce -> InteractionId -> Maybe Range -> Expr -> TCM Expr
refine UseForce
force InteractionId
ii Maybe Range
mr Expr
e = do
MetaId
mi <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii
MetaVariable
mv <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
mi
let range :: Range
range = forall a. a -> Maybe a -> a
fromMaybe (forall a. HasRange a => a -> Range
getRange MetaVariable
mv) Maybe Range
mr
scope :: ScopeInfo
scope = MetaVariable -> ScopeInfo
M.getMetaScope MetaVariable
mv
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.refine" Int
10 forall a b. (a -> b) -> a -> b
$
TCMT IO Doc
"refining with expression" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Expr
e
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.refine" Int
50 forall a b. (a -> b) -> a -> b
$
forall (m :: * -> *). Applicative m => ArgName -> m Doc
TP.text forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show forall a b. (a -> b) -> a -> b
$ forall a. ExprLike a => a -> a
deepUnscope Expr
e
Int -> Range -> ScopeInfo -> Expr -> TCM Expr
tryRefine Int
10 Range
range ScopeInfo
scope Expr
e
where
tryRefine :: Int -> Range -> ScopeInfo -> Expr -> TCM Expr
tryRefine :: Int -> Range -> ScopeInfo -> Expr -> TCM Expr
tryRefine Int
nrOfMetas Range
r ScopeInfo
scope = Int -> Maybe TCErr -> Expr -> TCM Expr
try Int
nrOfMetas forall a. Maybe a
Nothing
where
try :: Int -> Maybe TCErr -> Expr -> TCM Expr
try :: Int -> Maybe TCErr -> Expr -> TCM Expr
try Int
0 Maybe TCErr
err Expr
e = forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> TCErr
stringTCErr forall a b. (a -> b) -> a -> b
$ case Maybe TCErr
err of
Just (TypeError CallStack
_ TCState
_ Closure TypeError
cl) | UnequalTerms Comparison
_ I.Pi{} Term
_ CompareAs
_ <- forall a. Closure a -> a
clValue Closure TypeError
cl ->
ArgName
"Cannot refine functions with 10 or more arguments"
Maybe TCErr
_ ->
ArgName
"Cannot refine"
try Int
n Maybe TCErr
_ Expr
e = UseForce -> InteractionId -> Maybe Range -> Expr -> TCM Expr
give UseForce
force InteractionId
ii (forall a. a -> Maybe a
Just Range
r) Expr
e forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \TCErr
err -> Int -> Maybe TCErr -> Expr -> TCM Expr
try (Int
n forall a. Num a => a -> a -> a
- Int
1) (forall a. a -> Maybe a
Just TCErr
err) forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Expr -> TCM Expr
appMeta Expr
e
appMeta :: Expr -> TCM Expr
appMeta :: Expr -> TCM Expr
appMeta Expr
e = do
let rng :: Range
rng = Range -> Range
rightMargin Range
r
InteractionId
ii <- forall (m :: * -> *).
MonadInteractionPoints m =>
Bool -> Range -> Maybe Int -> m InteractionId
registerInteractionPoint Bool
False Range
rng forall a. Maybe a
Nothing
let info :: MetaInfo
info = Info.MetaInfo
{ metaRange :: Range
Info.metaRange = Range
rng
, metaScope :: ScopeInfo
Info.metaScope = forall i o. Lens' i o -> LensSet i o
set Lens' PrecedenceStack ScopeInfo
scopePrecedence [Precedence
argumentCtx_] ScopeInfo
scope
, metaNumber :: Maybe MetaId
metaNumber = forall a. Maybe a
Nothing
, metaNameSuggestion :: ArgName
metaNameSuggestion = ArgName
""
}
metaVar :: Expr
metaVar = MetaInfo -> InteractionId -> Expr
QuestionMark MetaInfo
info InteractionId
ii
count :: Name -> a -> a
count Name
x a
e = forall a. Sum a -> a
getSum forall a b. (a -> b) -> a -> b
$ forall a m. ExprLike a => FoldExprFn m a
foldExpr Expr -> Sum a
isX a
e
where isX :: Expr -> Sum a
isX (A.Var Name
y) | Name
x forall a. Eq a => a -> a -> Bool
== Name
y = forall a. a -> Sum a
Sum a
1
isX Expr
_ = forall a. Monoid a => a
mempty
lamView :: Expr -> Maybe (Binder, Expr)
lamView (A.Lam ExprInfo
_ (DomainFree TacticAttr
_ NamedArg Binder
x) Expr
e) = forall a. a -> Maybe a
Just (forall a. NamedArg a -> a
namedArg NamedArg Binder
x, Expr
e)
lamView (A.Lam ExprInfo
i (DomainFull (TBind Range
r TypedBindingInfo
t (NamedArg Binder
x :| [NamedArg Binder]
xs) Expr
a)) Expr
e) =
forall a b. [a] -> b -> (List1 a -> b) -> b
List1.ifNull [NamedArg Binder]
xs (forall a. a -> Maybe a
Just (forall a. NamedArg a -> a
namedArg NamedArg Binder
x, Expr
e)) forall a b. (a -> b) -> a -> b
$ \ NonEmpty (NamedArg Binder)
xs ->
forall a. a -> Maybe a
Just (forall a. NamedArg a -> a
namedArg NamedArg Binder
x, ExprInfo -> LamBinding -> Expr -> Expr
A.Lam ExprInfo
i (TypedBinding -> LamBinding
DomainFull forall a b. (a -> b) -> a -> b
$ Range
-> TypedBindingInfo
-> NonEmpty (NamedArg Binder)
-> Expr
-> TypedBinding
TBind Range
r TypedBindingInfo
t NonEmpty (NamedArg Binder)
xs Expr
a) Expr
e)
lamView Expr
_ = forall a. Maybe a
Nothing
smartApp :: AppInfo -> Expr -> NamedArg Expr -> Expr
smartApp AppInfo
i Expr
e NamedArg Expr
arg =
case forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first forall a. Binder' a -> a
A.binderName) (Expr -> Maybe (Binder, Expr)
lamView forall a b. (a -> b) -> a -> b
$ Expr -> Expr
unScope Expr
e) of
Just (A.BindName{unBind :: BindName -> Name
unBind = Name
x}, Expr
e) | forall {a} {a}. (Num a, ExprLike a) => Name -> a -> a
count Name
x Expr
e forall a. Ord a => a -> a -> Bool
< Integer
2 -> forall a. ExprLike a => (Expr -> Expr) -> a -> a
mapExpr Expr -> Expr
subX Expr
e
where subX :: Expr -> Expr
subX (A.Var Name
y) | Name
x forall a. Eq a => a -> a -> Bool
== Name
y = forall a. NamedArg a -> a
namedArg NamedArg Expr
arg
subX Expr
e = Expr
e
Maybe (BindName, Expr)
_ -> AppInfo -> Expr -> NamedArg Expr -> Expr
App AppInfo
i Expr
e NamedArg Expr
arg
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ AppInfo -> Expr -> NamedArg Expr -> Expr
smartApp (Range -> AppInfo
defaultAppInfo Range
r) Expr
e forall a b. (a -> b) -> a -> b
$ forall a. a -> NamedArg a
defaultNamedArg Expr
metaVar
evalInCurrent :: ComputeMode -> Expr -> TCM Expr
evalInCurrent :: ComputeMode -> Expr -> TCM Expr
evalInCurrent ComputeMode
cmode Expr
e = do
(Term
v, Type
_t) <- Expr -> TCM (Term, Type)
inferExpr Expr
e
forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Term -> TCM Term
compute Term
v
where compute :: Term -> TCM Term
compute | ComputeMode
cmode forall a. Eq a => a -> a -> Bool
== ComputeMode
HeadCompute = forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce
| Bool
otherwise = forall a (m :: * -> *). (Normalise a, MonadReduce m) => a -> m a
normalise
evalInMeta :: InteractionId -> ComputeMode -> Expr -> TCM Expr
evalInMeta :: InteractionId -> ComputeMode -> Expr -> TCM Expr
evalInMeta InteractionId
ii ComputeMode
cmode Expr
e =
do MetaId
m <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii
Closure Range
mi <- MetaVariable -> Closure Range
getMetaInfo forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
m
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
Closure Range -> m a -> m a
withMetaInfo Closure Range
mi forall a b. (a -> b) -> a -> b
$
ComputeMode -> Expr -> TCM Expr
evalInCurrent ComputeMode
cmode Expr
e
normalForm :: (Reduce t, Simplify t, Instantiate t, Normalise t) => Rewrite -> t -> TCM t
normalForm :: forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm = \case
Rewrite
AsIs -> forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate
Rewrite
Instantiated -> forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate
Rewrite
HeadNormal -> forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce
Rewrite
Simplified -> forall a (m :: * -> *). (Simplify a, MonadReduce m) => a -> m a
simplify
Rewrite
Normalised -> forall a (m :: * -> *). (Normalise a, MonadReduce m) => a -> m a
normalise
computeIgnoreAbstract :: ComputeMode -> Bool
computeIgnoreAbstract :: ComputeMode -> Bool
computeIgnoreAbstract ComputeMode
DefaultCompute = Bool
False
computeIgnoreAbstract ComputeMode
HeadCompute = Bool
False
computeIgnoreAbstract ComputeMode
IgnoreAbstract = Bool
True
computeIgnoreAbstract ComputeMode
UseShowInstance = Bool
True
computeWrapInput :: ComputeMode -> String -> String
computeWrapInput :: ComputeMode -> ArgName -> ArgName
computeWrapInput ComputeMode
UseShowInstance ArgName
s = ArgName
"show (" forall a. [a] -> [a] -> [a]
++ ArgName
s forall a. [a] -> [a] -> [a]
++ ArgName
")"
computeWrapInput ComputeMode
_ ArgName
s = ArgName
s
showComputed :: ComputeMode -> Expr -> TCM Doc
showComputed :: ComputeMode -> Expr -> TCMT IO Doc
showComputed ComputeMode
UseShowInstance Expr
e =
case Expr
e of
A.Lit ExprInfo
_ (LitString Text
s) -> forall (f :: * -> *) a. Applicative f => a -> f a
pure (ArgName -> Doc
text forall a b. (a -> b) -> a -> b
$ Text -> ArgName
T.unpack Text
s)
Expr
_ -> (Doc
"Not a string:" Doc -> Doc -> Doc
$$) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyATop Expr
e
showComputed ComputeMode
_ Expr
e = forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyATop Expr
e
outputFormId :: OutputForm a b -> b
outputFormId :: forall a b. OutputForm a b -> b
outputFormId (OutputForm Range
_ [ProblemId]
_ Blocker
_ OutputConstraint a b
o) = forall {a} {b}. OutputConstraint a b -> b
out OutputConstraint a b
o
where
out :: OutputConstraint a b -> b
out = \case
OfType b
i a
_ -> b
i
CmpInType Comparison
_ a
_ b
i b
_ -> b
i
CmpElim [Polarity]
_ a
_ (b
i:[b]
_) [b]
_ -> b
i
CmpElim [Polarity]
_ a
_ [] [b]
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__
JustType b
i -> b
i
CmpLevels Comparison
_ b
i b
_ -> b
i
CmpTypes Comparison
_ b
i b
_ -> b
i
CmpTeles Comparison
_ b
i b
_ -> b
i
JustSort b
i -> b
i
CmpSorts Comparison
_ b
i b
_ -> b
i
Assign b
i a
_ -> b
i
TypedAssign b
i a
_ a
_ -> b
i
PostponedCheckArgs b
i [a]
_ a
_ a
_ -> b
i
IsEmptyType a
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__
SizeLtSat{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
FindInstanceOF b
_ a
_ [(a, a, a)]
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__
PTSInstance b
i b
_ -> b
i
PostponedCheckFunDef{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
DataSort QName
_ b
i -> b
i
CheckLock b
i b
_ -> b
i
UsableAtMod Modality
_ b
i -> b
i
instance Reify ProblemConstraint where
type ReifiesTo ProblemConstraint = Closure (OutputForm Expr Expr)
reify :: forall (m :: * -> *).
MonadReify m =>
ProblemConstraint -> m (ReifiesTo ProblemConstraint)
reify (PConstr Set ProblemId
pids Blocker
unblock Closure Constraint
cl) = forall (m :: * -> *) a b.
(MonadTCEnv m, ReadTCState m) =>
Closure a -> (a -> m b) -> m (Closure b)
withClosure Closure Constraint
cl forall a b. (a -> b) -> a -> b
$ \ Constraint
c ->
forall a b.
Range
-> [ProblemId] -> Blocker -> OutputConstraint a b -> OutputForm a b
OutputForm (forall a. HasRange a => a -> Range
getRange Constraint
c) (forall a. Set a -> [a]
Set.toList Set ProblemId
pids) Blocker
unblock forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Constraint
c
reifyElimToExpr :: MonadReify m => I.Elim -> m Expr
reifyElimToExpr :: forall (m :: * -> *). MonadReify m => Elim -> m Expr
reifyElimToExpr = \case
I.IApply Term
_ Term
_ Term
v -> Text -> Arg Expr -> Expr
appl Text
"iapply" forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (forall a. a -> Arg a
defaultArg forall a b. (a -> b) -> a -> b
$ Term
v)
I.Apply Arg Term
v -> Text -> Arg Expr -> Expr
appl Text
"apply" forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Arg Term
v
I.Proj ProjOrigin
_o QName
f -> Text -> Arg Expr -> Expr
appl Text
"proj" forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify ((forall a. a -> Arg a
defaultArg forall a b. (a -> b) -> a -> b
$ QName -> Elims -> Term
I.Def QName
f []) :: Arg Term)
where
appl :: Text -> Arg Expr -> Expr
appl :: Text -> Arg Expr -> Expr
appl Text
s Arg Expr
v = AppInfo -> Expr -> NamedArg Expr -> Expr
A.App AppInfo
defaultAppInfo_ (ExprInfo -> Literal -> Expr
A.Lit forall a. Null a => a
empty (Text -> Literal
LitString Text
s)) forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a name. a -> Named name a
unnamed Arg Expr
v
instance Reify Constraint where
type ReifiesTo Constraint = OutputConstraint Expr Expr
reify :: forall (m :: * -> *).
MonadReify m =>
Constraint -> m (ReifiesTo Constraint)
reify (ValueCmp Comparison
cmp (AsTermsOf Type
t) Term
u Term
v) = forall a b. Comparison -> a -> b -> b -> OutputConstraint a b
CmpInType Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
t forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
u forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
v
reify (ValueCmp Comparison
cmp CompareAs
AsSizes Term
u Term
v) = forall a b. Comparison -> a -> b -> b -> OutputConstraint a b
CmpInType Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *).
(HasBuiltins m, MonadTCEnv m, ReadTCState m) =>
m Type
sizeType) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
u forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
v
reify (ValueCmp Comparison
cmp CompareAs
AsTypes Term
u Term
v) = forall a b. Comparison -> b -> b -> OutputConstraint a b
CmpTypes Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
u forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
v
reify (ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v) = forall a b. Comparison -> a -> b -> b -> OutputConstraint a b
CmpInType Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< m Type
ty) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (Term -> Term
lam_o Term
u) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (Term -> Term
lam_o Term
v)
where
lam_o :: Term -> Term
lam_o = ArgInfo -> Abs Term -> Term
I.Lam (forall a. LensRelevance a => Relevance -> a -> a
setRelevance Relevance
Irrelevant ArgInfo
defaultArgInfo) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. ArgName -> a -> Abs a
NoAbs ArgName
"_"
ty :: m Type
ty = forall (m :: * -> *) a. Names -> NamesT m a -> m a
runNamesT [] forall a b. (a -> b) -> a -> b
$ do
NamesT m Term
p <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Term
p
NamesT m Type
t <- forall (m :: * -> *) a.
(MonadFail m, Subst a) =>
a -> NamesT m (NamesT m a)
open Type
t
forall (m :: * -> *).
(MonadAddContext m, HasBuiltins m, MonadDebug m) =>
ArgName
-> NamesT m Term
-> (NamesT m Term -> NamesT m Type)
-> NamesT m Type
pPi' ArgName
"o" NamesT m Term
p (\ NamesT m Term
o -> NamesT m Type
t)
reify (ElimCmp [Polarity]
cmp [IsForced]
_ Type
t Term
v Elims
es1 Elims
es2) =
forall a b. [Polarity] -> a -> [b] -> [b] -> OutputConstraint a b
CmpElim [Polarity]
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
t forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *). MonadReify m => Elim -> m Expr
reifyElimToExpr Elims
es1
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall (m :: * -> *). MonadReify m => Elim -> m Expr
reifyElimToExpr Elims
es2
reify (LevelCmp Comparison
cmp Level
t Level
t') = forall a b. Comparison -> b -> b -> OutputConstraint a b
CmpLevels Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Level
t forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Level
t'
reify (SortCmp Comparison
cmp Sort
s Sort
s') = forall a b. Comparison -> b -> b -> OutputConstraint a b
CmpSorts Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Sort
s forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Sort
s'
reify (UnquoteTactic Term
tac Term
_ Type
goal) = do
Expr
tac <- AppInfo -> Expr -> NamedArg Expr -> Expr
A.App AppInfo
defaultAppInfo_ (ExprInfo -> Expr
A.Unquote ExprInfo
exprNoRange) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> NamedArg a
defaultNamedArg forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
tac
forall a b. b -> a -> OutputConstraint a b
OfType Expr
tac forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
goal
reify (UnBlock MetaId
m) = do
MetaInstantiation
mi <- forall (m :: * -> *).
ReadTCState m =>
MetaId -> m MetaInstantiation
lookupMetaInstantiation MetaId
m
Expr
m' <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (MetaId -> Elims -> Term
MetaV MetaId
m [])
case MetaInstantiation
mi of
BlockedConst Term
t -> do
Expr
e <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
t
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. b -> a -> OutputConstraint a b
Assign Expr
m' Expr
e
PostponedTypeCheckingProblem Closure TypeCheckingProblem
cl -> forall (m :: * -> *) a c b.
(MonadTCEnv m, ReadTCState m, LensClosure a c) =>
c -> (a -> m b) -> m b
enterClosure Closure TypeCheckingProblem
cl forall a b. (a -> b) -> a -> b
$ \case
CheckExpr Comparison
cmp Expr
e Type
a -> do
Expr
a <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
a
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. b -> a -> a -> OutputConstraint a b
TypedAssign Expr
m' Expr
e Expr
a
CheckLambda Comparison
cmp (Arg ArgInfo
ai (List1 (WithHiding Name)
xs, Maybe Type
mt)) Expr
body Type
target -> do
Expr
domType <- forall b a. b -> (a -> b) -> Maybe a -> b
maybe (forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Underscore a => a
underscore) forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Maybe Type
mt
Expr
target <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
target
let mkN :: WithHiding Name -> NamedArg Binder
mkN (WithHiding Hiding
h Name
x) = forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
h forall a b. (a -> b) -> a -> b
$ forall a. a -> NamedArg a
defaultNamedArg forall a b. (a -> b) -> a -> b
$ Name -> Binder
A.mkBinder_ Name
x
bs :: TypedBinding
bs = Range -> NonEmpty (NamedArg Binder) -> Expr -> TypedBinding
mkTBind forall a. Range' a
noRange (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap WithHiding Name -> NamedArg Binder
mkN List1 (WithHiding Name)
xs) Expr
domType
e :: Expr
e = ExprInfo -> LamBinding -> Expr -> Expr
A.Lam ExprInfo
Info.exprNoRange (TypedBinding -> LamBinding
DomainFull TypedBinding
bs) Expr
body
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. b -> a -> a -> OutputConstraint a b
TypedAssign Expr
m' Expr
e Expr
target
CheckArgs Comparison
_ ExpandHidden
_ Range
_ [NamedArg Expr]
args Type
t0 Type
t1 ArgsCheckState CheckedTarget -> TCM Term
_ -> do
Expr
t0 <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
t0
Expr
t1 <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
t1
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. b -> [a] -> a -> a -> OutputConstraint a b
PostponedCheckArgs Expr
m' (forall a b. (a -> b) -> [a] -> [b]
map (forall name a. Named name a -> a
namedThing forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. Arg e -> e
unArg) [NamedArg Expr]
args) Expr
t0 Expr
t1
CheckProjAppToKnownPrincipalArg Comparison
cmp Expr
e ProjOrigin
_ List1 QName
_ [NamedArg Expr]
_ Type
t Int
_ Term
_ Type
_ PrincipalArgTypeMetas
_ -> forall a b. b -> a -> a -> OutputConstraint a b
TypedAssign Expr
m' Expr
e forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
t
DoQuoteTerm Comparison
cmp Term
v Type
t -> do
Expr
tm <- AppInfo -> Expr -> NamedArg Expr -> Expr
A.App AppInfo
defaultAppInfo_ (ExprInfo -> Expr
A.QuoteTerm ExprInfo
exprNoRange) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> NamedArg a
defaultNamedArg forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
v
forall a b. b -> a -> OutputConstraint a b
OfType Expr
tm forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
t
Open{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
OpenInstance{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
InstV{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
reify (FindInstance MetaId
m Maybe [Candidate]
mcands) = forall a b. b -> a -> [(a, a, a)] -> OutputConstraint a b
FindInstanceOF
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (MetaId -> Elims -> Term
MetaV MetaId
m [])
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). ReadTCState m => MetaId -> m Type
getMetaType MetaId
m)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM (forall a. a -> Maybe a -> a
fromMaybe [] Maybe [Candidate]
mcands) (\ (Candidate CandidateKind
q Term
tm Type
ty Bool
_) -> do
(,,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
tm forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
tm forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
ty)
reify (IsEmpty Range
r Type
a) = forall a b. a -> OutputConstraint a b
IsEmptyType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
a
reify (CheckSizeLtSat Term
a) = forall a b. a -> OutputConstraint a b
SizeLtSat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
a
reify (CheckFunDef Delayed
d DefInfo
i QName
q [Clause]
cs TCErr
err) = do
Expr
a <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Definition -> Type
defType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
q
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. QName -> a -> TCErr -> OutputConstraint a b
PostponedCheckFunDef QName
q Expr
a TCErr
err
reify (HasBiggerSort Sort
a) = forall a b. b -> a -> OutputConstraint a b
OfType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Sort
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (forall t. Sort' t -> Sort' t
UnivSort Sort
a)
reify (HasPTSRule Dom Type
a Abs Sort
b) = do
(Expr
a,(Name
x,Expr
b)) <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (forall t e. Dom' t e -> e
unDom Dom Type
a,Abs Sort
b)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. b -> b -> OutputConstraint a b
PTSInstance Expr
a Expr
b
reify (CheckDataSort QName
q Sort
s) = forall a b. QName -> b -> OutputConstraint a b
DataSort QName
q forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Sort
s
reify (CheckLockedVars Term
t Type
_ Arg Term
lk Type
_) = forall a b. b -> b -> OutputConstraint a b
CheckLock forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
t forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (forall e. Arg e -> e
unArg Arg Term
lk)
reify (CheckMetaInst MetaId
m) = do
Type
t <- forall a. Judgement a -> Type
jMetaType forall b c a. (b -> c) -> (a -> b) -> a -> c
. MetaVariable -> Judgement MetaId
mvJudgement forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
m
forall a b. b -> a -> OutputConstraint a b
OfType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (MetaId -> Elims -> Term
MetaV MetaId
m []) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
t
reify (CheckType Type
t) = forall a b. b -> OutputConstraint a b
JustType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Type
t
reify (UsableAtModality WhyCheckModality
_ Maybe Sort
_ Modality
mod Term
t) = forall a b. Modality -> b -> OutputConstraint a b
UsableAtMod Modality
mod forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify Term
t
instance (Pretty a, Pretty b) => PrettyTCM (OutputForm a b) where
prettyTCM :: forall (m :: * -> *). MonadPretty m => OutputForm a b -> m Doc
prettyTCM (OutputForm Range
r [ProblemId]
pids Blocker
unblock OutputConstraint a b
c) =
forall (m :: * -> *) (f :: * -> *).
(MonadPretty m, Foldable f, Null (f ProblemId)) =>
Range -> f ProblemId -> Blocker -> Doc -> m Doc
prettyRangeConstraint Range
r [ProblemId]
pids Blocker
unblock (forall a. Pretty a => a -> Doc
pretty OutputConstraint a b
c)
instance (Pretty a, Pretty b) => Pretty (OutputForm a b) where
pretty :: OutputForm a b -> Doc
pretty (OutputForm Range
r [ProblemId]
pids Blocker
unblock OutputConstraint a b
c) =
forall a. Pretty a => a -> Doc
pretty OutputConstraint a b
c Doc -> Doc -> Doc
<?>
forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [ forall a. Pretty a => a -> Doc
prange Range
r, Doc -> Doc
parensNonEmpty (forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [Blocker -> Doc
blockedOn Blocker
unblock, forall {a}. Pretty a => [a] -> Doc
prPids [ProblemId]
pids]) ]
where
prPids :: [a] -> Doc
prPids [] = forall a. Null a => a
empty
prPids [a
pid] = Doc
"belongs to problem" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty a
pid
prPids [a]
pids = Doc
"belongs to problems" Doc -> Doc -> Doc
<+> forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep (forall (t :: * -> *). Foldable t => Doc -> t Doc -> [Doc]
punctuate Doc
"," forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a. Pretty a => a -> Doc
pretty [a]
pids)
comma :: Doc
comma | forall a. Null a => a -> Bool
null [ProblemId]
pids = forall a. Null a => a
empty
| Bool
otherwise = Doc
","
blockedOn :: Blocker -> Doc
blockedOn (UnblockOnAll Set Blocker
bs) | forall a. Set a -> Bool
Set.null Set Blocker
bs = forall a. Null a => a
empty
blockedOn (UnblockOnAny Set Blocker
bs) | forall a. Set a -> Bool
Set.null Set Blocker
bs = Doc
"stuck" forall a. Semigroup a => a -> a -> a
P.<> Doc
comma
blockedOn Blocker
u = Doc
"blocked on" Doc -> Doc -> Doc
<+> (forall a. Pretty a => a -> Doc
pretty Blocker
u forall a. Semigroup a => a -> a -> a
P.<> Doc
comma)
prange :: a -> Doc
prange a
r | forall a. Null a => a -> Bool
null ArgName
s = forall a. Null a => a
empty
| Bool
otherwise = ArgName -> Doc
text forall a b. (a -> b) -> a -> b
$ ArgName
" [ at " forall a. [a] -> [a] -> [a]
++ ArgName
s forall a. [a] -> [a] -> [a]
++ ArgName
" ]"
where s :: ArgName
s = forall a. Pretty a => a -> ArgName
prettyShow a
r
instance (Pretty a, Pretty b) => Pretty (OutputConstraint a b) where
pretty :: OutputConstraint a b -> Doc
pretty OutputConstraint a b
oc =
case OutputConstraint a b
oc of
OfType b
e a
t -> forall a. Pretty a => a -> Doc
pretty b
e forall {a}. Pretty a => Doc -> a -> Doc
.: a
t
JustType b
e -> Doc
"Type" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty b
e
JustSort b
e -> Doc
"Sort" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty b
e
CmpInType Comparison
cmp a
t b
e b
e' -> forall {a} {a} {a}.
(Pretty a, Pretty a, Pretty a) =>
a -> a -> a -> Doc
pcmp Comparison
cmp b
e b
e' forall {a}. Pretty a => Doc -> a -> Doc
.: a
t
CmpElim [Polarity]
cmp a
t [b]
e [b]
e' -> forall {a} {a} {a}.
(Pretty a, Pretty a, Pretty a) =>
a -> a -> a -> Doc
pcmp [Polarity]
cmp [b]
e [b]
e' forall {a}. Pretty a => Doc -> a -> Doc
.: a
t
CmpTypes Comparison
cmp b
t b
t' -> forall {a} {a} {a}.
(Pretty a, Pretty a, Pretty a) =>
a -> a -> a -> Doc
pcmp Comparison
cmp b
t b
t'
CmpLevels Comparison
cmp b
t b
t' -> forall {a} {a} {a}.
(Pretty a, Pretty a, Pretty a) =>
a -> a -> a -> Doc
pcmp Comparison
cmp b
t b
t'
CmpTeles Comparison
cmp b
t b
t' -> forall {a} {a} {a}.
(Pretty a, Pretty a, Pretty a) =>
a -> a -> a -> Doc
pcmp Comparison
cmp b
t b
t'
CmpSorts Comparison
cmp b
s b
s' -> forall {a} {a} {a}.
(Pretty a, Pretty a, Pretty a) =>
a -> a -> a -> Doc
pcmp Comparison
cmp b
s b
s'
Assign b
m a
e -> Doc -> Doc -> Doc -> Doc
bin (forall a. Pretty a => a -> Doc
pretty b
m) Doc
":=" (forall a. Pretty a => a -> Doc
pretty a
e)
TypedAssign b
m a
e a
a -> Doc -> Doc -> Doc -> Doc
bin (forall a. Pretty a => a -> Doc
pretty b
m) Doc
":=" forall a b. (a -> b) -> a -> b
$ Doc -> Doc -> Doc -> Doc
bin (forall a. Pretty a => a -> Doc
pretty a
e) Doc
":?" (forall a. Pretty a => a -> Doc
pretty a
a)
PostponedCheckArgs b
m [a]
es a
t0 a
t1 ->
Doc -> Doc -> Doc -> Doc
bin (forall a. Pretty a => a -> Doc
pretty b
m) Doc
":=" forall a b. (a -> b) -> a -> b
$ (Doc -> Doc
parens (Doc
"_" forall {a}. Pretty a => Doc -> a -> Doc
.: a
t0) Doc -> Doc -> Doc
<+> forall (t :: * -> *). Foldable t => t Doc -> Doc
fsep (forall a b. (a -> b) -> [a] -> [b]
map (Doc -> Doc
paren forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Pretty a => a -> Doc
pretty) [a]
es)) forall {a}. Pretty a => Doc -> a -> Doc
.: a
t1
where paren :: Doc -> Doc
paren Doc
d = Bool -> Doc -> Doc
mparens (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Char
' ', Char
'\n']) forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show Doc
d) Doc
d
IsEmptyType a
a -> Doc
"Is empty:" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty a
a
SizeLtSat a
a -> Doc
"Not empty type of sizes:" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty a
a
FindInstanceOF b
s a
t [(a, a, a)]
cs -> forall (t :: * -> *). Foldable t => t Doc -> Doc
vcat
[ Doc
"Resolve instance argument" Doc -> Doc -> Doc
<?> (forall a. Pretty a => a -> Doc
pretty b
s forall {a}. Pretty a => Doc -> a -> Doc
.: a
t)
, Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ Doc
"Candidate:"
, Int -> Doc -> Doc
nest Int
4 forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *). Foldable t => t Doc -> Doc
vcat [ Doc -> Doc -> Doc -> Doc
bin (forall a. Pretty a => a -> Doc
pretty a
q) Doc
"=" (forall a. Pretty a => a -> Doc
pretty a
v) forall {a}. Pretty a => Doc -> a -> Doc
.: a
t | (a
q, a
v, a
t) <- [(a, a, a)]
cs ] ]
PTSInstance b
a b
b -> Doc
"PTS instance for" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty (b
a, b
b)
PostponedCheckFunDef QName
q a
a TCErr
_err ->
forall (t :: * -> *). Foldable t => t Doc -> Doc
vcat [ Doc
"Check definition of" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty QName
q Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty a
a ]
DataSort QName
q b
s -> Doc
"Sort" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty b
s Doc -> Doc -> Doc
<+> Doc
"allows data/record definitions"
CheckLock b
t b
lk -> Doc
"Check lock" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty b
lk Doc -> Doc -> Doc
<+> Doc
"allows" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty b
t
UsableAtMod Modality
mod b
t -> Doc
"Is usable at" Doc -> Doc -> Doc
<+> ArgName -> Doc
text (forall a. Verbalize a => a -> ArgName
verbalize Modality
mod) Doc -> Doc -> Doc
<+> Doc
"modality:" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty b
t
where
bin :: Doc -> Doc -> Doc -> Doc
bin Doc
a Doc
op Doc
b = forall (t :: * -> *). Foldable t => t Doc -> Doc
sep [Doc
a, Int -> Doc -> Doc
nest Int
2 forall a b. (a -> b) -> a -> b
$ Doc
op Doc -> Doc -> Doc
<+> Doc
b]
pcmp :: a -> a -> a -> Doc
pcmp a
cmp a
a a
b = Doc -> Doc -> Doc -> Doc
bin (forall a. Pretty a => a -> Doc
pretty a
a) (forall a. Pretty a => a -> Doc
pretty a
cmp) (forall a. Pretty a => a -> Doc
pretty a
b)
Doc
val .: :: Doc -> a -> Doc
.: a
ty = Doc -> Doc -> Doc -> Doc
bin Doc
val Doc
":" (forall a. Pretty a => a -> Doc
pretty a
ty)
instance (ToConcrete a, ToConcrete b) => ToConcrete (OutputForm a b) where
type ConOfAbs (OutputForm a b) = OutputForm (ConOfAbs a) (ConOfAbs b)
toConcrete :: OutputForm a b -> AbsToCon (ConOfAbs (OutputForm a b))
toConcrete (OutputForm Range
r [ProblemId]
pid Blocker
u OutputConstraint a b
c) = forall a b.
Range
-> [ProblemId] -> Blocker -> OutputConstraint a b -> OutputForm a b
OutputForm Range
r [ProblemId]
pid Blocker
u forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete OutputConstraint a b
c
instance (ToConcrete a, ToConcrete b) => ToConcrete (OutputConstraint a b) where
type ConOfAbs (OutputConstraint a b) = OutputConstraint (ConOfAbs a) (ConOfAbs b)
toConcrete :: OutputConstraint a b -> AbsToCon (ConOfAbs (OutputConstraint a b))
toConcrete (OfType b
e a
t) = forall a b. b -> a -> OutputConstraint a b
OfType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
e forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
t
toConcrete (JustType b
e) = forall a b. b -> OutputConstraint a b
JustType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
e
toConcrete (JustSort b
e) = forall a b. b -> OutputConstraint a b
JustSort forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
e
toConcrete (CmpInType Comparison
cmp a
t b
e b
e') =
forall a b. Comparison -> a -> b -> b -> OutputConstraint a b
CmpInType Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
t forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx b
e
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx b
e'
toConcrete (CmpElim [Polarity]
cmp a
t [b]
e [b]
e') =
forall a b. [Polarity] -> a -> [b] -> [b] -> OutputConstraint a b
CmpElim [Polarity]
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
t forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx [b]
e forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx [b]
e'
toConcrete (CmpTypes Comparison
cmp b
e b
e') = forall a b. Comparison -> b -> b -> OutputConstraint a b
CmpTypes Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx b
e
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx b
e'
toConcrete (CmpLevels Comparison
cmp b
e b
e') = forall a b. Comparison -> b -> b -> OutputConstraint a b
CmpLevels Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx b
e
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx b
e'
toConcrete (CmpTeles Comparison
cmp b
e b
e') = forall a b. Comparison -> b -> b -> OutputConstraint a b
CmpTeles Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
e forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
e'
toConcrete (CmpSorts Comparison
cmp b
e b
e') = forall a b. Comparison -> b -> b -> OutputConstraint a b
CmpSorts Comparison
cmp forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx b
e
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx b
e'
toConcrete (Assign b
m a
e) = forall a. AbsToCon a -> AbsToCon a
noTakenNames forall a b. (a -> b) -> a -> b
$ forall a b. b -> a -> OutputConstraint a b
Assign forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
m forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
e
toConcrete (TypedAssign b
m a
e a
a) = forall a b. b -> a -> a -> OutputConstraint a b
TypedAssign forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
m forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
e
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
a
toConcrete (PostponedCheckArgs b
m [a]
args a
t0 a
t1) =
forall a b. b -> [a] -> a -> a -> OutputConstraint a b
PostponedCheckArgs forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
m forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete [a]
args forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete a
t0 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete a
t1
toConcrete (IsEmptyType a
a) = forall a b. a -> OutputConstraint a b
IsEmptyType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
a
toConcrete (SizeLtSat a
a) = forall a b. a -> OutputConstraint a b
SizeLtSat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
a
toConcrete (FindInstanceOF b
s a
t [(a, a, a)]
cs) =
forall a b. b -> a -> [(a, a, a)] -> OutputConstraint a b
FindInstanceOF forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
s forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete a
t
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\(a
q,a
tm,a
ty) -> (,,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete a
q forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete a
tm forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete a
ty) [(a, a, a)]
cs
toConcrete (PTSInstance b
a b
b) = forall a b. b -> b -> OutputConstraint a b
PTSInstance forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
b
toConcrete (DataSort QName
a b
b) = forall a b. QName -> b -> OutputConstraint a b
DataSort QName
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
b
toConcrete (CheckLock b
a b
b) = forall a b. b -> b -> OutputConstraint a b
CheckLock forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
b
toConcrete (PostponedCheckFunDef QName
q a
a TCErr
err) = forall a b. QName -> a -> TCErr -> OutputConstraint a b
PostponedCheckFunDef QName
q forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete a
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure TCErr
err
toConcrete (UsableAtMod Modality
a b
b) = forall a b. Modality -> b -> OutputConstraint a b
UsableAtMod Modality
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
b
instance (Pretty a, Pretty b) => Pretty (OutputConstraint' a b) where
pretty :: OutputConstraint' a b -> Doc
pretty (OfType' b
e a
t) = forall a. Pretty a => a -> Doc
pretty b
e Doc -> Doc -> Doc
<+> Doc
":" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty a
t
instance (ToConcrete a, ToConcrete b) => ToConcrete (OutputConstraint' a b) where
type ConOfAbs (OutputConstraint' a b) = OutputConstraint' (ConOfAbs a) (ConOfAbs b)
toConcrete :: OutputConstraint' a b
-> AbsToCon (ConOfAbs (OutputConstraint' a b))
toConcrete (OfType' b
e a
t) = forall a b. b -> a -> OutputConstraint' a b
OfType' forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a. ToConcrete a => a -> AbsToCon (ConOfAbs a)
toConcrete b
e forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx a
t
instance Reify a => Reify (IPBoundary' a) where
type ReifiesTo (IPBoundary' a) = IPBoundary' (ReifiesTo a)
reify :: forall (m :: * -> *).
MonadReify m =>
IPBoundary' a -> m (ReifiesTo (IPBoundary' a))
reify = forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify
instance ToConcrete a => ToConcrete (IPBoundary' a) where
type ConOfAbs (IPBoundary' a) = IPBoundary' (ConOfAbs a)
toConcrete :: IPBoundary' a -> AbsToCon (ConOfAbs (IPBoundary' a))
toConcrete = forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall a. ToConcrete a => Precedence -> a -> AbsToCon (ConOfAbs a)
toConcreteCtx Precedence
TopCtx)
instance Pretty c => Pretty (IPBoundary' c) where
pretty :: IPBoundary' c -> Doc
pretty (IPBoundary [(c, c)]
eqs c
val c
meta Overapplied
over) = do
let
xs :: [Doc]
xs = forall a b. (a -> b) -> [a] -> [b]
map (\ (c
l,c
r) -> forall a. Pretty a => a -> Doc
pretty c
l Doc -> Doc -> Doc
<+> Doc
"=" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty c
r) [(c, c)]
eqs
rhs :: Doc
rhs = case Overapplied
over of
Overapplied
Overapplied -> Doc
"=" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty c
meta
Overapplied
NotOverapplied -> forall a. Monoid a => a
mempty
forall {a}. Pretty a => [a] -> Doc
prettyList_ [Doc]
xs Doc -> Doc -> Doc
<+> Doc
"⊢" Doc -> Doc -> Doc
<+> forall a. Pretty a => a -> Doc
pretty c
val Doc -> Doc -> Doc
<+> Doc
rhs
prettyConstraints :: [Closure Constraint] -> TCM [OutputForm C.Expr C.Expr]
prettyConstraints :: [Closure Constraint] -> TCM [OutputForm Expr Expr]
prettyConstraints [Closure Constraint]
cs = do
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Closure Constraint]
cs forall a b. (a -> b) -> a -> b
$ \ Closure Constraint
c -> do
Closure (OutputForm Expr Expr)
cl <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify (Set ProblemId -> Blocker -> Closure Constraint -> ProblemConstraint
PConstr forall a. Set a
Set.empty Blocker
alwaysUnblock Closure Constraint
c)
forall (m :: * -> *) a c b.
(MonadTCEnv m, ReadTCState m, LensClosure a c) =>
c -> (a -> m b) -> m b
enterClosure Closure (OutputForm Expr Expr)
cl forall a (m :: * -> *).
(ToConcrete a, MonadAbsToCon m) =>
a -> m (ConOfAbs a)
abstractToConcrete_
getConstraints :: TCM [OutputForm C.Expr C.Expr]
getConstraints :: TCM [OutputForm Expr Expr]
getConstraints = (ProblemConstraint -> TCM ProblemConstraint)
-> (ProblemConstraint -> Bool) -> TCM [OutputForm Expr Expr]
getConstraints' forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. a -> b -> a
const Bool
True
namedMetaOf :: OutputConstraint A.Expr a -> a
namedMetaOf :: forall a. OutputConstraint Expr a -> a
namedMetaOf (OfType a
i Expr
_) = a
i
namedMetaOf (JustType a
i) = a
i
namedMetaOf (JustSort a
i) = a
i
namedMetaOf (Assign a
i Expr
_) = a
i
namedMetaOf OutputConstraint Expr a
_ = forall a. HasCallStack => a
__IMPOSSIBLE__
getConstraintsMentioning :: Rewrite -> MetaId -> TCM [OutputForm C.Expr C.Expr]
getConstraintsMentioning :: Rewrite -> MetaId -> TCM [OutputForm Expr Expr]
getConstraintsMentioning Rewrite
norm MetaId
m = (ProblemConstraint -> TCM ProblemConstraint)
-> (ProblemConstraint -> Bool) -> TCM [OutputForm Expr Expr]
getConstrs forall {m :: * -> *} {b}.
(InstantiateFull b, MonadReduce m) =>
b -> m b
instantiateBlockingFull (forall t. MentionsMeta t => MetaId -> t -> Bool
mentionsMeta MetaId
m)
where
instantiateBlockingFull :: b -> m b
instantiateBlockingFull b
p
= forall (m :: * -> *) a b.
ReadTCState m =>
Lens' a TCState -> (a -> a) -> m b -> m b
locallyTCState Lens' Bool TCState
stInstantiateBlocking (forall a b. a -> b -> a
const Bool
True) forall a b. (a -> b) -> a -> b
$
forall a (m :: * -> *).
(InstantiateFull a, MonadReduce m) =>
a -> m a
instantiateFull b
p
hasHeadMeta :: Constraint -> Maybe Elims
hasHeadMeta Constraint
c =
case Constraint
c of
ValueCmp Comparison
_ CompareAs
_ Term
u Term
v -> Term -> Maybe Elims
isMeta Term
u forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` Term -> Maybe Elims
isMeta Term
v
ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v -> Term -> Maybe Elims
isMeta Term
u forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` Term -> Maybe Elims
isMeta Term
v
ElimCmp [Polarity]
cmp [IsForced]
fs Type
t Term
v Elims
as Elims
bs -> forall a. Maybe a
Nothing
LevelCmp Comparison
cmp Level
u Level
v -> forall a. Maybe a
Nothing
SortCmp Comparison
cmp Sort
a Sort
b -> forall a. Maybe a
Nothing
UnBlock{} -> forall a. Maybe a
Nothing
FindInstance{} -> forall a. Maybe a
Nothing
IsEmpty Range
r Type
t -> Term -> Maybe Elims
isMeta (forall t a. Type'' t a -> a
unEl Type
t)
CheckSizeLtSat Term
t -> Term -> Maybe Elims
isMeta Term
t
CheckFunDef{} -> forall a. Maybe a
Nothing
HasBiggerSort Sort
a -> forall a. Maybe a
Nothing
HasPTSRule Dom Type
a Abs Sort
b -> forall a. Maybe a
Nothing
UnquoteTactic{} -> forall a. Maybe a
Nothing
CheckDataSort QName
_ Sort
s -> Sort -> Maybe Elims
isMetaS Sort
s
CheckMetaInst{} -> forall a. Maybe a
Nothing
CheckType Type
t -> Term -> Maybe Elims
isMeta (forall t a. Type'' t a -> a
unEl Type
t)
CheckLockedVars Term
t Type
_ Arg Term
_ Type
_ -> Term -> Maybe Elims
isMeta Term
t
UsableAtModality WhyCheckModality
_ Maybe Sort
ms Modality
_ Term
t -> forall a b. Maybe a -> b -> (a -> b) -> b
caseMaybe Maybe Sort
ms (Term -> Maybe Elims
isMeta Term
t) forall a b. (a -> b) -> a -> b
$ \ Sort
s -> Sort -> Maybe Elims
isMetaS Sort
s forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` Term -> Maybe Elims
isMeta Term
t
isMeta :: Term -> Maybe Elims
isMeta (MetaV MetaId
m' Elims
es_m)
| MetaId
m forall a. Eq a => a -> a -> Bool
== MetaId
m' = forall a. a -> Maybe a
Just Elims
es_m
isMeta Term
_ = forall a. Maybe a
Nothing
isMetaS :: Sort -> Maybe Elims
isMetaS (MetaS MetaId
m' Elims
es_m)
| MetaId
m forall a. Eq a => a -> a -> Bool
== MetaId
m' = forall a. a -> Maybe a
Just Elims
es_m
isMetaS Sort
_ = forall a. Maybe a
Nothing
getConstrs :: (ProblemConstraint -> TCM ProblemConstraint)
-> (ProblemConstraint -> Bool) -> TCM [OutputForm Expr Expr]
getConstrs ProblemConstraint -> TCM ProblemConstraint
g ProblemConstraint -> Bool
f = forall (tcm :: * -> *) a. MonadTCM tcm => TCM a -> tcm a
liftTCM forall a b. (a -> b) -> a -> b
$ do
Constraints
cs <- Constraints -> Constraints
stripConstraintPids forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> Bool) -> [a] -> [a]
filter ProblemConstraint -> Bool
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM ProblemConstraint -> TCM ProblemConstraint
g forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). ReadTCState m => m Constraints
M.getAllConstraints)
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"constr.ment" Int
20 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"getConstraintsMentioning"
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM Constraints
cs forall a b. (a -> b) -> a -> b
$ \(PConstr Set ProblemId
s Blocker
ub Closure Constraint
c) -> do
Closure Constraint
c <- forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm Closure Constraint
c
case forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Constraint -> Maybe Elims
hasHeadMeta (forall a. Closure a -> a
clValue Closure Constraint
c) of
Just Args
as_m -> do
forall a.
MetaId
-> Args
-> Closure Constraint
-> ([(Term, Term)] -> Constraint -> TCM a)
-> TCM a
unifyElimsMeta MetaId
m Args
as_m Closure Constraint
c forall a b. (a -> b) -> a -> b
$ \ [(Term, Term)]
eqs Constraint
c -> do
forall a b c. (a -> b -> c) -> b -> a -> c
flip forall (m :: * -> *) a c b.
(MonadTCEnv m, ReadTCState m, LensClosure a c) =>
c -> (a -> m b) -> m b
enterClosure forall a (m :: * -> *).
(ToConcrete a, MonadAbsToCon m) =>
a -> m (ConOfAbs a)
abstractToConcrete_ forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall b c a. (b -> c) -> (a -> b) -> a -> c
. Set ProblemId -> Blocker -> Closure Constraint -> ProblemConstraint
PConstr Set ProblemId
s Blocker
ub forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m) =>
a -> m (Closure a)
buildClosure Constraint
c
Maybe Args
_ -> do
Closure (OutputForm Expr Expr)
cl <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall a b. (a -> b) -> a -> b
$ Set ProblemId -> Blocker -> Closure Constraint -> ProblemConstraint
PConstr Set ProblemId
s Blocker
ub Closure Constraint
c
forall (m :: * -> *) a c b.
(MonadTCEnv m, ReadTCState m, LensClosure a c) =>
c -> (a -> m b) -> m b
enterClosure Closure (OutputForm Expr Expr)
cl forall a (m :: * -> *).
(ToConcrete a, MonadAbsToCon m) =>
a -> m (ConOfAbs a)
abstractToConcrete_
stripConstraintPids :: Constraints -> Constraints
stripConstraintPids :: Constraints -> Constraints
stripConstraintPids Constraints
cs = forall a. (a -> a -> Ordering) -> [a] -> [a]
List.sortBy (forall a. Ord a => a -> a -> Ordering
compare forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` ProblemConstraint -> Bool
isBlocked) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map ProblemConstraint -> ProblemConstraint
stripPids Constraints
cs
where
isBlocked :: ProblemConstraint -> Bool
isBlocked = Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Null a => a -> Bool
null forall b c a. (b -> c) -> (a -> b) -> a -> c
. Blocker -> Set ProblemId
allBlockingProblems forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProblemConstraint -> Blocker
constraintUnblocker
interestingPids :: Set ProblemId
interestingPids = forall (f :: * -> *) a. (Foldable f, Ord a) => f (Set a) -> Set a
Set.unions forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (Blocker -> Set ProblemId
allBlockingProblems forall b c a. (b -> c) -> (a -> b) -> a -> c
. ProblemConstraint -> Blocker
constraintUnblocker) Constraints
cs
stripPids :: ProblemConstraint -> ProblemConstraint
stripPids (PConstr Set ProblemId
pids Blocker
unblock Closure Constraint
c) = Set ProblemId -> Blocker -> Closure Constraint -> ProblemConstraint
PConstr (forall a. Ord a => Set a -> Set a -> Set a
Set.intersection Set ProblemId
pids Set ProblemId
interestingPids) Blocker
unblock Closure Constraint
c
interactionIdToMetaId :: ReadTCState m => InteractionId -> m MetaId
interactionIdToMetaId :: forall (m :: * -> *). ReadTCState m => InteractionId -> m MetaId
interactionIdToMetaId InteractionId
i = do
ModuleNameHash
h <- forall (m :: * -> *). ReadTCState m => m ModuleNameHash
currentModuleNameHash
forall (m :: * -> *) a. Monad m => a -> m a
return MetaId
{ metaId :: Word64
metaId = forall a b. (Integral a, Num b) => a -> b
fromIntegral InteractionId
i
, metaModule :: ModuleNameHash
metaModule = ModuleNameHash
h
}
getConstraints' :: (ProblemConstraint -> TCM ProblemConstraint) -> (ProblemConstraint -> Bool) -> TCM [OutputForm C.Expr C.Expr]
getConstraints' :: (ProblemConstraint -> TCM ProblemConstraint)
-> (ProblemConstraint -> Bool) -> TCM [OutputForm Expr Expr]
getConstraints' ProblemConstraint -> TCM ProblemConstraint
g ProblemConstraint -> Bool
f = forall (tcm :: * -> *) a. MonadTCM tcm => TCM a -> tcm a
liftTCM forall a b. (a -> b) -> a -> b
$ do
Constraints
cs <- Constraints -> Constraints
stripConstraintPids forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> Bool) -> [a] -> [a]
filter ProblemConstraint -> Bool
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM ProblemConstraint -> TCM ProblemConstraint
g forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). ReadTCState m => m Constraints
M.getAllConstraints)
[OutputForm Expr Expr]
cs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM Constraints
cs forall a b. (a -> b) -> a -> b
$ \ProblemConstraint
c -> do
Closure (OutputForm Expr Expr)
cl <- forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify ProblemConstraint
c
forall (m :: * -> *) a c b.
(MonadTCEnv m, ReadTCState m, LensClosure a c) =>
c -> (a -> m b) -> m b
enterClosure Closure (OutputForm Expr Expr)
cl forall a (m :: * -> *).
(ToConcrete a, MonadAbsToCon m) =>
a -> m (ConOfAbs a)
abstractToConcrete_
[OutputForm Expr Expr]
ss <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall {m :: * -> *} {a}.
(MonadTrace m, ToConcrete a, MonadFresh NameId m,
MonadInteractionPoints m, MonadStConcreteNames m, PureTCM m,
IsString (m Doc), Null (m Doc), Semigroup (m Doc)) =>
(InteractionId, MetaId, a) -> m (OutputForm (ConOfAbs a) Expr)
toOutputForm forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Bool -> Rewrite -> TCM [(InteractionId, MetaId, Expr)]
getSolvedInteractionPoints Bool
True Rewrite
AsIs
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ [OutputForm Expr Expr]
ss forall a. [a] -> [a] -> [a]
++ [OutputForm Expr Expr]
cs
where
toOutputForm :: (InteractionId, MetaId, a) -> m (OutputForm (ConOfAbs a) Expr)
toOutputForm (InteractionId
ii, MetaId
mi, a
e) = do
Closure Range
mv <- MetaVariable -> Closure Range
getMetaInfo forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
mi
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
Closure Range -> m a -> m a
withMetaInfo Closure Range
mv forall a b. (a -> b) -> a -> b
$ do
MetaId
mi <- forall (m :: * -> *). ReadTCState m => InteractionId -> m MetaId
interactionIdToMetaId InteractionId
ii
let m :: Expr
m = MetaInfo -> InteractionId -> Expr
QuestionMark MetaInfo
emptyMetaInfo{ metaNumber :: Maybe MetaId
metaNumber = forall a. a -> Maybe a
Just MetaId
mi } InteractionId
ii
forall a (m :: * -> *).
(ToConcrete a, MonadAbsToCon m) =>
a -> m (ConOfAbs a)
abstractToConcrete_ forall a b. (a -> b) -> a -> b
$ forall a b.
Range
-> [ProblemId] -> Blocker -> OutputConstraint a b -> OutputForm a b
OutputForm forall a. Range' a
noRange [] Blocker
alwaysUnblock forall a b. (a -> b) -> a -> b
$ forall a b. b -> a -> OutputConstraint a b
Assign Expr
m a
e
getIPBoundary :: Rewrite -> InteractionId -> TCM [IPBoundary' C.Expr]
getIPBoundary :: Rewrite -> InteractionId -> TCM [IPBoundary' Expr]
getIPBoundary Rewrite
norm InteractionId
ii = do
InteractionPoint
ip <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m) =>
InteractionId -> m InteractionPoint
lookupInteractionPoint InteractionId
ii
case InteractionPoint -> IPClause
ipClause InteractionPoint
ip of
IPClause { ipcBoundary :: IPClause -> [Closure (IPBoundary' Term)]
ipcBoundary = [Closure (IPBoundary' Term)]
cs } -> do
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Closure (IPBoundary' Term)]
cs forall a b. (a -> b) -> a -> b
$ \ Closure (IPBoundary' Term)
cl -> forall (m :: * -> *) a c b.
(MonadTCEnv m, ReadTCState m, LensClosure a c) =>
c -> (a -> m b) -> m b
enterClosure Closure (IPBoundary' Term)
cl forall a b. (a -> b) -> a -> b
$ \ IPBoundary' Term
b ->
forall a (m :: * -> *).
(ToConcrete a, MonadAbsToCon m) =>
a -> m (ConOfAbs a)
abstractToConcrete_ forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall i. Reify i => i -> TCM (ReifiesTo i)
reifyUnblocked forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm IPBoundary' Term
b
IPClause
IPNoClause -> forall (m :: * -> *) a. Monad m => a -> m a
return []
getGoals :: TCM Goals
getGoals :: TCM Goals
getGoals = Rewrite -> Rewrite -> TCM Goals
getGoals' Rewrite
AsIs Rewrite
Simplified
getGoals'
:: Rewrite
-> Rewrite
-> TCM Goals
getGoals' :: Rewrite -> Rewrite -> TCM Goals
getGoals' Rewrite
normVisible Rewrite
normHidden = do
[OutputConstraint Expr InteractionId]
visibleMetas <- Rewrite -> TCM [OutputConstraint Expr InteractionId]
typesOfVisibleMetas Rewrite
normVisible
[OutputConstraint Expr NamedMeta]
hiddenMetas <- Rewrite -> TCM [OutputConstraint Expr NamedMeta]
typesOfHiddenMetas Rewrite
normHidden
forall (m :: * -> *) a. Monad m => a -> m a
return ([OutputConstraint Expr InteractionId]
visibleMetas, [OutputConstraint Expr NamedMeta]
hiddenMetas)
showGoals :: Goals -> TCM String
showGoals :: Goals -> TCM ArgName
showGoals ([OutputConstraint Expr InteractionId]
ims, [OutputConstraint Expr NamedMeta]
hms) = do
[Doc]
di <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [OutputConstraint Expr InteractionId]
ims forall a b. (a -> b) -> a -> b
$ \ OutputConstraint Expr InteractionId
i ->
forall (m :: * -> *) a.
(MonadDebug m, MonadFail m, ReadTCState m, MonadError TCErr m,
MonadTCEnv m, MonadTrace m) =>
InteractionId -> m a -> m a
withInteractionId (forall a b. OutputForm a b -> b
outputFormId forall a b. (a -> b) -> a -> b
$ forall a b.
Range
-> [ProblemId] -> Blocker -> OutputConstraint a b -> OutputForm a b
OutputForm forall a. Range' a
noRange [] Blocker
alwaysUnblock OutputConstraint Expr InteractionId
i) forall a b. (a -> b) -> a -> b
$
forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyATop OutputConstraint Expr InteractionId
i
Names
dh <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM OutputConstraint Expr NamedMeta -> TCM ArgName
showA' [OutputConstraint Expr NamedMeta]
hms
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Names -> ArgName
unlines forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a. Show a => a -> ArgName
show [Doc]
di forall a. [a] -> [a] -> [a]
++ Names
dh
where
showA' :: OutputConstraint A.Expr NamedMeta -> TCM String
showA' :: OutputConstraint Expr NamedMeta -> TCM ArgName
showA' OutputConstraint Expr NamedMeta
m = do
let i :: MetaId
i = NamedMeta -> MetaId
nmid forall a b. (a -> b) -> a -> b
$ forall a. OutputConstraint Expr a -> a
namedMetaOf OutputConstraint Expr NamedMeta
m
Range
r <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m Range
getMetaRange MetaId
i
Doc
d <- forall (m :: * -> *) a.
(HasCallStack, MonadDebug m, MonadTCEnv m, MonadTrace m,
ReadTCState m) =>
MetaId -> m a -> m a
withMetaId MetaId
i (forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyATop OutputConstraint Expr NamedMeta
m)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show Doc
d forall a. [a] -> [a] -> [a]
++ ArgName
" [ at " forall a. [a] -> [a] -> [a]
++ forall a. Pretty a => a -> ArgName
prettyShow Range
r forall a. [a] -> [a] -> [a]
++ ArgName
" ]"
getWarningsAndNonFatalErrors :: TCM WarningsAndNonFatalErrors
getWarningsAndNonFatalErrors :: TCM WarningsAndNonFatalErrors
getWarningsAndNonFatalErrors = do
[TCWarning]
mws <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadWarning m) =>
WhichWarnings -> m [TCWarning]
getAllWarnings WhichWarnings
AllWarnings
let notMetaWarnings :: [TCWarning]
notMetaWarnings = forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. TCWarning -> Bool
isMetaTCWarning) [TCWarning]
mws
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ case [TCWarning]
notMetaWarnings of
ws :: [TCWarning]
ws@(TCWarning
_:[TCWarning]
_) -> [TCWarning] -> WarningsAndNonFatalErrors
classifyWarnings [TCWarning]
ws
[TCWarning]
_ -> WarningsAndNonFatalErrors
emptyWarningsAndNonFatalErrors
getResponseContext
:: Rewrite
-> InteractionId
-> TCM [ResponseContextEntry]
getResponseContext :: Rewrite -> InteractionId -> TCM [ResponseContextEntry]
getResponseContext Rewrite
norm InteractionId
ii = InteractionId -> Rewrite -> TCM [ResponseContextEntry]
contextOfMeta InteractionId
ii Rewrite
norm
getSolvedInteractionPoints :: Bool -> Rewrite -> TCM [(InteractionId, MetaId, Expr)]
getSolvedInteractionPoints :: Bool -> Rewrite -> TCM [(InteractionId, MetaId, Expr)]
getSolvedInteractionPoints Bool
all Rewrite
norm = forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InteractionId, MetaId) -> TCM [(InteractionId, MetaId, Expr)]
solution forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). ReadTCState m => m [(InteractionId, MetaId)]
getInteractionIdsAndMetas
where
solution :: (InteractionId, MetaId) -> TCM [(InteractionId, MetaId, Expr)]
solution (InteractionId
i, MetaId
m) = do
MetaVariable
mv <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
m
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
Closure Range -> m a -> m a
withMetaInfo (MetaVariable -> Closure Range
getMetaInfo MetaVariable
mv) forall a b. (a -> b) -> a -> b
$ do
Args
args <- forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
ScopeInfo
scope <- forall (m :: * -> *). ReadTCState m => m ScopeInfo
getScope
let sol :: Term -> TCM [(InteractionId, MetaId, Expr)]
sol Term
v = do
Term
v <- forall a (m :: * -> *). (Instantiate a, MonadReduce m) => a -> m a
instantiate Term
v
let isMeta :: Bool
isMeta = case Term
v of MetaV{} -> Bool
True; Term
_ -> Bool
False
if Bool
isMeta Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
all then forall (m :: * -> *) a. Monad m => a -> m a
return [] else do
Expr
e <- forall (m :: * -> *) a. (MonadTCEnv m, BlankVars a) => a -> m a
blankNotInScope forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm Term
v
forall (m :: * -> *) a. Monad m => a -> m a
return [(InteractionId
i, MetaId
m, ScopeInfo -> Expr -> Expr
ScopedExpr ScopeInfo
scope Expr
e)]
unsol :: TCMT IO [a]
unsol = forall (m :: * -> *) a. Monad m => a -> m a
return []
case MetaVariable -> MetaInstantiation
mvInstantiation MetaVariable
mv of
InstV{} -> Term -> TCM [(InteractionId, MetaId, Expr)]
sol (MetaId -> Elims -> Term
MetaV MetaId
m forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a. Arg a -> Elim' a
Apply Args
args)
Open{} -> forall {a}. TCMT IO [a]
unsol
OpenInstance{} -> forall {a}. TCMT IO [a]
unsol
BlockedConst{} -> forall {a}. TCMT IO [a]
unsol
PostponedTypeCheckingProblem{} -> forall {a}. TCMT IO [a]
unsol
typeOfMetaMI :: Rewrite -> MetaId -> TCM (OutputConstraint Expr NamedMeta)
typeOfMetaMI :: Rewrite -> MetaId -> TCM (OutputConstraint Expr NamedMeta)
typeOfMetaMI Rewrite
norm MetaId
mi =
do MetaVariable
mv <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
mi
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
Closure Range -> m a -> m a
withMetaInfo (MetaVariable -> Closure Range
getMetaInfo MetaVariable
mv) forall a b. (a -> b) -> a -> b
$
MetaVariable
-> Judgement MetaId -> TCM (OutputConstraint Expr NamedMeta)
rewriteJudg MetaVariable
mv (MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mv)
where
rewriteJudg :: MetaVariable -> Judgement MetaId ->
TCM (OutputConstraint Expr NamedMeta)
rewriteJudg :: MetaVariable
-> Judgement MetaId -> TCM (OutputConstraint Expr NamedMeta)
rewriteJudg MetaVariable
mv (HasType MetaId
i Comparison
cmp Type
t) = do
ArgName
ms <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m ArgName
getMetaNameSuggestion MetaId
i
Args
vs <- forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
Type
t <- Type
t forall a (m :: * -> *).
(PiApplyM a, MonadReduce m, HasBuiltins m) =>
Type -> a -> m Type
`piApplyM` forall a. Permutation -> [a] -> [a]
permute (Int -> Permutation -> Permutation
takeP (forall a. Sized a => a -> Int
size Args
vs) forall a b. (a -> b) -> a -> b
$ MetaVariable -> Permutation
mvPermutation MetaVariable
mv) Args
vs
Type
t <- forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm Type
t
let x :: NamedMeta
x = ArgName -> MetaId -> NamedMeta
NamedMeta ArgName
ms MetaId
i
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interactive.meta" Int
10 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.vcat
[ forall (m :: * -> *). Applicative m => ArgName -> m Doc
TP.text forall a b. (a -> b) -> a -> b
$ Names -> ArgName
unwords [ArgName
"permuting", forall a. Show a => a -> ArgName
show MetaId
i, ArgName
"with", forall a. Show a => a -> ArgName
show forall a b. (a -> b) -> a -> b
$ MetaVariable -> Permutation
mvPermutation MetaVariable
mv]
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.vcat
[ TCMT IO Doc
"len =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (m :: * -> *). Applicative m => ArgName -> m Doc
TP.text (forall a. Show a => a -> ArgName
show forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
vs)
, TCMT IO Doc
"args =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Args
vs
, TCMT IO Doc
"t =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
t
, TCMT IO Doc
"x =" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (m :: * -> *) a. (Applicative m, Pretty a) => a -> m Doc
TP.pretty NamedMeta
x
]
]
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interactive.meta.scope" Int
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *). Applicative m => ArgName -> m Doc
TP.text forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> ArgName
show forall a b. (a -> b) -> a -> b
$ MetaVariable -> ScopeInfo
getMetaScope MetaVariable
mv
forall a b. b -> a -> OutputConstraint a b
OfType NamedMeta
x forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall i. Reify i => i -> TCM (ReifiesTo i)
reifyUnblocked Type
t
rewriteJudg MetaVariable
mv (IsSort MetaId
i Type
t) = do
ArgName
ms <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m ArgName
getMetaNameSuggestion MetaId
i
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. b -> OutputConstraint a b
JustSort forall a b. (a -> b) -> a -> b
$ ArgName -> MetaId -> NamedMeta
NamedMeta ArgName
ms MetaId
i
typeOfMeta :: Rewrite -> InteractionId -> TCM (OutputConstraint Expr InteractionId)
typeOfMeta :: Rewrite
-> InteractionId -> TCM (OutputConstraint Expr InteractionId)
typeOfMeta Rewrite
norm InteractionId
ii = Rewrite
-> (InteractionId, MetaId)
-> TCM (OutputConstraint Expr InteractionId)
typeOfMeta' Rewrite
norm forall b c a. (b -> c) -> (a -> b) -> a -> c
. (InteractionId
ii,) forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii
typeOfMeta' :: Rewrite -> (InteractionId, MetaId) -> TCM (OutputConstraint Expr InteractionId)
typeOfMeta' :: Rewrite
-> (InteractionId, MetaId)
-> TCM (OutputConstraint Expr InteractionId)
typeOfMeta' Rewrite
norm (InteractionId
ii, MetaId
mi) = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\NamedMeta
_ -> InteractionId
ii) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Rewrite -> MetaId -> TCM (OutputConstraint Expr NamedMeta)
typeOfMetaMI Rewrite
norm MetaId
mi
typesOfVisibleMetas :: Rewrite -> TCM [OutputConstraint Expr InteractionId]
typesOfVisibleMetas :: Rewrite -> TCM [OutputConstraint Expr InteractionId]
typesOfVisibleMetas Rewrite
norm =
forall (tcm :: * -> *) a. MonadTCM tcm => TCM a -> tcm a
liftTCM forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Rewrite
-> (InteractionId, MetaId)
-> TCM (OutputConstraint Expr InteractionId)
typeOfMeta' Rewrite
norm) forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). ReadTCState m => m [(InteractionId, MetaId)]
getInteractionIdsAndMetas
typesOfHiddenMetas :: Rewrite -> TCM [OutputConstraint Expr NamedMeta]
typesOfHiddenMetas :: Rewrite -> TCM [OutputConstraint Expr NamedMeta]
typesOfHiddenMetas Rewrite
norm = forall (tcm :: * -> *) a. MonadTCM tcm => TCM a -> tcm a
liftTCM forall a b. (a -> b) -> a -> b
$ do
[MetaId]
is <- forall (m :: * -> *). ReadTCState m => m [MetaId]
getInteractionMetas
Map MetaId MetaVariable
store <- forall k a. (k -> a -> Bool) -> Map k a -> Map k a
MapS.filterWithKey (forall {t :: * -> *} {a}.
(Foldable t, Eq a) =>
t a -> a -> MetaVariable -> Bool
implicit [MetaId]
is) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) a. ReadTCState m => Lens' a TCState -> m a
useR Lens' (Map MetaId MetaVariable) TCState
stOpenMetaStore
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Rewrite -> MetaId -> TCM (OutputConstraint Expr NamedMeta)
typeOfMetaMI Rewrite
norm) forall a b. (a -> b) -> a -> b
$ forall k a. Map k a -> [k]
MapS.keys Map MetaId MetaVariable
store
where
implicit :: t a -> a -> MetaVariable -> Bool
implicit t a
is a
x MetaVariable
m | forall a. Maybe a -> Bool
isJust (MetaVariable -> Maybe MetaId
mvTwin MetaVariable
m) = Bool
False
implicit t a
is a
x MetaVariable
m =
case MetaVariable -> MetaInstantiation
mvInstantiation MetaVariable
m of
M.InstV{} -> forall a. HasCallStack => a
__IMPOSSIBLE__
MetaInstantiation
M.Open -> a
x forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem` t a
is
MetaInstantiation
M.OpenInstance -> a
x forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem` t a
is
M.BlockedConst{} -> Bool
False
M.PostponedTypeCheckingProblem{} -> Bool
False
metaHelperType :: Rewrite -> InteractionId -> Range -> String -> TCM (OutputConstraint' Expr Expr)
metaHelperType :: Rewrite
-> InteractionId
-> Range
-> ArgName
-> TCM (OutputConstraint' Expr Expr)
metaHelperType Rewrite
norm InteractionId
ii Range
rng ArgName
s = case ArgName -> Names
words ArgName
s of
[] -> forall {a}. TCMT IO a
failure
ArgName
f : Names
_ -> forall (m :: * -> *) a.
(MonadDebug m, MonadFail m, ReadTCState m, MonadError TCErr m,
MonadTCEnv m, MonadTrace m) =>
InteractionId -> m a -> m a
withInteractionId InteractionId
ii forall a b. (a -> b) -> a -> b
$ do
ArgName -> ScopeM ()
ensureName ArgName
f
A.Application Expr
h [NamedArg Expr]
args <- Expr -> AppView' Expr
A.appView forall b c a. (b -> c) -> (a -> b) -> a -> c
. Expr -> Expr
getBody forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. ExprLike a => a -> a
deepUnscope forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InteractionId -> Range -> ArgName -> TCM Expr
parseExprIn InteractionId
ii Range
rng (ArgName
"let " forall a. [a] -> [a] -> [a]
++ ArgName
f forall a. [a] -> [a] -> [a]
++ ArgName
" = _ in " forall a. [a] -> [a] -> [a]
++ ArgName
s)
Name -> Bool
inCxt <- forall a. Ord a => [a] -> a -> Bool
hasElem forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m [Name]
getContextNames
Args
cxtArgs <- forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
Type
a0 <- (Type -> Args -> Type
`piApply` Args
cxtArgs) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (m :: * -> *). ReadTCState m => MetaId -> m Type
getMetaType forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii)
case forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Expr -> Maybe Name
isVar forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. NamedArg a -> a
namedArg) [NamedArg Expr]
args forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \ [Name]
xs -> [Name]
xs forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ forall (f :: * -> *). Alternative f => Bool -> f ()
guard (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Name -> Bool
inCxt [Name]
xs) of
Just [Name]
xs -> do
let inXs :: Name -> Bool
inXs = forall a. Ord a => [a] -> a -> Bool
hasElem [Name]
xs
let hideButXs :: ContextEntry -> ContextEntry
hideButXs ContextEntry
dom = forall a. LensHiding a => Hiding -> a -> a
setHiding (if Name -> Bool
inXs forall a b. (a -> b) -> a -> b
$ forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall t e. Dom' t e -> e
unDom ContextEntry
dom then Hiding
NotHidden else Hiding
Hidden) ContextEntry
dom
Telescope
tel <- ListTel -> Telescope
telFromList forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first Name -> ArgName
nameToArgName) forall b c a. (b -> c) -> (a -> b) -> a -> c
. ContextEntry -> ContextEntry
hideButXs) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. [a] -> [a]
reverse forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). MonadTCEnv m => m [ContextEntry]
getContext
forall a b. b -> a -> OutputConstraint' a b
OfType' Expr
h forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
forall (m :: * -> *) a.
MonadTCEnv m =>
(TCEnv -> TCEnv) -> m a -> m a
localTC (\TCEnv
e -> TCEnv
e { envPrintDomainFreePi :: Bool
envPrintDomainFreePi = Bool
True }) forall a b. (a -> b) -> a -> b
$ forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall a b. (a -> b) -> a -> b
$ Telescope -> Type -> Type
telePiVisible Telescope
tel Type
a0
Maybe [Name]
Nothing -> do
Args
cxtArgs <- forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
Telescope
tel <- forall a. Identity a -> a
runIdentity forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *).
Applicative f =>
(ArgName -> f ArgName) -> Telescope -> f Telescope
onNamesTel forall {a} {m :: * -> *}. (Eq a, IsString a, Monad m) => a -> m a
unW forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Telescope
getContextTelescope
let a :: Type
a = forall a. Identity a -> a
runIdentity forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: * -> *).
Applicative m =>
(ArgName -> m ArgName) -> Type -> m Type
onNames forall {a} {m :: * -> *}. (Eq a, IsString a, Monad m) => a -> m a
unW forall a b. (a -> b) -> a -> b
$ Type
a0
[Arg (Term, EqualityView)]
vtys <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\ NamedArg Expr
a -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall e. ArgInfo -> e -> Arg e
Arg (forall a. LensArgInfo a => a -> ArgInfo
getArgInfo NamedArg Expr
a) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Type -> EqualityView
OtherType) forall a b. (a -> b) -> a -> b
$ Expr -> TCM (Term, Type)
inferExpr forall a b. (a -> b) -> a -> b
$ forall a. NamedArg a -> a
namedArg NamedArg Expr
a) [NamedArg Expr]
args
TelV Telescope
atel Type
_ <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
a
let arity :: Int
arity = forall a. Sized a => a -> Int
size Telescope
atel
(Telescope
delta1, Telescope
delta2, Permutation
_, Type
a', [Arg (Term, EqualityView)]
vtys') = Telescope
-> Type
-> [Arg (Term, EqualityView)]
-> (Telescope, Telescope, Permutation, Type,
[Arg (Term, EqualityView)])
splitTelForWith Telescope
tel Type
a [Arg (Term, EqualityView)]
vtys
Expr
a <- forall (m :: * -> *) a.
MonadTCEnv m =>
(TCEnv -> TCEnv) -> m a -> m a
localTC (\TCEnv
e -> TCEnv
e { envPrintDomainFreePi :: Bool
envPrintDomainFreePi = Bool
True }) forall a b. (a -> b) -> a -> b
$ do
forall i (m :: * -> *).
(Reify i, MonadReify m) =>
i -> m (ReifiesTo i)
reify forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Int -> [NamedArg Expr] -> Type -> TCMT IO Type
cleanupType Int
arity [NamedArg Expr]
args forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall a b. (a, b) -> a
fst forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope
-> [Arg (Term, EqualityView)]
-> Telescope
-> Type
-> [(Int, (Term, Term))]
-> TCM (Type, Int)
withFunctionType Telescope
delta1 [Arg (Term, EqualityView)]
vtys' Telescope
delta2 Type
a' []
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.helper" Int
10 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.vcat forall a b. (a -> b) -> a -> b
$
let extractOtherType :: EqualityView -> Type
extractOtherType = \case { OtherType Type
a -> Type
a; EqualityView
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__ } in
let ([Term]
vs, [Type]
as) = forall a b c. (a -> (b, c)) -> [a] -> ([b], [c])
unzipWith (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap EqualityView -> Type
extractOtherType forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. Arg e -> e
unArg) [Arg (Term, EqualityView)]
vtys in
let ([Term]
vs', [Type]
as') = forall a b c. (a -> (b, c)) -> [a] -> ([b], [c])
unzipWith (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap EqualityView -> Type
extractOtherType forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall e. Arg e -> e
unArg) [Arg (Term, EqualityView)]
vtys' in
[ TCMT IO Doc
"generating helper function"
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"tel = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
tel)
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"a = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Expr
a
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"vs = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Term]
vs
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"as = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Type]
as
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"delta1 = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
delta1)
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"delta2 = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
delta1 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
delta2)
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"a' = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
delta1 forall a b. (a -> b) -> a -> b
$ forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
delta2 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Type
a')
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"as' = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
delta1 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Type]
as')
, forall (m :: * -> *). Functor m => Int -> m Doc -> m Doc
TP.nest Int
2 forall a b. (a -> b) -> a -> b
$ TCMT IO Doc
"vs' = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (tcm :: * -> *) a.
(MonadTCEnv tcm, ReadTCState tcm) =>
tcm a -> tcm a
inTopContext (forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
delta1 forall a b. (a -> b) -> a -> b
$ forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Term]
vs')
]
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. b -> a -> OutputConstraint' a b
OfType' Expr
h Expr
a
where
failure :: TCMT IO a
failure = forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ ArgName -> TypeError
GenericError forall a b. (a -> b) -> a -> b
$ ArgName
"Expected an argument of the form f e1 e2 .. en"
ensureName :: ArgName -> ScopeM ()
ensureName ArgName
f = do
Expr
ce <- Range -> ArgName -> TCM Expr
parseExpr Range
rng ArgName
f
forall a b c. (a -> b -> c) -> b -> a -> c
flip (forall a b. Maybe a -> b -> (a -> b) -> b
caseMaybe forall a b. (a -> b) -> a -> b
$ Expr -> Maybe Name
isName Expr
ce) (\ Name
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return ()) forall a b. (a -> b) -> a -> b
$ do
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> ArgName -> m ()
reportSLn ArgName
"interaction.helper" Int
10 forall a b. (a -> b) -> a -> b
$ ArgName
"ce = " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Expr
ce
forall {a}. TCMT IO a
failure
isVar :: A.Expr -> Maybe A.Name
isVar :: Expr -> Maybe Name
isVar = \case
A.Var Name
x -> forall a. a -> Maybe a
Just Name
x
Expr
_ -> forall a. Maybe a
Nothing
cleanupType :: Int -> [NamedArg Expr] -> Type -> TCMT IO Type
cleanupType Int
arity [NamedArg Expr]
args Type
t = do
TelV Telescope
ttel Type
_ <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView Type
t
let n :: Int
n = forall a. Sized a => a -> Int
size Telescope
ttel forall a. Num a => a -> a -> a
- Int
arity
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n forall a. Ord a => a -> a -> Bool
>= Int
0) forall a. HasCallStack => a
__IMPOSSIBLE__
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall s a. State s a -> s -> a
evalState (Type -> StateT [NamedArg Expr] Identity Type
renameVars forall a b. (a -> b) -> a -> b
$ forall {a}. (Eq a, Num a) => a -> Type -> Type
stripUnused Int
n Type
t) [NamedArg Expr]
args
getBody :: Expr -> Expr
getBody (A.Let ExprInfo
_ List1 LetBinding
_ Expr
e) = Expr
e
getBody Expr
_ = forall a. HasCallStack => a
__IMPOSSIBLE__
stripUnused :: a -> Type -> Type
stripUnused a
n (El Sort
s Term
v) = forall t a. Sort' t -> a -> Type'' t a
El Sort
s forall a b. (a -> b) -> a -> b
$ a -> Term -> Term
strip a
n Term
v
strip :: a -> Term -> Term
strip a
0 = forall a. a -> a
id
strip a
n = \case
I.Pi Dom Type
a Abs Type
b -> case a -> Type -> Type
stripUnused (a
nforall a. Num a => a -> a -> a
-a
1) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Type
b of
Abs Type
b | forall a. Abs a -> ArgName
absName Abs Type
b forall a. Eq a => a -> a -> Bool
== ArgName
"w" -> Dom Type -> Abs Type -> Term
I.Pi Dom Type
a Abs Type
b
NoAbs ArgName
_ Type
b -> forall t a. Type'' t a -> a
unEl Type
b
Abs ArgName
s Type
b | Int
0 forall a. Free a => Int -> a -> Bool
`freeIn` Type
b -> Dom Type -> Abs Type -> Term
I.Pi (forall a. LensHiding a => a -> a
hide Dom Type
a) (forall a. ArgName -> a -> Abs a
Abs ArgName
s Type
b)
| Bool
otherwise -> forall a. Subst a => Impossible -> a -> a
strengthen HasCallStack => Impossible
impossible (forall t a. Type'' t a -> a
unEl Type
b)
Term
v -> Term
v
renameVars :: Type -> StateT [NamedArg Expr] Identity Type
renameVars = forall (m :: * -> *).
Applicative m =>
(ArgName -> m ArgName) -> Type -> m Type
onNames ArgName -> StateT [NamedArg Expr] Identity ArgName
renameVar
onNames :: Applicative m => (String -> m String) -> I.Type -> m I.Type
onNames :: forall (m :: * -> *).
Applicative m =>
(ArgName -> m ArgName) -> Type -> m Type
onNames ArgName -> m ArgName
f (El Sort
s Term
v) = forall t a. Sort' t -> a -> Type'' t a
El Sort
s forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {f :: * -> *}.
Applicative f =>
(ArgName -> f ArgName) -> Term -> f Term
onNamesTm ArgName -> m ArgName
f Term
v
onNamesTel :: Applicative f => (String -> f String) -> I.Telescope -> f I.Telescope
onNamesTel :: forall (f :: * -> *).
Applicative f =>
(ArgName -> f ArgName) -> Telescope -> f Telescope
onNamesTel ArgName -> f ArgName
f Telescope
I.EmptyTel = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Tele a
I.EmptyTel
onNamesTel ArgName -> f ArgName
f (I.ExtendTel Dom Type
a Abs Telescope
b) = forall a. a -> Abs (Tele a) -> Tele a
I.ExtendTel forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (m :: * -> *).
Applicative m =>
(ArgName -> m ArgName) -> Type -> m Type
onNames ArgName -> f ArgName
f) Dom Type
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall {f :: * -> *} {t} {a}.
Applicative f =>
(ArgName -> f ArgName)
-> ((ArgName -> f ArgName) -> t -> f a) -> Abs t -> f (Abs a)
onNamesAbs ArgName -> f ArgName
f forall (f :: * -> *).
Applicative f =>
(ArgName -> f ArgName) -> Telescope -> f Telescope
onNamesTel Abs Telescope
b
onNamesTm :: (ArgName -> f ArgName) -> Term -> f Term
onNamesTm ArgName -> f ArgName
f = \case
I.Var Int
x Elims
es -> Int -> Elims -> Term
I.Var Int
x forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (ArgName -> f ArgName) -> Elims -> f Elims
onNamesElims ArgName -> f ArgName
f Elims
es
I.Def QName
q Elims
es -> QName -> Elims -> Term
I.Def QName
q forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (ArgName -> f ArgName) -> Elims -> f Elims
onNamesElims ArgName -> f ArgName
f Elims
es
I.Con ConHead
c ConInfo
ci Elims
args -> ConHead -> ConInfo -> Elims -> Term
I.Con ConHead
c ConInfo
ci forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (ArgName -> f ArgName) -> Elims -> f Elims
onNamesArgs ArgName -> f ArgName
f Elims
args
I.Lam ArgInfo
i Abs Term
b -> ArgInfo -> Abs Term -> Term
I.Lam ArgInfo
i forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {f :: * -> *} {t} {a}.
Applicative f =>
(ArgName -> f ArgName)
-> ((ArgName -> f ArgName) -> t -> f a) -> Abs t -> f (Abs a)
onNamesAbs ArgName -> f ArgName
f (ArgName -> f ArgName) -> Term -> f Term
onNamesTm Abs Term
b
I.Pi Dom Type
a Abs Type
b -> Dom Type -> Abs Type -> Term
I.Pi forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (m :: * -> *).
Applicative m =>
(ArgName -> m ArgName) -> Type -> m Type
onNames ArgName -> f ArgName
f) Dom Type
a forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall {f :: * -> *} {t} {a}.
Applicative f =>
(ArgName -> f ArgName)
-> ((ArgName -> f ArgName) -> t -> f a) -> Abs t -> f (Abs a)
onNamesAbs ArgName -> f ArgName
f forall (m :: * -> *).
Applicative m =>
(ArgName -> m ArgName) -> Type -> m Type
onNames Abs Type
b
I.DontCare Term
v -> Term -> Term
I.DontCare forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (ArgName -> f ArgName) -> Term -> f Term
onNamesTm ArgName -> f ArgName
f Term
v
v :: Term
v@I.Lit{} -> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
v
v :: Term
v@I.Sort{} -> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
v
v :: Term
v@I.Level{} -> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
v
v :: Term
v@I.MetaV{} -> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
v
v :: Term
v@I.Dummy{} -> forall (f :: * -> *) a. Applicative f => a -> f a
pure Term
v
onNamesElims :: (ArgName -> f ArgName) -> Elims -> f Elims
onNamesElims ArgName -> f ArgName
f = forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse forall a b. (a -> b) -> a -> b
$ (ArgName -> f ArgName) -> Term -> f Term
onNamesTm ArgName -> f ArgName
f
onNamesArgs :: (ArgName -> f ArgName) -> Elims -> f Elims
onNamesArgs ArgName -> f ArgName
f = forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse forall a b. (a -> b) -> a -> b
$ (ArgName -> f ArgName) -> Term -> f Term
onNamesTm ArgName -> f ArgName
f
onNamesAbs :: (ArgName -> f ArgName)
-> ((ArgName -> f ArgName) -> t -> f a) -> Abs t -> f (Abs a)
onNamesAbs ArgName -> f ArgName
f = forall {f :: * -> *} {t} {t} {a}.
Applicative f =>
t
-> (ArgName -> f ArgName) -> (t -> t -> f a) -> Abs t -> f (Abs a)
onNamesAbs' ArgName -> f ArgName
f (ArgName -> ArgName
stringToArgName forall (m :: * -> *) b c a.
Functor m =>
(b -> c) -> (a -> m b) -> a -> m c
<.> ArgName -> f ArgName
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. ArgName -> ArgName
argNameToString)
onNamesAbs' :: t
-> (ArgName -> f ArgName) -> (t -> t -> f a) -> Abs t -> f (Abs a)
onNamesAbs' t
f ArgName -> f ArgName
f' t -> t -> f a
nd (Abs ArgName
s t
x) = forall a. ArgName -> a -> Abs a
Abs forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ArgName -> f ArgName
f' ArgName
s forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> t -> f a
nd t
f t
x
onNamesAbs' t
f ArgName -> f ArgName
f' t -> t -> f a
nd (NoAbs ArgName
s t
x) = forall a. ArgName -> a -> Abs a
NoAbs forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ArgName -> f ArgName
f' ArgName
s forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> t -> t -> f a
nd t
f t
x
unW :: a -> m a
unW a
"w" = forall (m :: * -> *) a. Monad m => a -> m a
return a
".w"
unW a
s = forall (m :: * -> *) a. Monad m => a -> m a
return a
s
renameVar :: ArgName -> StateT [NamedArg Expr] Identity ArgName
renameVar ArgName
"w" = StateT [NamedArg Expr] Identity ArgName
betterName
renameVar ArgName
s = forall (f :: * -> *) a. Applicative f => a -> f a
pure ArgName
s
betterName :: StateT [NamedArg Expr] Identity ArgName
betterName = do
[NamedArg Expr]
xs <- forall s (m :: * -> *). MonadState s m => m s
get
case [NamedArg Expr]
xs of
[] -> forall a. HasCallStack => a
__IMPOSSIBLE__
NamedArg Expr
arg : [NamedArg Expr]
args -> do
forall s (m :: * -> *). MonadState s m => s -> m ()
put [NamedArg Expr]
args
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ if
| Arg ArgInfo
_ (Named Maybe NamedName
_ (A.Var Name
x)) <- NamedArg Expr
arg -> forall a. Pretty a => a -> ArgName
prettyShow forall a b. (a -> b) -> a -> b
$ Name -> Name
A.nameConcrete Name
x
| Just ArgName
x <- forall a. (LensNamed a, NameOf a ~ NamedName) => a -> Maybe ArgName
bareNameOf NamedArg Expr
arg -> ArgName -> ArgName
argNameToString ArgName
x
| Bool
otherwise -> ArgName
"w"
contextOfMeta :: InteractionId -> Rewrite -> TCM [ResponseContextEntry]
contextOfMeta :: InteractionId -> Rewrite -> TCM [ResponseContextEntry]
contextOfMeta InteractionId
ii Rewrite
norm = forall (m :: * -> *) a.
(MonadDebug m, MonadFail m, ReadTCState m, MonadError TCErr m,
MonadTCEnv m, MonadTrace m) =>
InteractionId -> m a -> m a
withInteractionId InteractionId
ii forall a b. (a -> b) -> a -> b
$ do
Closure Range
info <- MetaVariable -> Closure Range
getMetaInfo forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii)
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
Closure Range -> m a -> m a
withMetaInfo Closure Range
info forall a b. (a -> b) -> a -> b
$ do
[ContextEntry]
cxt <- forall (m :: * -> *). MonadTCEnv m => m [ContextEntry]
getContext
let localVars :: [ContextEntry]
localVars = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith forall a. Subst a => Int -> a -> a
raise [Int
1..] [ContextEntry]
cxt
[(Name, Open (Term, Dom Type))]
letVars <- forall k a. Map k a -> [(k, a)]
Map.toAscList forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) a. MonadTCEnv m => (TCEnv -> a) -> m a
asksTC TCEnv -> LetBindings
envLetBindings
forall a. [a] -> [a] -> [a]
(++) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) a b.
Monad m =>
[a] -> (a -> m (Maybe b)) -> m [b]
forMaybeM (forall a. [a] -> [a]
reverse [ContextEntry]
localVars) ContextEntry -> TCM (Maybe ResponseContextEntry)
mkVar
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (m :: * -> *) a b.
Monad m =>
[a] -> (a -> m (Maybe b)) -> m [b]
forMaybeM [(Name, Open (Term, Dom Type))]
letVars (Name, Open (Term, Dom Type)) -> TCM (Maybe ResponseContextEntry)
mkLet
where
mkVar :: ContextEntry -> TCM (Maybe ResponseContextEntry)
mkVar :: ContextEntry -> TCM (Maybe ResponseContextEntry)
mkVar Dom{ domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
ai, unDom :: forall t e. Dom' t e -> e
unDom = (Name
name, Type
t) } = do
if ArgInfo -> Name -> Bool
shouldHide ArgInfo
ai Name
name then forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
let n :: Name
n = Name -> Name
nameConcrete Name
name
Name
x <- forall a (m :: * -> *).
(ToConcrete a, MonadAbsToCon m) =>
a -> m (ConOfAbs a)
abstractToConcrete_ Name
name
let s :: NameInScope
s = forall a. LensInScope a => a -> NameInScope
C.isInScope Name
x
Expr
ty <- forall i. Reify i => i -> TCM (ReifiesTo i)
reifyUnblocked forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm Type
t
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Name
-> Name
-> Arg Expr
-> TacticAttr
-> NameInScope
-> ResponseContextEntry
ResponseContextEntry Name
n Name
x (forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai Expr
ty) forall a. Maybe a
Nothing NameInScope
s
mkLet :: (Name, Open (Term, Dom I.Type)) -> TCM (Maybe ResponseContextEntry)
mkLet :: (Name, Open (Term, Dom Type)) -> TCM (Maybe ResponseContextEntry)
mkLet (Name
name, Open (Term, Dom Type)
lb) = do
(Term
tm, !Dom Type
dom) <- forall a (m :: * -> *).
(TermSubst a, MonadTCEnv m) =>
Open a -> m a
getOpen Open (Term, Dom Type)
lb
if ArgInfo -> Name -> Bool
shouldHide (forall t e. Dom' t e -> ArgInfo
domInfo Dom Type
dom) Name
name then forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
let n :: Name
n = Name -> Name
nameConcrete Name
name
Name
x <- forall a (m :: * -> *).
(ToConcrete a, MonadAbsToCon m) =>
a -> m (ConOfAbs a)
abstractToConcrete_ Name
name
let s :: NameInScope
s = forall a. LensInScope a => a -> NameInScope
C.isInScope Name
x
Arg Expr
ty <- forall i. Reify i => i -> TCM (ReifiesTo i)
reifyUnblocked forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm Dom Type
dom
Expr
v <- forall i. Reify i => i -> TCM (ReifiesTo i)
reifyUnblocked forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm Term
tm
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Name
-> Name
-> Arg Expr
-> TacticAttr
-> NameInScope
-> ResponseContextEntry
ResponseContextEntry Name
n Name
x Arg Expr
ty (forall a. a -> Maybe a
Just Expr
v) NameInScope
s
shouldHide :: ArgInfo -> A.Name -> Bool
shouldHide :: ArgInfo -> Name -> Bool
shouldHide ArgInfo
ai Name
n = Bool -> Bool
not (forall a. LensHiding a => a -> Bool
isInstance ArgInfo
ai) Bool -> Bool -> Bool
&& (forall a. IsNoName a => a -> Bool
isNoName Name
n Bool -> Bool -> Bool
|| Name -> Bool
nameIsRecordName Name
n)
typeInCurrent :: Rewrite -> Expr -> TCM Expr
typeInCurrent :: Rewrite -> Expr -> TCM Expr
typeInCurrent Rewrite
norm Expr
e =
do (Term
_,Type
t) <- forall (m :: * -> *) a. MonadTCEnv m => m a -> m a
wakeIrrelevantVars forall a b. (a -> b) -> a -> b
$ Expr -> TCM (Term, Type)
inferExpr Expr
e
Type
v <- forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm Type
t
forall i. Reify i => i -> TCM (ReifiesTo i)
reifyUnblocked Type
v
typeInMeta :: InteractionId -> Rewrite -> Expr -> TCM Expr
typeInMeta :: InteractionId -> Rewrite -> Expr -> TCM Expr
typeInMeta InteractionId
ii Rewrite
norm Expr
e =
do MetaId
m <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii
Closure Range
mi <- MetaVariable -> Closure Range
getMetaInfo forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
m
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
Closure Range -> m a -> m a
withMetaInfo Closure Range
mi forall a b. (a -> b) -> a -> b
$
Rewrite -> Expr -> TCM Expr
typeInCurrent Rewrite
norm Expr
e
introTactic :: Bool -> InteractionId -> TCM [String]
introTactic :: Bool -> InteractionId -> TCM Names
introTactic Bool
pmLambda InteractionId
ii = do
MetaId
mi <- forall (m :: * -> *).
(MonadFail m, ReadTCState m, MonadError TCErr m, MonadTCEnv m) =>
InteractionId -> m MetaId
lookupInteractionId InteractionId
ii
MetaVariable
mv <- forall (m :: * -> *).
(HasCallStack, MonadDebug m, ReadTCState m) =>
MetaId -> m MetaVariable
lookupLocalMeta MetaId
mi
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadTrace m) =>
Closure Range -> m a -> m a
withMetaInfo (MetaVariable -> Closure Range
getMetaInfo MetaVariable
mv) forall a b. (a -> b) -> a -> b
$ case MetaVariable -> Judgement MetaId
mvJudgement MetaVariable
mv of
HasType MetaId
_ Comparison
_ Type
t -> do
Type
t <- forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall a (m :: * -> *).
(PiApplyM a, MonadReduce m, HasBuiltins m) =>
Type -> a -> m Type
piApplyM Type
t forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Args
getContextArgs
TelV Telescope
tel' Type
t <- forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Int -> (Dom Type -> Bool) -> Type -> m (TelV Type)
telViewUpTo' (-Int
1) forall a. LensHiding a => a -> Bool
notVisible Type
t
let fallback :: TCM Names
fallback = do
Bool
cubical <- forall a. Maybe a -> Bool
isJust forall b c a. (b -> c) -> (a -> b) -> a -> c
. PragmaOptions -> Maybe Cubical
optCubical forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasOptions m => m PragmaOptions
pragmaOptions
TelV Telescope
tel Type
_ <- (if Bool
cubical then forall (m :: * -> *). PureTCM m => Type -> m (TelV Type)
telViewPath else forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m (TelV Type)
telView) Type
t
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.intro" Int
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.sep
[ TCMT IO Doc
"introTactic/fallback"
, TCMT IO Doc
"tel' = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
tel'
, TCMT IO Doc
"tel = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
tel
]
case (Telescope
tel', Telescope
tel) of
(Telescope
EmptyTel, Telescope
EmptyTel) -> forall (m :: * -> *) a. Monad m => a -> m a
return []
(Telescope, Telescope)
_ -> ListTel -> TCM Names
introFun (forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Telescope
tel' forall a. [a] -> [a] -> [a]
++ forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Telescope
tel)
case forall t a. Type'' t a -> a
unEl Type
t of
I.Def QName
d Elims
_ -> do
Definition
def <- forall (m :: * -> *). HasConstInfo m => QName -> m Definition
getConstInfo QName
d
case Definition -> Defn
theDef Definition
def of
Datatype{} -> forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel' forall a b. (a -> b) -> a -> b
$ Type -> TCM Names
introData Type
t
Record{ recNamedCon :: Defn -> Bool
recNamedCon = Bool
name }
| Bool
name -> forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel' forall a b. (a -> b) -> a -> b
$ Type -> TCM Names
introData Type
t
| Bool
otherwise -> forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel' forall a b. (a -> b) -> a -> b
$ QName -> TCM Names
introRec QName
d
Defn
_ -> TCM Names
fallback
Term
_ -> TCM Names
fallback
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
`catchError` \TCErr
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return []
Judgement MetaId
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__
where
conName :: [NamedArg SplitPattern] -> [I.ConHead]
conName :: [NamedArg SplitPattern] -> [ConHead]
conName [NamedArg SplitPattern
p] = [ ConHead
c | I.ConP ConHead
c ConPatternInfo
_ [NamedArg SplitPattern]
_ <- [forall a. NamedArg a -> a
namedArg NamedArg SplitPattern
p] ]
conName [NamedArg SplitPattern]
_ = forall a. HasCallStack => a
__IMPOSSIBLE__
showUnambiguousConName :: ConHead -> f ArgName
showUnambiguousConName ConHead
v =
Doc -> ArgName
render forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Pretty a => a -> Doc
pretty forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *) c. MonadAbsToCon m => AbsToCon c -> m c
runAbsToCon (AllowAmbiguousNames -> QName -> AbsToCon QName
lookupQName AllowAmbiguousNames
AmbiguousNothing forall a b. (a -> b) -> a -> b
$ ConHead -> QName
I.conName ConHead
v)
showTCM :: PrettyTCM a => a -> TCM String
showTCM :: forall a. PrettyTCM a => a -> TCM ArgName
showTCM a
v = Doc -> ArgName
render forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM a
v
introFun :: ListTel -> TCM [String]
introFun :: ListTel -> TCM Names
introFun ListTel
tel = forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel' forall a b. (a -> b) -> a -> b
$ do
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.intro" Int
10 forall a b. (a -> b) -> a -> b
$ do TCMT IO Doc
"introFun" forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM (ListTel -> Telescope
telFromList ListTel
tel)
Bool
imp <- forall (m :: * -> *). HasOptions m => m Bool
showImplicitArguments
let okHiding0 :: Hiding -> Bool
okHiding0 Hiding
h = Bool
imp Bool -> Bool -> Bool
|| Hiding
h forall a. Eq a => a -> a -> Bool
== Hiding
NotHidden
allHidden :: Bool
allHidden = Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any Hiding -> Bool
okHiding0 [Hiding]
hs)
okHiding :: Hiding -> Bool
okHiding = if Bool
allHidden then forall a b. a -> b -> a
const Bool
True else Hiding -> Bool
okHiding0
Names
vars <-
(if Bool
allHidden then forall (m :: * -> *) a. ReadTCState m => m a -> m a
withShowAllArguments else forall a. a -> a
id) forall a b. (a -> b) -> a -> b
$
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall a. PrettyTCM a => a -> TCM ArgName
showTCM [ forall a. LensHiding a => Hiding -> a -> a
setHiding Hiding
h forall a b. (a -> b) -> a -> b
$ forall a. a -> Arg a
defaultArg forall a b. (a -> b) -> a -> b
$ Int -> Term
var Int
i :: Arg Term
| (Hiding
h, Int
i) <- forall a b. [a] -> [b] -> [(a, b)]
zip [Hiding]
hs forall a b. (a -> b) -> a -> b
$ forall a. Integral a => a -> [a]
downFrom Int
n
, Hiding -> Bool
okHiding Hiding
h
]
if Bool
pmLambda
then forall (m :: * -> *) a. Monad m => a -> m a
return [ Names -> ArgName
unwords forall a b. (a -> b) -> a -> b
$ [ArgName
"λ", ArgName
"{"] forall a. [a] -> [a] -> [a]
++ Names
vars forall a. [a] -> [a] -> [a]
++ [ArgName
"→", ArgName
"?", ArgName
"}"] ]
else forall (m :: * -> *) a. Monad m => a -> m a
return [ Names -> ArgName
unwords forall a b. (a -> b) -> a -> b
$ [ArgName
"λ"] forall a. [a] -> [a] -> [a]
++ Names
vars forall a. [a] -> [a] -> [a]
++ [ArgName
"→", ArgName
"?"] ]
where
n :: Int
n = forall a. Sized a => a -> Int
size ListTel
tel
hs :: [Hiding]
hs = forall a b. (a -> b) -> [a] -> [b]
map forall a. LensHiding a => a -> Hiding
getHiding ListTel
tel
tel' :: Telescope
tel' = ListTel -> Telescope
telFromList [ forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a} {b}. (Eq a, IsString a) => (a, b) -> (a, b)
makeName Dom (ArgName, Type)
b | Dom (ArgName, Type)
b <- ListTel
tel ]
makeName :: (a, b) -> (a, b)
makeName (a
"_", b
t) = (a
"x", b
t)
makeName (a
x, b
t) = (a
x, b
t)
introData :: I.Type -> TCM [String]
introData :: Type -> TCM Names
introData Type
t = do
let tel :: Telescope
tel = ListTel -> Telescope
telFromList [forall a. a -> Dom a
defaultDom (ArgName
"_", Type
t)]
pat :: [Arg (Named name DeBruijnPattern)]
pat = [forall a. a -> Arg a
defaultArg forall a b. (a -> b) -> a -> b
$ forall a name. a -> Named name a
unnamed forall a b. (a -> b) -> a -> b
$ forall a. DeBruijn a => ArgName -> Int -> a
debruijnNamedVar ArgName
"c" Int
0]
Either SplitError Covering
r <- Induction
-> Telescope
-> [NamedArg DeBruijnPattern]
-> TCM (Either SplitError Covering)
splitLast Induction
CoInductive Telescope
tel forall {name}. [Arg (Named name DeBruijnPattern)]
pat
case Either SplitError Covering
r of
Left SplitError
err -> forall (m :: * -> *) a. Monad m => a -> m a
return []
Right Covering
cov ->
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall {f :: * -> *}.
(MonadFresh NameId f, MonadInteractionPoints f,
MonadStConcreteNames f, PureTCM f, IsString (f Doc), Null (f Doc),
Semigroup (f Doc)) =>
ConHead -> f ArgName
showUnambiguousConName forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap ([NamedArg SplitPattern] -> [ConHead]
conName forall b c a. (b -> c) -> (a -> b) -> a -> c
. SplitClause -> [NamedArg SplitPattern]
scPats) forall a b. (a -> b) -> a -> b
$ Covering -> [SplitClause]
splitClauses Covering
cov
introRec :: QName -> TCM [String]
introRec :: QName -> TCM Names
introRec QName
d = do
[Dom Name]
hfs <- forall (m :: * -> *).
(HasConstInfo m, ReadTCState m, MonadError TCErr m) =>
QName -> m [Dom Name]
getRecordFieldNames QName
d
[Name]
fs <- forall (m :: * -> *) a. Monad m => m Bool -> m a -> m a -> m a
ifM forall (m :: * -> *). HasOptions m => m Bool
showImplicitArguments
(forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall t e. Dom' t e -> e
unDom [Dom Name]
hfs)
(forall (m :: * -> *) a. Monad m => a -> m a
return [ forall t e. Dom' t e -> e
unDom Dom Name
a | Dom Name
a <- [Dom Name]
hfs, forall a. LensHiding a => a -> Bool
visible Dom Name
a ])
let e :: Expr
e = Range -> RecordAssignments -> Expr
C.Rec forall a. Range' a
noRange forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
for [Name]
fs forall a b. (a -> b) -> a -> b
$ \ Name
f ->
forall a b. a -> Either a b
Left forall a b. (a -> b) -> a -> b
$ forall a. Name -> a -> FieldAssignment' a
C.FieldAssignment Name
f forall a b. (a -> b) -> a -> b
$ Range -> Maybe Int -> Expr
C.QuestionMark forall a. Range' a
noRange forall a. Maybe a
Nothing
forall (m :: * -> *) a. Monad m => a -> m a
return [ forall a. Pretty a => a -> ArgName
prettyShow Expr
e ]
atTopLevel :: TCM a -> TCM a
atTopLevel :: forall a. TCM a -> TCM a
atTopLevel TCM a
m = forall (m :: * -> *) a. MonadTCEnv m => m a -> m a
inConcreteMode forall a b. (a -> b) -> a -> b
$ do
let err :: TCMT IO a
err = forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ ArgName -> TypeError
GenericError ArgName
"The file has not been loaded yet."
forall (m :: * -> *) a b.
Monad m =>
m (Maybe a) -> m b -> (a -> m b) -> m b
caseMaybeM (forall (m :: * -> *) a. ReadTCState m => Lens' a TCState -> m a
useTC Lens' (Maybe (ModuleName, TopLevelModuleName)) TCState
stCurrentModule) forall {a}. TCMT IO a
err forall a b. (a -> b) -> a -> b
$ \(ModuleName
current, TopLevelModuleName
topCurrent) -> do
forall (m :: * -> *) a b.
Monad m =>
m (Maybe a) -> m b -> (a -> m b) -> m b
caseMaybeM (forall (m :: * -> *).
ReadTCState m =>
TopLevelModuleName -> m (Maybe ModuleInfo)
getVisitedModule TopLevelModuleName
topCurrent) forall a. HasCallStack => a
__IMPOSSIBLE__ forall a b. (a -> b) -> a -> b
$ \ ModuleInfo
mi -> do
let scope :: ScopeInfo
scope = Interface -> ScopeInfo
iInsideScope forall a b. (a -> b) -> a -> b
$ ModuleInfo -> Interface
miInterface ModuleInfo
mi
Telescope
tel <- forall (m :: * -> *).
(Functor m, ReadTCState m) =>
ModuleName -> m Telescope
lookupSection ModuleName
current
let names :: [A.Name]
names :: [Name]
names = forall a b. (a -> b) -> [a] -> [b]
map LocalVar -> Name
localVar forall a b. (a -> b) -> a -> b
$ forall a. (a -> Bool) -> [a] -> [a]
filter ((BindingSource
LetBound forall a. Eq a => a -> a -> Bool
/=) forall b c a. (b -> c) -> (a -> b) -> a -> c
. LocalVar -> BindingSource
localBindingSource)
forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd forall a b. (a -> b) -> a -> b
$ forall a. [a] -> [a]
reverse forall a b. (a -> b) -> a -> b
$ ScopeInfo
scope forall o i. o -> Lens' i o -> i
^. Lens' [(Name, LocalVar)] ScopeInfo
scopeLocals
let types :: [Dom I.Type]
types :: [Dom Type]
types = forall a b. (a -> b) -> [a] -> [b]
map (forall a b. (a, b) -> b
snd forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>) forall a b. (a -> b) -> a -> b
$ forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Telescope
tel
gamma :: ListTel' A.Name
gamma :: [ContextEntry]
gamma = forall a. a -> Maybe a -> a
fromMaybe forall a. HasCallStack => a
__IMPOSSIBLE__ forall a b. (a -> b) -> a -> b
$
forall a b c. (a -> b -> c) -> [a] -> [b] -> Maybe [c]
zipWith' (\ Name
x Dom Type
dom -> (Name
x,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom Type
dom) [Name]
names [Dom Type]
types
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.top" Int
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.vcat
[ TCMT IO Doc
"BasicOps.atTopLevel"
, TCMT IO Doc
" names = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.sep (forall a b. (a -> b) -> [a] -> [b]
map forall a (m :: * -> *).
(ToConcrete a, Pretty (ConOfAbs a), MonadAbsToCon m) =>
a -> m Doc
prettyA [Name]
names)
, TCMT IO Doc
" types = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.sep (forall a b. (a -> b) -> [a] -> [b]
map forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Dom Type]
types)
]
forall (m :: * -> *) a. MonadTCEnv m => ModuleName -> m a -> m a
M.withCurrentModule ModuleName
current forall a b. (a -> b) -> a -> b
$
forall (m :: * -> *) a. ReadTCState m => ScopeInfo -> m a -> m a
withScope_ ScopeInfo
scope forall a b. (a -> b) -> a -> b
$
forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext [ContextEntry]
gamma forall a b. (a -> b) -> a -> b
$ do
CheckpointId
cp <- forall (m :: * -> *) a. MonadTCEnv m => Lens' a TCEnv -> m a
viewTC Lens' CheckpointId TCEnv
eCurrentCheckpoint
Lens' (Map ModuleName CheckpointId) TCState
stModuleCheckpoints forall (m :: * -> *) a.
MonadTCState m =>
Lens' a TCState -> (a -> a) -> m ()
`modifyTCLens` forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a b. a -> b -> a
const CheckpointId
cp)
TCM a
m
parseName :: Range -> String -> TCM C.QName
parseName :: Range -> ArgName -> TCM QName
parseName Range
r ArgName
s = do
Expr
e <- Range -> ArgName -> TCM Expr
parseExpr Range
r ArgName
s
let failure :: TCM QName
failure = forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ ArgName -> TypeError
GenericError forall a b. (a -> b) -> a -> b
$ ArgName
"Not an identifier: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> ArgName
show Expr
e forall a. [a] -> [a] -> [a]
++ ArgName
"."
forall b a. b -> (a -> b) -> Maybe a -> b
maybe TCM QName
failure forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Expr -> Maybe QName
isQName Expr
e
isQName :: C.Expr -> Maybe C.QName
isQName :: Expr -> Maybe QName
isQName = \case
C.Ident QName
x -> forall (m :: * -> *) a. Monad m => a -> m a
return QName
x
Expr
_ -> forall a. Maybe a
Nothing
isName :: C.Expr -> Maybe C.Name
isName :: Expr -> Maybe Name
isName = Expr -> Maybe QName
isQName forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> \case
C.QName Name
x -> forall (m :: * -> *) a. Monad m => a -> m a
return Name
x
QName
_ -> forall a. Maybe a
Nothing
moduleContents
:: Rewrite
-> Range
-> String
-> TCM ([C.Name], I.Telescope, [(C.Name, I.Type)])
moduleContents :: Rewrite
-> Range -> ArgName -> TCM ([Name], Telescope, [(Name, Type)])
moduleContents Rewrite
norm Range
rng ArgName
s = forall (m :: * -> *) a. MonadTrace m => Call -> m a -> m a
traceCall Call
ModuleContents forall a b. (a -> b) -> a -> b
$ do
if forall a. Null a => a -> Bool
null (ArgName -> ArgName
trim ArgName
s) then Rewrite -> Maybe QName -> TCM ([Name], Telescope, [(Name, Type)])
getModuleContents Rewrite
norm forall a. Maybe a
Nothing else do
Expr
e <- Range -> ArgName -> TCM Expr
parseExpr Range
rng ArgName
s
case Expr -> Maybe QName
isQName Expr
e of
Maybe QName
Nothing -> Rewrite -> Expr -> TCM ([Name], Telescope, [(Name, Type)])
getRecordContents Rewrite
norm Expr
e
Just QName
x -> do
[AbstractModule]
ms :: [AbstractModule] <- forall a. InScope a => QName -> ScopeInfo -> [a]
scopeLookup QName
x forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). ReadTCState m => m ScopeInfo
getScope
if forall a. Null a => a -> Bool
null [AbstractModule]
ms then Rewrite -> Expr -> TCM ([Name], Telescope, [(Name, Type)])
getRecordContents Rewrite
norm Expr
e else Rewrite -> Maybe QName -> TCM ([Name], Telescope, [(Name, Type)])
getModuleContents Rewrite
norm forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just QName
x
getRecordContents
:: Rewrite
-> C.Expr
-> TCM ([C.Name], I.Telescope, [(C.Name, I.Type)])
getRecordContents :: Rewrite -> Expr -> TCM ([Name], Telescope, [(Name, Type)])
getRecordContents Rewrite
norm Expr
ce = do
Expr
e <- forall c. ToAbstract c => c -> ScopeM (AbsOfCon c)
toAbstract Expr
ce
(Term
_, Type
t) <- Expr -> TCM (Term, Type)
inferExpr Expr
e
let notRecordType :: TCMT IO (QName, Args, Defn)
notRecordType = forall (m :: * -> *) a.
(HasCallStack, MonadTCError m) =>
TypeError -> m a
typeError forall a b. (a -> b) -> a -> b
$ Type -> TypeError
ShouldBeRecordType Type
t
(QName
q, Args
vs, Defn
defn) <- forall (m :: * -> *) a. Monad m => m a -> m (Maybe a) -> m a
fromMaybeM TCMT IO (QName, Args, Defn)
notRecordType forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *).
PureTCM m =>
Type -> m (Maybe (QName, Args, Defn))
isRecordType Type
t
case Defn
defn of
Record{ recFields :: Defn -> [Dom QName]
recFields = [Dom QName]
fs, recTel :: Defn -> Telescope
recTel = Telescope
rtel } -> do
let xs :: [Name]
xs = forall a b. (a -> b) -> [a] -> [b]
map (Name -> Name
nameConcrete forall b c a. (b -> c) -> (a -> b) -> a -> c
. QName -> Name
qnameName forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t e. Dom' t e -> e
unDom) [Dom QName]
fs
tel :: Telescope
tel = forall t. Apply t => t -> Args -> t
apply Telescope
rtel Args
vs
doms :: [Dom Type]
doms = forall a. TermSubst a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
tel
forall (m :: * -> *).
MonadDebug m =>
ArgName -> Int -> TCMT IO Doc -> m ()
reportSDoc ArgName
"interaction.contents.record" Int
20 forall a b. (a -> b) -> a -> b
$ forall (m :: * -> *) (t :: * -> *).
(Applicative m, Foldable t) =>
t (m Doc) -> m Doc
TP.vcat
[ TCMT IO Doc
"getRecordContents"
, TCMT IO Doc
" cxt = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> (forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< forall (m :: * -> *). (Applicative m, MonadTCEnv m) => m Telescope
getContextTelescope)
, TCMT IO Doc
" tel = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM Telescope
tel
, TCMT IO Doc
" doms = " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Dom Type]
doms
, TCMT IO Doc
" doms'= " forall (m :: * -> *). Applicative m => m Doc -> m Doc -> m Doc
TP.<+> forall b (m :: * -> *) a.
(AddContext b, MonadAddContext m) =>
b -> m a -> m a
addContext Telescope
tel (forall a (m :: * -> *). (PrettyTCM a, MonadPretty m) => a -> m Doc
prettyTCM [Dom Type]
doms)
]
[Type]
ts <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall t e. Dom' t e -> e
unDom) [Dom Type]
doms
forall (m :: * -> *) a. Monad m => a -> m a
return ([], Telescope
tel, forall a b. [a] -> [b] -> [(a, b)]
zip [Name]
xs [Type]
ts)
Defn
_ -> forall a. HasCallStack => a
__IMPOSSIBLE__
getModuleContents
:: Rewrite
-> Maybe C.QName
-> TCM ([C.Name], I.Telescope, [(C.Name, I.Type)])
getModuleContents :: Rewrite -> Maybe QName -> TCM ([Name], Telescope, [(Name, Type)])
getModuleContents Rewrite
norm Maybe QName
mm = do
Scope
modScope <- case Maybe QName
mm of
Maybe QName
Nothing -> TCMT IO Scope
getCurrentScope
Just QName
m -> ModuleName -> TCMT IO Scope
getNamedScope forall b c a. (b -> c) -> (a -> b) -> a -> c
. AbstractModule -> ModuleName
amodName forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< QName -> ScopeM AbstractModule
resolveModule QName
m
let modules :: ThingsInScope AbstractModule
modules :: ThingsInScope AbstractModule
modules = forall a. InScope a => Scope -> ThingsInScope a
exportedNamesInScope Scope
modScope
names :: ThingsInScope AbstractName
names :: ThingsInScope AbstractName
names = forall a. InScope a => Scope -> ThingsInScope a
exportedNamesInScope Scope
modScope
xns :: [(Name, AbstractName)]
xns = [ (Name
x,AbstractName
n) | (Name
x, [AbstractName]
ns) <- forall k a. Map k a -> [(k, a)]
Map.toList ThingsInScope AbstractName
names, AbstractName
n <- [AbstractName]
ns ]
[(Name, Type)]
types <- forall (m :: * -> *) a b.
Monad m =>
[a] -> (a -> m (Maybe b)) -> m [b]
forMaybeM [(Name, AbstractName)]
xns forall a b. (a -> b) -> a -> b
$ \(Name
x, AbstractName
n) -> do
forall (m :: * -> *).
HasConstInfo m =>
QName -> m (Either SigError Definition)
getConstInfo' (AbstractName -> QName
anameName AbstractName
n) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
Right Definition
d -> do
Type
t <- forall t.
(Reduce t, Simplify t, Instantiate t, Normalise t) =>
Rewrite -> t -> TCM t
normalForm Rewrite
norm forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Definition -> Type
defType forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *).
(Functor m, HasConstInfo m, HasOptions m, ReadTCState m,
MonadTCEnv m, MonadDebug m) =>
Definition -> m Definition
instantiateDef Definition
d)
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a
Just (Name
x, Type
t)
Left{} -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
forall (m :: * -> *) a. Monad m => a -> m a
return (forall k a. Map k a -> [k]
Map.keys ThingsInScope AbstractModule
modules, forall a. Tele a
EmptyTel, [(Name, Type)]
types)
whyInScope :: FilePath -> String -> TCM WhyInScopeData
whyInScope :: ArgName -> ArgName -> TCM WhyInScopeData
whyInScope ArgName
cwd ArgName
s = do
QName
x <- Range -> ArgName -> TCM QName
parseName forall a. Range' a
noRange ArgName
s
ScopeInfo
scope <- forall (m :: * -> *). ReadTCState m => m ScopeInfo
getScope
forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ QName
-> ArgName
-> Maybe LocalVar
-> [AbstractName]
-> [AbstractModule]
-> WhyInScopeData
WhyInScopeData
QName
x
ArgName
cwd
(forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup QName
x forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first Name -> QName
C.QName) forall a b. (a -> b) -> a -> b
$ ScopeInfo
scope forall o i. o -> Lens' i o -> i
^. Lens' [(Name, LocalVar)] ScopeInfo
scopeLocals)
(forall a. InScope a => QName -> ScopeInfo -> [a]
scopeLookup QName
x ScopeInfo
scope)
(forall a. InScope a => QName -> ScopeInfo -> [a]
scopeLookup QName
x ScopeInfo
scope)