module Agda.TypeChecking.Telescope where
import Prelude hiding (null)
import Control.Monad
import Data.Foldable (forM_, find)
import Data.IntSet (IntSet)
import qualified Data.IntSet as IntSet
import qualified Data.List as List
import Data.Maybe
import Data.Monoid
import Agda.Syntax.Common
import Agda.Syntax.Internal
import Agda.Syntax.Internal.Pattern
import Agda.TypeChecking.Monad.Builtin
import Agda.TypeChecking.Monad
import Agda.TypeChecking.Reduce
import Agda.TypeChecking.Substitute
import Agda.TypeChecking.Free
import Agda.TypeChecking.Warnings
import Agda.Utils.Functor
import Agda.Utils.List
import Agda.Utils.Null
import Agda.Utils.Permutation
import Agda.Utils.Singleton
import Agda.Utils.Size
import Agda.Utils.Tuple
import Agda.Utils.VarSet (VarSet)
import qualified Agda.Utils.VarSet as VarSet
import Agda.Utils.Impossible
flattenTel :: Subst Term a => Tele (Dom a) -> [Dom a]
flattenTel :: Tele (Dom a) -> [Dom a]
flattenTel Tele (Dom a)
EmptyTel = []
flattenTel (ExtendTel Dom a
a Abs (Tele (Dom a))
tel) = Nat -> Dom a -> Dom a
forall t a. Subst t a => Nat -> a -> a
raise (Abs (Tele (Dom a)) -> Nat
forall a. Sized a => a -> Nat
size Abs (Tele (Dom a))
tel Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) Dom a
a Dom a -> [Dom a] -> [Dom a]
forall a. a -> [a] -> [a]
: Tele (Dom a) -> [Dom a]
forall a. Subst Term a => Tele (Dom a) -> [Dom a]
flattenTel (Abs (Tele (Dom a)) -> Tele (Dom a)
forall t a. Subst t a => Abs a -> a
absBody Abs (Tele (Dom a))
tel)
{-# SPECIALIZE flattenTel :: Telescope -> [Dom Type] #-}
reorderTel :: [Dom Type] -> Maybe Permutation
reorderTel :: [Dom Type] -> Maybe Permutation
reorderTel [Dom Type]
tel = ((Nat, Dom Type) -> (Nat, Dom Type) -> Bool)
-> [(Nat, Dom Type)] -> Maybe Permutation
forall a. (a -> a -> Bool) -> [a] -> Maybe Permutation
topoSort (Nat, Dom Type) -> (Nat, Dom Type) -> Bool
forall a b a t t.
Free a =>
(Nat, b) -> (a, Dom' t (Type'' t a)) -> Bool
comesBefore [(Nat, Dom Type)]
tel'
where
tel' :: [(Nat, Dom Type)]
tel' = [Nat] -> [Dom Type] -> [(Nat, Dom Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip (Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom (Nat -> [Nat]) -> Nat -> [Nat]
forall a b. (a -> b) -> a -> b
$ [Dom Type] -> Nat
forall a. Sized a => a -> Nat
size [Dom Type]
tel) [Dom Type]
tel
(Nat
i, b
_) comesBefore :: (Nat, b) -> (a, Dom' t (Type'' t a)) -> Bool
`comesBefore` (a
_, Dom' t (Type'' t a)
a) = Nat
i Nat -> a -> Bool
forall a. Free a => Nat -> a -> Bool
`freeIn` Type'' t a -> a
forall t a. Type'' t a -> a
unEl (Dom' t (Type'' t a) -> Type'' t a
forall t e. Dom' t e -> e
unDom Dom' t (Type'' t a)
a)
reorderTel_ :: [Dom Type] -> Permutation
reorderTel_ :: [Dom Type] -> Permutation
reorderTel_ [Dom Type]
tel = case [Dom Type] -> Maybe Permutation
reorderTel [Dom Type]
tel of
Maybe Permutation
Nothing -> Permutation
forall a. HasCallStack => a
__IMPOSSIBLE__
Just Permutation
p -> Permutation
p
unflattenTel :: [ArgName] -> [Dom Type] -> Telescope
unflattenTel :: [ArgName] -> [Dom Type] -> Telescope
unflattenTel [] [] = Telescope
forall a. Tele a
EmptyTel
unflattenTel (ArgName
x : [ArgName]
xs) (Dom Type
a : [Dom Type]
tel) = Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
a' (ArgName -> Telescope -> Abs Telescope
forall a. ArgName -> a -> Abs a
Abs ArgName
x Telescope
tel')
where
tel' :: Telescope
tel' = [ArgName] -> [Dom Type] -> Telescope
unflattenTel [ArgName]
xs [Dom Type]
tel
a' :: Dom Type
a' = Substitution' Term -> Dom Type -> Dom Type
forall t a. Subst t a => Substitution' t -> a -> a
applySubst Substitution' Term
rho Dom Type
a
rho :: Substitution' Term
rho = [Term] -> Substitution' Term
forall a. DeBruijn a => [a] -> Substitution' a
parallelS (Nat -> Term -> [Term]
forall a. Nat -> a -> [a]
replicate ([Dom Type] -> Nat
forall a. Sized a => a -> Nat
size [Dom Type]
tel Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
+ Nat
1) ((ArgName -> Nat -> Term) -> Term
forall a b. (HasCallStack, Integral a) => (ArgName -> a -> b) -> b
withFileAndLine ArgName -> Nat -> Term
impossibleTerm))
unflattenTel [] (Dom Type
_ : [Dom Type]
_) = Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
unflattenTel (ArgName
_ : [ArgName]
_) [] = Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
renameTel :: [Maybe ArgName] -> Telescope -> Telescope
renameTel :: [Maybe ArgName] -> Telescope -> Telescope
renameTel [] Telescope
EmptyTel = Telescope
forall a. Tele a
EmptyTel
renameTel (Maybe ArgName
Nothing:[Maybe ArgName]
xs) (ExtendTel Dom Type
a Abs Telescope
tel') = Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
a (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ [Maybe ArgName] -> Telescope -> Telescope
renameTel [Maybe ArgName]
xs (Telescope -> Telescope) -> Abs Telescope -> Abs Telescope
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Telescope
tel'
renameTel (Just ArgName
x :[Maybe ArgName]
xs) (ExtendTel Dom Type
a Abs Telescope
tel') = Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
a (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ [Maybe ArgName] -> Telescope -> Telescope
renameTel [Maybe ArgName]
xs (Telescope -> Telescope) -> Abs Telescope -> Abs Telescope
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Abs Telescope
tel' { absName :: ArgName
absName = ArgName
x })
renameTel [] (ExtendTel Dom Type
_ Abs Telescope
_ ) = Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
renameTel (Maybe ArgName
_ :[Maybe ArgName]
_ ) Telescope
EmptyTel = Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
teleNames :: Telescope -> [ArgName]
teleNames :: Telescope -> [ArgName]
teleNames = (Dom' Term (ArgName, Type) -> ArgName)
-> [Dom' Term (ArgName, Type)] -> [ArgName]
forall a b. (a -> b) -> [a] -> [b]
map ((ArgName, Type) -> ArgName
forall a b. (a, b) -> a
fst ((ArgName, Type) -> ArgName)
-> (Dom' Term (ArgName, Type) -> (ArgName, Type))
-> Dom' Term (ArgName, Type)
-> ArgName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom' Term (ArgName, Type) -> (ArgName, Type)
forall t e. Dom' t e -> e
unDom) ([Dom' Term (ArgName, Type)] -> [ArgName])
-> (Telescope -> [Dom' Term (ArgName, Type)])
-> Telescope
-> [ArgName]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Telescope -> [Dom' Term (ArgName, Type)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList
teleArgNames :: Telescope -> [Arg ArgName]
teleArgNames :: Telescope -> [Arg ArgName]
teleArgNames = (Dom' Term (ArgName, Type) -> Arg ArgName)
-> [Dom' Term (ArgName, Type)] -> [Arg ArgName]
forall a b. (a -> b) -> [a] -> [b]
map (Dom' Term ArgName -> Arg ArgName
forall t a. Dom' t a -> Arg a
argFromDom (Dom' Term ArgName -> Arg ArgName)
-> (Dom' Term (ArgName, Type) -> Dom' Term ArgName)
-> Dom' Term (ArgName, Type)
-> Arg ArgName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((ArgName, Type) -> ArgName)
-> Dom' Term (ArgName, Type) -> Dom' Term ArgName
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (ArgName, Type) -> ArgName
forall a b. (a, b) -> a
fst) ([Dom' Term (ArgName, Type)] -> [Arg ArgName])
-> (Telescope -> [Dom' Term (ArgName, Type)])
-> Telescope
-> [Arg ArgName]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Telescope -> [Dom' Term (ArgName, Type)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList
teleArgs :: (DeBruijn a) => Tele (Dom t) -> [Arg a]
teleArgs :: Tele (Dom t) -> [Arg a]
teleArgs = (Dom' Term a -> Arg a) -> [Dom' Term a] -> [Arg a]
forall a b. (a -> b) -> [a] -> [b]
map Dom' Term a -> Arg a
forall t a. Dom' t a -> Arg a
argFromDom ([Dom' Term a] -> [Arg a])
-> (Tele (Dom t) -> [Dom' Term a]) -> Tele (Dom t) -> [Arg a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Tele (Dom t) -> [Dom' Term a]
forall a t. DeBruijn a => Tele (Dom t) -> [Dom a]
teleDoms
teleDoms :: (DeBruijn a) => Tele (Dom t) -> [Dom a]
teleDoms :: Tele (Dom t) -> [Dom a]
teleDoms Tele (Dom t)
tel = (Nat -> Dom' Term (ArgName, t) -> Dom a)
-> [Nat] -> [Dom' Term (ArgName, t)] -> [Dom a]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\ Nat
i Dom' Term (ArgName, t)
dom -> Nat -> a
forall a. DeBruijn a => Nat -> a
deBruijnVar Nat
i a -> Dom' Term (ArgName, t) -> Dom a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Dom' Term (ArgName, t)
dom) (Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom (Nat -> [Nat]) -> Nat -> [Nat]
forall a b. (a -> b) -> a -> b
$ [Dom' Term (ArgName, t)] -> Nat
forall a. Sized a => a -> Nat
size [Dom' Term (ArgName, t)]
l) [Dom' Term (ArgName, t)]
l
where l :: [Dom' Term (ArgName, t)]
l = Tele (Dom t) -> [Dom' Term (ArgName, t)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Tele (Dom t)
tel
teleNamedArgs :: (DeBruijn a) => Telescope -> [NamedArg a]
teleNamedArgs :: Telescope -> [NamedArg a]
teleNamedArgs = (Dom' Term a -> NamedArg a) -> [Dom' Term a] -> [NamedArg a]
forall a b. (a -> b) -> [a] -> [b]
map Dom' Term a -> NamedArg a
forall t a. Dom' t a -> NamedArg a
namedArgFromDom ([Dom' Term a] -> [NamedArg a])
-> (Telescope -> [Dom' Term a]) -> Telescope -> [NamedArg a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Telescope -> [Dom' Term a]
forall a t. DeBruijn a => Tele (Dom t) -> [Dom a]
teleDoms
tele2NamedArgs :: (DeBruijn a) => Telescope -> Telescope -> [NamedArg a]
tele2NamedArgs :: Telescope -> Telescope -> [NamedArg a]
tele2NamedArgs Telescope
tel0 Telescope
tel =
[ ArgInfo -> Named (WithOrigin (Ranged ArgName)) a -> NamedArg a
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
info (Maybe (WithOrigin (Ranged ArgName))
-> a -> Named (WithOrigin (Ranged ArgName)) a
forall name a. Maybe name -> a -> Named name a
Named (WithOrigin (Ranged ArgName) -> Maybe (WithOrigin (Ranged ArgName))
forall a. a -> Maybe a
Just (WithOrigin (Ranged ArgName)
-> Maybe (WithOrigin (Ranged ArgName)))
-> WithOrigin (Ranged ArgName)
-> Maybe (WithOrigin (Ranged ArgName))
forall a b. (a -> b) -> a -> b
$ Origin -> Ranged ArgName -> WithOrigin (Ranged ArgName)
forall a. Origin -> a -> WithOrigin a
WithOrigin Origin
Inserted (Ranged ArgName -> WithOrigin (Ranged ArgName))
-> Ranged ArgName -> WithOrigin (Ranged ArgName)
forall a b. (a -> b) -> a -> b
$ ArgName -> Ranged ArgName
forall a. a -> Ranged a
unranged (ArgName -> Ranged ArgName) -> ArgName -> Ranged ArgName
forall a b. (a -> b) -> a -> b
$ ArgName -> ArgName
argNameToString ArgName
argName) (ArgName -> Nat -> a
forall a. DeBruijn a => ArgName -> Nat -> a
debruijnNamedVar ArgName
varName Nat
i))
| (Nat
i, Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
info, unDom :: forall t e. Dom' t e -> e
unDom = (ArgName
argName,Type
_)}, Dom{unDom :: forall t e. Dom' t e -> e
unDom = (ArgName
varName,Type
_)}) <- [Nat]
-> [Dom' Term (ArgName, Type)]
-> [Dom' Term (ArgName, Type)]
-> [(Nat, Dom' Term (ArgName, Type), Dom' Term (ArgName, Type))]
forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 (Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom (Nat -> [Nat]) -> Nat -> [Nat]
forall a b. (a -> b) -> a -> b
$ [Dom' Term (ArgName, Type)] -> Nat
forall a. Sized a => a -> Nat
size [Dom' Term (ArgName, Type)]
l) [Dom' Term (ArgName, Type)]
l0 [Dom' Term (ArgName, Type)]
l ]
where
l :: [Dom' Term (ArgName, Type)]
l = Telescope -> [Dom' Term (ArgName, Type)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Telescope
tel
l0 :: [Dom' Term (ArgName, Type)]
l0 = Telescope -> [Dom' Term (ArgName, Type)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Telescope
tel0
splitTelescopeAt :: Int -> Telescope -> (Telescope,Telescope)
splitTelescopeAt :: Nat -> Telescope -> (Telescope, Telescope)
splitTelescopeAt Nat
n Telescope
tel
| Nat
n Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
<= Nat
0 = (Telescope
forall a. Tele a
EmptyTel, Telescope
tel)
| Bool
otherwise = Nat -> Telescope -> (Telescope, Telescope)
splitTelescopeAt' Nat
n Telescope
tel
where
splitTelescopeAt' :: Nat -> Telescope -> (Telescope, Telescope)
splitTelescopeAt' Nat
_ Telescope
EmptyTel = (Telescope
forall a. Tele a
EmptyTel,Telescope
forall a. Tele a
EmptyTel)
splitTelescopeAt' Nat
1 (ExtendTel Dom Type
a Abs Telescope
tel) = (Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
a (Abs Telescope
tel Abs Telescope -> Telescope -> Abs Telescope
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Telescope
forall a. Tele a
EmptyTel), Abs Telescope -> Telescope
forall t a. Subst t a => Abs a -> a
absBody Abs Telescope
tel)
splitTelescopeAt' Nat
m (ExtendTel Dom Type
a Abs Telescope
tel) = (Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
a (Abs Telescope
tel Abs Telescope -> Telescope -> Abs Telescope
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Telescope
tel'), Telescope
tel'')
where
(Telescope
tel', Telescope
tel'') = Nat -> Telescope -> (Telescope, Telescope)
splitTelescopeAt (Nat
m Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) (Telescope -> (Telescope, Telescope))
-> Telescope -> (Telescope, Telescope)
forall a b. (a -> b) -> a -> b
$ Abs Telescope -> Telescope
forall t a. Subst t a => Abs a -> a
absBody Abs Telescope
tel
permuteTel :: Permutation -> Telescope -> Telescope
permuteTel :: Permutation -> Telescope -> Telescope
permuteTel Permutation
perm Telescope
tel =
let names :: [ArgName]
names = Permutation -> [ArgName] -> [ArgName]
forall a. Permutation -> [a] -> [a]
permute Permutation
perm ([ArgName] -> [ArgName]) -> [ArgName] -> [ArgName]
forall a b. (a -> b) -> a -> b
$ Telescope -> [ArgName]
teleNames Telescope
tel
types :: [Dom Type]
types = Permutation -> [Dom Type] -> [Dom Type]
forall a. Permutation -> [a] -> [a]
permute Permutation
perm ([Dom Type] -> [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ Empty -> Permutation -> [Dom Type] -> [Dom Type]
forall t a. Subst t a => Empty -> Permutation -> a -> a
renameP Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Permutation -> Permutation
flipP Permutation
perm) ([Dom Type] -> [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom Type]
forall a. Subst Term a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
tel
in [ArgName] -> [Dom Type] -> Telescope
unflattenTel [ArgName]
names [Dom Type]
types
varDependencies :: Telescope -> IntSet -> IntSet
varDependencies :: Telescope -> IntSet -> IntSet
varDependencies Telescope
tel = IntSet -> IntSet -> IntSet
allDependencies IntSet
IntSet.empty
where
n :: Nat
n = Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
tel
ts :: [Dom Type]
ts = Telescope -> [Dom Type]
forall a. Subst Term a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
tel
directDependencies :: Int -> IntSet
directDependencies :: Nat -> IntSet
directDependencies Nat
i = Dom Type -> IntSet
forall t. Free t => t -> IntSet
allFreeVars (Dom Type -> IntSet) -> Dom Type -> IntSet
forall a b. (a -> b) -> a -> b
$ Dom Type -> [Dom Type] -> Nat -> Dom Type
forall a. a -> [a] -> Nat -> a
indexWithDefault Dom Type
forall a. HasCallStack => a
__IMPOSSIBLE__ [Dom Type]
ts (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
i)
allDependencies :: IntSet -> IntSet -> IntSet
allDependencies :: IntSet -> IntSet -> IntSet
allDependencies =
(Nat -> IntSet -> IntSet) -> IntSet -> IntSet -> IntSet
forall b. (Nat -> b -> b) -> b -> IntSet -> b
IntSet.foldr ((Nat -> IntSet -> IntSet) -> IntSet -> IntSet -> IntSet)
-> (Nat -> IntSet -> IntSet) -> IntSet -> IntSet -> IntSet
forall a b. (a -> b) -> a -> b
$ \Nat
j IntSet
soFar ->
if Nat
j Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
>= Nat
n Bool -> Bool -> Bool
|| Nat
j Nat -> IntSet -> Bool
`IntSet.member` IntSet
soFar
then IntSet
soFar
else Nat -> IntSet -> IntSet
IntSet.insert Nat
j (IntSet -> IntSet) -> IntSet -> IntSet
forall a b. (a -> b) -> a -> b
$ IntSet -> IntSet -> IntSet
allDependencies IntSet
soFar (IntSet -> IntSet) -> IntSet -> IntSet
forall a b. (a -> b) -> a -> b
$ Nat -> IntSet
directDependencies Nat
j
varDependents :: Telescope -> IntSet -> IntSet
varDependents :: Telescope -> IntSet -> IntSet
varDependents Telescope
tel = IntSet -> IntSet
allDependents
where
n :: Nat
n = Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
tel
ts :: [Dom Type]
ts = Telescope -> [Dom Type]
forall a. Subst Term a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
tel
directDependents :: IntSet -> IntSet
directDependents :: IntSet -> IntSet
directDependents IntSet
is = [Nat] -> IntSet
IntSet.fromList
[ Nat
j | Nat
j <- Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom Nat
n
, let tj :: Dom Type
tj = Dom Type -> [Dom Type] -> Nat -> Dom Type
forall a. a -> [a] -> Nat -> a
indexWithDefault Dom Type
forall a. HasCallStack => a
__IMPOSSIBLE__ [Dom Type]
ts (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
j)
, Any -> Bool
getAny (Any -> Bool) -> Any -> Bool
forall a b. (a -> b) -> a -> b
$ SingleVar Any -> IgnoreSorts -> Dom Type -> Any
forall a c t.
(IsVarSet a c, Free t) =>
SingleVar c -> IgnoreSorts -> t -> c
runFree (Bool -> Any
Any (Bool -> Any) -> (Nat -> Bool) -> SingleVar Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Nat -> IntSet -> Bool
`IntSet.member` IntSet
is)) IgnoreSorts
IgnoreNot Dom Type
tj
]
allDependents :: IntSet -> IntSet
allDependents :: IntSet -> IntSet
allDependents IntSet
is
| IntSet -> Bool
forall a. Null a => a -> Bool
null IntSet
new = IntSet
forall a. Null a => a
empty
| Bool
otherwise = IntSet
new IntSet -> IntSet -> IntSet
`IntSet.union` IntSet -> IntSet
allDependents IntSet
new
where new :: IntSet
new = IntSet -> IntSet
directDependents IntSet
is
data SplitTel = SplitTel
{ SplitTel -> Telescope
firstPart :: Telescope
, SplitTel -> Telescope
secondPart :: Telescope
, SplitTel -> Permutation
splitPerm :: Permutation
}
splitTelescope
:: VarSet
-> Telescope
-> SplitTel
splitTelescope :: IntSet -> Telescope -> SplitTel
splitTelescope IntSet
fv Telescope
tel = Telescope -> Telescope -> Permutation -> SplitTel
SplitTel Telescope
tel1 Telescope
tel2 Permutation
perm
where
names :: [ArgName]
names = Telescope -> [ArgName]
teleNames Telescope
tel
ts0 :: [Dom Type]
ts0 = Telescope -> [Dom Type]
forall a. Subst Term a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
tel
n :: Nat
n = Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
tel
is :: IntSet
is = Telescope -> IntSet -> IntSet
varDependencies Telescope
tel IntSet
fv
isC :: IntSet
isC = [Nat] -> IntSet
IntSet.fromList [Nat
0..(Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1)] IntSet -> IntSet -> IntSet
`IntSet.difference` IntSet
is
perm :: Permutation
perm = Nat -> [Nat] -> Permutation
Perm Nat
n ([Nat] -> Permutation) -> [Nat] -> Permutation
forall a b. (a -> b) -> a -> b
$ (Nat -> Nat) -> [Nat] -> [Nat]
forall a b. (a -> b) -> [a] -> [b]
map (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
-) ([Nat] -> [Nat]) -> [Nat] -> [Nat]
forall a b. (a -> b) -> a -> b
$ IntSet -> [Nat]
VarSet.toDescList IntSet
is [Nat] -> [Nat] -> [Nat]
forall a. [a] -> [a] -> [a]
++ IntSet -> [Nat]
VarSet.toDescList IntSet
isC
ts1 :: [Dom Type]
ts1 = Empty -> Permutation -> [Dom Type] -> [Dom Type]
forall t a. Subst t a => Empty -> Permutation -> a -> a
renameP Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Permutation -> Permutation
reverseP Permutation
perm) (Permutation -> [Dom Type] -> [Dom Type]
forall a. Permutation -> [a] -> [a]
permute Permutation
perm [Dom Type]
ts0)
tel' :: Telescope
tel' = [ArgName] -> [Dom Type] -> Telescope
unflattenTel (Permutation -> [ArgName] -> [ArgName]
forall a. Permutation -> [a] -> [a]
permute Permutation
perm [ArgName]
names) [Dom Type]
ts1
m :: Nat
m = IntSet -> Nat
forall a. Sized a => a -> Nat
size IntSet
is
(Telescope
tel1, Telescope
tel2) = [Dom' Term (ArgName, Type)] -> Telescope
telFromList ([Dom' Term (ArgName, Type)] -> Telescope)
-> ([Dom' Term (ArgName, Type)] -> Telescope)
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> (Telescope, Telescope)
forall a c b d. (a -> c) -> (b -> d) -> (a, b) -> (c, d)
-*- [Dom' Term (ArgName, Type)] -> Telescope
telFromList (([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> (Telescope, Telescope))
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> (Telescope, Telescope)
forall a b. (a -> b) -> a -> b
$ Nat
-> [Dom' Term (ArgName, Type)]
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall a. Nat -> [a] -> ([a], [a])
splitAt Nat
m ([Dom' Term (ArgName, Type)]
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)]))
-> [Dom' Term (ArgName, Type)]
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (ArgName, Type)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Telescope
tel'
splitTelescopeExact
:: [Int]
-> Telescope
-> Maybe SplitTel
splitTelescopeExact :: [Nat] -> Telescope -> Maybe SplitTel
splitTelescopeExact [Nat]
is Telescope
tel = Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard Bool
ok Maybe () -> SplitTel -> Maybe SplitTel
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Telescope -> Telescope -> Permutation -> SplitTel
SplitTel Telescope
tel1 Telescope
tel2 Permutation
perm
where
names :: [ArgName]
names = Telescope -> [ArgName]
teleNames Telescope
tel
ts0 :: [Dom Type]
ts0 = Telescope -> [Dom Type]
forall a. Subst Term a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
tel
n :: Nat
n = Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
tel
checkDependencies :: IntSet -> [Int] -> Bool
checkDependencies :: IntSet -> [Nat] -> Bool
checkDependencies IntSet
soFar [] = Bool
True
checkDependencies IntSet
soFar (Nat
j:[Nat]
js) = Bool
ok Bool -> Bool -> Bool
&& IntSet -> [Nat] -> Bool
checkDependencies (Nat -> IntSet -> IntSet
IntSet.insert Nat
j IntSet
soFar) [Nat]
js
where
fv' :: IntSet
fv' = Dom Type -> IntSet
forall t. Free t => t -> IntSet
allFreeVars (Dom Type -> IntSet) -> Dom Type -> IntSet
forall a b. (a -> b) -> a -> b
$ Dom Type -> [Dom Type] -> Nat -> Dom Type
forall a. a -> [a] -> Nat -> a
indexWithDefault Dom Type
forall a. HasCallStack => a
__IMPOSSIBLE__ [Dom Type]
ts0 (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
j)
fv :: IntSet
fv = IntSet
fv' IntSet -> IntSet -> IntSet
`IntSet.intersection` [Nat] -> IntSet
IntSet.fromAscList [ Nat
0 .. Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1 ]
ok :: Bool
ok = IntSet
fv IntSet -> IntSet -> Bool
`IntSet.isSubsetOf` IntSet
soFar
ok :: Bool
ok = (Nat -> Bool) -> [Nat] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
<Nat
n) [Nat]
is Bool -> Bool -> Bool
&& IntSet -> [Nat] -> Bool
checkDependencies IntSet
IntSet.empty [Nat]
is
isC :: [Nat]
isC = Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom Nat
n [Nat] -> [Nat] -> [Nat]
forall a. Eq a => [a] -> [a] -> [a]
List.\\ [Nat]
is
perm :: Permutation
perm = Nat -> [Nat] -> Permutation
Perm Nat
n ([Nat] -> Permutation) -> [Nat] -> Permutation
forall a b. (a -> b) -> a -> b
$ (Nat -> Nat) -> [Nat] -> [Nat]
forall a b. (a -> b) -> [a] -> [b]
map (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
-) ([Nat] -> [Nat]) -> [Nat] -> [Nat]
forall a b. (a -> b) -> a -> b
$ [Nat]
is [Nat] -> [Nat] -> [Nat]
forall a. [a] -> [a] -> [a]
++ [Nat]
isC
ts1 :: [Dom Type]
ts1 = Empty -> Permutation -> [Dom Type] -> [Dom Type]
forall t a. Subst t a => Empty -> Permutation -> a -> a
renameP Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ (Permutation -> Permutation
reverseP Permutation
perm) (Permutation -> [Dom Type] -> [Dom Type]
forall a. Permutation -> [a] -> [a]
permute Permutation
perm [Dom Type]
ts0)
tel' :: Telescope
tel' = [ArgName] -> [Dom Type] -> Telescope
unflattenTel (Permutation -> [ArgName] -> [ArgName]
forall a. Permutation -> [a] -> [a]
permute Permutation
perm [ArgName]
names) [Dom Type]
ts1
m :: Nat
m = [Nat] -> Nat
forall a. Sized a => a -> Nat
size [Nat]
is
(Telescope
tel1, Telescope
tel2) = [Dom' Term (ArgName, Type)] -> Telescope
telFromList ([Dom' Term (ArgName, Type)] -> Telescope)
-> ([Dom' Term (ArgName, Type)] -> Telescope)
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> (Telescope, Telescope)
forall a c b d. (a -> c) -> (b -> d) -> (a, b) -> (c, d)
-*- [Dom' Term (ArgName, Type)] -> Telescope
telFromList (([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> (Telescope, Telescope))
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> (Telescope, Telescope)
forall a b. (a -> b) -> a -> b
$ Nat
-> [Dom' Term (ArgName, Type)]
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall a. Nat -> [a] -> ([a], [a])
splitAt Nat
m ([Dom' Term (ArgName, Type)]
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)]))
-> [Dom' Term (ArgName, Type)]
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (ArgName, Type)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Telescope
tel'
instantiateTelescope
:: Telescope
-> Int
-> DeBruijnPattern
-> Maybe (Telescope,
PatternSubstitution,
Permutation)
instantiateTelescope :: Telescope
-> Nat
-> DeBruijnPattern
-> Maybe (Telescope, PatternSubstitution, Permutation)
instantiateTelescope Telescope
tel Nat
k DeBruijnPattern
p = Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard Bool
ok Maybe ()
-> (Telescope, PatternSubstitution, Permutation)
-> Maybe (Telescope, PatternSubstitution, Permutation)
forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> (Telescope
tel', PatternSubstitution
sigma, Permutation
rho)
where
names :: [ArgName]
names = Telescope -> [ArgName]
teleNames Telescope
tel
ts0 :: [Dom Type]
ts0 = Telescope -> [Dom Type]
forall a. Subst Term a => Tele (Dom a) -> [Dom a]
flattenTel Telescope
tel
n :: Nat
n = Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
tel
j :: Nat
j = Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
k
u :: Term
u = DeBruijnPattern -> Term
patternToTerm DeBruijnPattern
p
is0 :: IntSet
is0 = Telescope -> IntSet -> IntSet
varDependencies Telescope
tel (IntSet -> IntSet) -> IntSet -> IntSet
forall a b. (a -> b) -> a -> b
$ Term -> IntSet
forall t. Free t => t -> IntSet
allFreeVars Term
u
is1 :: IntSet
is1 = Telescope -> IntSet -> IntSet
varDependents Telescope
tel (IntSet -> IntSet) -> IntSet -> IntSet
forall a b. (a -> b) -> a -> b
$ Nat -> IntSet
forall el coll. Singleton el coll => el -> coll
singleton Nat
j
lasti :: Nat
lasti = if IntSet -> Bool
forall a. Null a => a -> Bool
null IntSet
is0 then Nat
n else IntSet -> Nat
IntSet.findMin IntSet
is0
([Nat]
as,[Nat]
bs) = (Nat -> Bool) -> [Nat] -> ([Nat], [Nat])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition (Nat -> IntSet -> Bool
`IntSet.member` IntSet
is1) [ Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1 , Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
2 .. Nat
lasti ]
is :: [Nat]
is = [Nat] -> [Nat]
forall a. [a] -> [a]
reverse ([Nat] -> [Nat]) -> [Nat] -> [Nat]
forall a b. (a -> b) -> a -> b
$ Nat -> [Nat] -> [Nat]
forall a. Eq a => a -> [a] -> [a]
List.delete Nat
j ([Nat] -> [Nat]) -> [Nat] -> [Nat]
forall a b. (a -> b) -> a -> b
$ [Nat]
bs [Nat] -> [Nat] -> [Nat]
forall a. [a] -> [a] -> [a]
++ [Nat]
as [Nat] -> [Nat] -> [Nat]
forall a. [a] -> [a] -> [a]
++ Nat -> [Nat]
forall a. Integral a => a -> [a]
downFrom Nat
lasti
ok :: Bool
ok = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Nat
j Nat -> IntSet -> Bool
`IntSet.member` IntSet
is0
perm :: Permutation
perm = Nat -> [Nat] -> Permutation
Perm Nat
n ([Nat] -> Permutation) -> [Nat] -> Permutation
forall a b. (a -> b) -> a -> b
$ [Nat]
is
rho :: Permutation
rho = Permutation -> Permutation
reverseP Permutation
perm
p1 :: DeBruijnPattern
p1 = Empty -> Permutation -> DeBruijnPattern -> DeBruijnPattern
forall t a. Subst t a => Empty -> Permutation -> a -> a
renameP Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ Permutation
perm DeBruijnPattern
p
us :: [DeBruijnPattern]
us = (Nat -> DeBruijnPattern) -> [Nat] -> [DeBruijnPattern]
forall a b. (a -> b) -> [a] -> [b]
map (\Nat
i -> DeBruijnPattern -> Maybe DeBruijnPattern -> DeBruijnPattern
forall a. a -> Maybe a -> a
fromMaybe DeBruijnPattern
p1 (Nat -> DeBruijnPattern
forall a. DeBruijn a => Nat -> a
deBruijnVar (Nat -> DeBruijnPattern) -> Maybe Nat -> Maybe DeBruijnPattern
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Nat -> Bool) -> [Nat] -> Maybe Nat
forall a. (a -> Bool) -> [a] -> Maybe Nat
List.findIndex (Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
==) [Nat]
is)) [ Nat
0 .. Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1 ]
sigma :: PatternSubstitution
sigma = [DeBruijnPattern]
us [DeBruijnPattern] -> PatternSubstitution -> PatternSubstitution
forall a. DeBruijn a => [a] -> Substitution' a -> Substitution' a
++# Nat -> PatternSubstitution
forall a. Nat -> Substitution' a
raiseS (Nat
nNat -> Nat -> Nat
forall a. Num a => a -> a -> a
-Nat
1)
ts1 :: [Dom Type]
ts1 = Permutation -> [Dom Type] -> [Dom Type]
forall a. Permutation -> [a] -> [a]
permute Permutation
rho ([Dom Type] -> [Dom Type]) -> [Dom Type] -> [Dom Type]
forall a b. (a -> b) -> a -> b
$ PatternSubstitution -> [Dom Type] -> [Dom Type]
forall a. Subst Term a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
sigma [Dom Type]
ts0
tel' :: Telescope
tel' = [ArgName] -> [Dom Type] -> Telescope
unflattenTel (Permutation -> [ArgName] -> [ArgName]
forall a. Permutation -> [a] -> [a]
permute Permutation
rho [ArgName]
names) [Dom Type]
ts1
expandTelescopeVar
:: Telescope
-> Int
-> Telescope
-> ConHead
-> ( Telescope
, PatternSubstitution)
expandTelescopeVar :: Telescope
-> Nat -> Telescope -> ConHead -> (Telescope, PatternSubstitution)
expandTelescopeVar Telescope
gamma Nat
k Telescope
delta ConHead
c = (Telescope
tel', PatternSubstitution
rho)
where
([Dom' Term (ArgName, Type)]
ts1,Dom' Term (ArgName, Type)
a:[Dom' Term (ArgName, Type)]
ts2) = ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> Maybe ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall a. a -> Maybe a -> a
fromMaybe ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)]))
-> Maybe ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
-> ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall a b. (a -> b) -> a -> b
$
Nat
-> [Dom' Term (ArgName, Type)]
-> Maybe ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall n a. Integral n => n -> [a] -> Maybe ([a], [a])
splitExactlyAt Nat
k ([Dom' Term (ArgName, Type)]
-> Maybe
([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)]))
-> [Dom' Term (ArgName, Type)]
-> Maybe ([Dom' Term (ArgName, Type)], [Dom' Term (ArgName, Type)])
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (ArgName, Type)]
forall t. Tele (Dom t) -> [Dom (ArgName, t)]
telToList Telescope
gamma
cpi :: ConPatternInfo
cpi = ConPatternInfo
noConPatternInfo
{ conPInfo :: PatternInfo
conPInfo = PatternInfo
defaultPatternInfo
, conPRecord :: Bool
conPRecord = Bool
True
, conPType :: Maybe (Arg Type)
conPType = Arg Type -> Maybe (Arg Type)
forall a. a -> Maybe a
Just (Arg Type -> Maybe (Arg Type)) -> Arg Type -> Maybe (Arg Type)
forall a b. (a -> b) -> a -> b
$ (ArgName, Type) -> Type
forall a b. (a, b) -> b
snd ((ArgName, Type) -> Type) -> Arg (ArgName, Type) -> Arg Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term (ArgName, Type) -> Arg (ArgName, Type)
forall t a. Dom' t a -> Arg a
argFromDom Dom' Term (ArgName, Type)
a
, conPLazy :: Bool
conPLazy = Bool
True
}
cargs :: [NamedArg DeBruijnPattern]
cargs = (NamedArg DeBruijnPattern -> NamedArg DeBruijnPattern)
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a b. (a -> b) -> [a] -> [b]
map (Origin -> NamedArg DeBruijnPattern -> NamedArg DeBruijnPattern
forall a. LensOrigin a => Origin -> a -> a
setOrigin Origin
Inserted) ([NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern])
-> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
forall a b. (a -> b) -> a -> b
$ Telescope -> [NamedArg DeBruijnPattern]
forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs Telescope
delta
cdelta :: DeBruijnPattern
cdelta = ConHead
-> ConPatternInfo -> [NamedArg DeBruijnPattern] -> DeBruijnPattern
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
cpi [NamedArg DeBruijnPattern]
cargs
rho0 :: PatternSubstitution
rho0 = DeBruijnPattern -> PatternSubstitution -> PatternSubstitution
forall a. DeBruijn a => a -> Substitution' a -> Substitution' a
consS DeBruijnPattern
cdelta (PatternSubstitution -> PatternSubstitution)
-> PatternSubstitution -> PatternSubstitution
forall a b. (a -> b) -> a -> b
$ Nat -> PatternSubstitution
forall a. Nat -> Substitution' a
raiseS (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
delta)
rho :: PatternSubstitution
rho = Nat -> PatternSubstitution -> PatternSubstitution
forall a. Nat -> Substitution' a -> Substitution' a
liftS ([Dom' Term (ArgName, Type)] -> Nat
forall a. Sized a => a -> Nat
size [Dom' Term (ArgName, Type)]
ts2) PatternSubstitution
rho0
gamma1 :: Telescope
gamma1 = [Dom' Term (ArgName, Type)] -> Telescope
telFromList [Dom' Term (ArgName, Type)]
ts1
gamma2' :: Telescope
gamma2' = PatternSubstitution -> Telescope -> Telescope
forall a. Subst Term a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
rho0 (Telescope -> Telescope) -> Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ [Dom' Term (ArgName, Type)] -> Telescope
telFromList [Dom' Term (ArgName, Type)]
ts2
tel' :: Telescope
tel' = Telescope
gamma1 Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` (Telescope
delta Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
gamma2')
telView :: (MonadReduce m, MonadAddContext m) => Type -> m TelView
telView :: Type -> m TelView
telView = Nat -> Type -> m TelView
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> Type -> m TelView
telViewUpTo (-Nat
1)
telViewUpTo :: (MonadReduce m, MonadAddContext m) => Int -> Type -> m TelView
telViewUpTo :: Nat -> Type -> m TelView
telViewUpTo Nat
n Type
t = Nat -> (Dom Type -> Bool) -> Type -> m TelView
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> (Dom Type -> Bool) -> Type -> m TelView
telViewUpTo' Nat
n (Bool -> Dom Type -> Bool
forall a b. a -> b -> a
const Bool
True) Type
t
telViewUpTo' :: (MonadReduce m, MonadAddContext m) => Int -> (Dom Type -> Bool) -> Type -> m TelView
telViewUpTo' :: Nat -> (Dom Type -> Bool) -> Type -> m TelView
telViewUpTo' Nat
0 Dom Type -> Bool
p Type
t = TelView -> m TelView
forall (m :: * -> *) a. Monad m => a -> m a
return (TelView -> m TelView) -> TelView -> m TelView
forall a b. (a -> b) -> a -> b
$ Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t
telViewUpTo' Nat
n Dom Type -> Bool
p Type
t = do
Type
t <- Type -> m Type
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Type
t
case Type -> Term
forall t a. Type'' t a -> a
unEl Type
t of
Pi Dom Type
a Abs Type
b | Dom Type -> Bool
p Dom Type
a -> Dom Type -> ArgName -> TelView -> TelView
forall a. Dom a -> ArgName -> TelV a -> TelV a
absV Dom Type
a (Abs Type -> ArgName
forall a. Abs a -> ArgName
absName Abs Type
b) (TelView -> TelView) -> m TelView -> m TelView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> do
Dom Type -> Abs Type -> (Type -> m TelView) -> m TelView
forall t a (m :: * -> *) b.
(Subst t a, MonadAddContext m) =>
Dom Type -> Abs a -> (a -> m b) -> m b
underAbstractionAbs Dom Type
a Abs Type
b ((Type -> m TelView) -> m TelView)
-> (Type -> m TelView) -> m TelView
forall a b. (a -> b) -> a -> b
$ \Type
b -> Nat -> (Dom Type -> Bool) -> Type -> m TelView
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> (Dom Type -> Bool) -> Type -> m TelView
telViewUpTo' (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) Dom Type -> Bool
p Type
b
Term
_ -> TelView -> m TelView
forall (m :: * -> *) a. Monad m => a -> m a
return (TelView -> m TelView) -> TelView -> m TelView
forall a b. (a -> b) -> a -> b
$ Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t
where
absV :: Dom a -> ArgName -> TelV a -> TelV a
absV Dom a
a ArgName
x (TelV Tele (Dom a)
tel a
t) = Tele (Dom a) -> a -> TelV a
forall a. Tele (Dom a) -> a -> TelV a
TelV (Dom a -> Abs (Tele (Dom a)) -> Tele (Dom a)
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom a
a (ArgName -> Tele (Dom a) -> Abs (Tele (Dom a))
forall a. ArgName -> a -> Abs a
Abs ArgName
x Tele (Dom a)
tel)) a
t
telViewPath :: Type -> TCM TelView
telViewPath :: Type -> TCM TelView
telViewPath = Nat -> Type -> TCM TelView
telViewUpToPath (-Nat
1)
telViewUpToPath :: Int -> Type -> TCM TelView
telViewUpToPath :: Nat -> Type -> TCM TelView
telViewUpToPath Nat
0 Type
t = TelView -> TCM TelView
forall (m :: * -> *) a. Monad m => a -> m a
return (TelView -> TCM TelView) -> TelView -> TCM TelView
forall a b. (a -> b) -> a -> b
$ Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t
telViewUpToPath Nat
n Type
t = do
Either (Dom Type, Abs Type) Type
vt <- Type -> TCMT IO (Either (Dom Type, Abs Type) Type)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Type -> m (Either (Dom Type, Abs Type) Type)
pathViewAsPi (Type -> TCMT IO (Either (Dom Type, Abs Type) Type))
-> Type -> TCMT IO (Either (Dom Type, Abs Type) Type)
forall a b. (a -> b) -> a -> b
$ Type
t
case Either (Dom Type, Abs Type) Type
vt of
Left (Dom Type
a,Abs Type
b) -> Dom Type -> ArgName -> TelView -> TelView
forall a. Dom a -> ArgName -> TelV a -> TelV a
absV Dom Type
a (Abs Type -> ArgName
forall a. Abs a -> ArgName
absName Abs Type
b) (TelView -> TelView) -> TCM TelView -> TCM TelView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Nat -> Type -> TCM TelView
telViewUpToPath (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) (Abs Type -> Type
forall t a. Subst t a => Abs a -> a
absBody Abs Type
b)
Right (El Sort' Term
_ Term
t) | Pi Dom Type
a Abs Type
b <- Term
t
-> Dom Type -> ArgName -> TelView -> TelView
forall a. Dom a -> ArgName -> TelV a -> TelV a
absV Dom Type
a (Abs Type -> ArgName
forall a. Abs a -> ArgName
absName Abs Type
b) (TelView -> TelView) -> TCM TelView -> TCM TelView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Nat -> Type -> TCM TelView
telViewUpToPath (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) (Abs Type -> Type
forall t a. Subst t a => Abs a -> a
absBody Abs Type
b)
Right Type
t -> TelView -> TCM TelView
forall (m :: * -> *) a. Monad m => a -> m a
return (TelView -> TCM TelView) -> TelView -> TCM TelView
forall a b. (a -> b) -> a -> b
$ Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t
where
absV :: Dom a -> ArgName -> TelV a -> TelV a
absV Dom a
a ArgName
x (TelV Tele (Dom a)
tel a
t) = Tele (Dom a) -> a -> TelV a
forall a. Tele (Dom a) -> a -> TelV a
TelV (Dom a -> Abs (Tele (Dom a)) -> Tele (Dom a)
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom a
a (ArgName -> Tele (Dom a) -> Abs (Tele (Dom a))
forall a. ArgName -> a -> Abs a
Abs ArgName
x Tele (Dom a)
tel)) a
t
type Boundary = Boundary' (Term,Term)
type Boundary' a = [(Term,a)]
telViewUpToPathBoundary' :: (MonadReduce m, HasBuiltins m) => Int -> Type -> m (TelView,Boundary)
telViewUpToPathBoundary' :: Nat -> Type -> m (TelView, Boundary)
telViewUpToPathBoundary' Nat
0 Type
t = (TelView, Boundary) -> m (TelView, Boundary)
forall (m :: * -> *) a. Monad m => a -> m a
return ((TelView, Boundary) -> m (TelView, Boundary))
-> (TelView, Boundary) -> m (TelView, Boundary)
forall a b. (a -> b) -> a -> b
$ (Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t,[])
telViewUpToPathBoundary' Nat
n Type
t = do
Either ((Dom Type, Abs Type), (Term, Term)) Type
vt <- Type -> m (Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Type -> m (Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi' (Type -> m (Either ((Dom Type, Abs Type), (Term, Term)) Type))
-> Type -> m (Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall a b. (a -> b) -> a -> b
$ Type
t
case Either ((Dom Type, Abs Type), (Term, Term)) Type
vt of
Left ((Dom Type
a,Abs Type
b),(Term, Term)
xy) -> (Term, Term) -> (TelView, Boundary) -> (TelView, Boundary)
forall t b a.
Subst t b =>
b -> (TelV a, [(Term, b)]) -> (TelV a, [(Term, b)])
addEndPoints (Term, Term)
xy ((TelView, Boundary) -> (TelView, Boundary))
-> ((TelView, Boundary) -> (TelView, Boundary))
-> (TelView, Boundary)
-> (TelView, Boundary)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Dom Type -> ArgName -> (TelView, Boundary) -> (TelView, Boundary)
forall a b. Dom a -> ArgName -> (TelV a, b) -> (TelV a, b)
absV Dom Type
a (Abs Type -> ArgName
forall a. Abs a -> ArgName
absName Abs Type
b) ((TelView, Boundary) -> (TelView, Boundary))
-> m (TelView, Boundary) -> m (TelView, Boundary)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Nat -> Type -> m (TelView, Boundary)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Nat -> Type -> m (TelView, Boundary)
telViewUpToPathBoundary' (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) (Abs Type -> Type
forall t a. Subst t a => Abs a -> a
absBody Abs Type
b)
Right (El Sort' Term
_ Term
t) | Pi Dom Type
a Abs Type
b <- Term
t
-> Dom Type -> ArgName -> (TelView, Boundary) -> (TelView, Boundary)
forall a b. Dom a -> ArgName -> (TelV a, b) -> (TelV a, b)
absV Dom Type
a (Abs Type -> ArgName
forall a. Abs a -> ArgName
absName Abs Type
b) ((TelView, Boundary) -> (TelView, Boundary))
-> m (TelView, Boundary) -> m (TelView, Boundary)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Nat -> Type -> m (TelView, Boundary)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Nat -> Type -> m (TelView, Boundary)
telViewUpToPathBoundary' (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) (Abs Type -> Type
forall t a. Subst t a => Abs a -> a
absBody Abs Type
b)
Right Type
t -> (TelView, Boundary) -> m (TelView, Boundary)
forall (m :: * -> *) a. Monad m => a -> m a
return ((TelView, Boundary) -> m (TelView, Boundary))
-> (TelView, Boundary) -> m (TelView, Boundary)
forall a b. (a -> b) -> a -> b
$ (Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t,[])
where
absV :: Dom a -> ArgName -> (TelV a, b) -> (TelV a, b)
absV Dom a
a ArgName
x (TelV Tele (Dom a)
tel a
t, b
cs) = (Tele (Dom a) -> a -> TelV a
forall a. Tele (Dom a) -> a -> TelV a
TelV (Dom a -> Abs (Tele (Dom a)) -> Tele (Dom a)
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom a
a (ArgName -> Tele (Dom a) -> Abs (Tele (Dom a))
forall a. ArgName -> a -> Abs a
Abs ArgName
x Tele (Dom a)
tel)) a
t, b
cs)
addEndPoints :: b -> (TelV a, [(Term, b)]) -> (TelV a, [(Term, b)])
addEndPoints b
xy (telv :: TelV a
telv@(TelV Tele (Dom a)
tel a
_),[(Term, b)]
cs) = (TelV a
telv, (Nat -> Term
var (Nat -> Term) -> Nat -> Term
forall a b. (a -> b) -> a -> b
$ Tele (Dom a) -> Nat
forall a. Sized a => a -> Nat
size Tele (Dom a)
tel Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1, b
xyInTel)(Term, b) -> [(Term, b)] -> [(Term, b)]
forall a. a -> [a] -> [a]
:[(Term, b)]
cs)
where
xyInTel :: b
xyInTel = Nat -> b -> b
forall t a. Subst t a => Nat -> a -> a
raise (Tele (Dom a) -> Nat
forall a. Sized a => a -> Nat
size Tele (Dom a)
tel) b
xy
fullBoundary :: Telescope -> Boundary -> Boundary
fullBoundary :: Telescope -> Boundary -> Boundary
fullBoundary Telescope
tel Boundary
bs =
let es :: [Elim' Term]
es = Telescope -> Boundary -> [Elim' Term]
forall a. DeBruijn a => Telescope -> Boundary' (a, a) -> [Elim' a]
teleElims Telescope
tel Boundary
bs
l :: Nat
l = Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
tel
in ((Term, (Term, Term)) -> (Term, (Term, Term)))
-> Boundary -> Boundary
forall a b. (a -> b) -> [a] -> [b]
map (\ (t :: Term
t@(Var Nat
i []), (Term, Term)
xy) -> (Term
t, (Term, Term)
xy (Term, Term) -> [Elim' Term] -> (Term, Term)
forall t. Apply t => t -> [Elim' Term] -> t
`applyE` (Nat -> [Elim' Term] -> [Elim' Term]
forall a. Nat -> [a] -> [a]
drop (Nat
l Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
i) [Elim' Term]
es))) Boundary
bs
telViewUpToPathBoundary :: (MonadReduce m, HasBuiltins m) => Int -> Type -> m (TelView,Boundary)
telViewUpToPathBoundary :: Nat -> Type -> m (TelView, Boundary)
telViewUpToPathBoundary Nat
i Type
a = do
(telv :: TelView
telv@(TelV Telescope
tel Type
b), Boundary
bs) <- Nat -> Type -> m (TelView, Boundary)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Nat -> Type -> m (TelView, Boundary)
telViewUpToPathBoundary' Nat
i Type
a
(TelView, Boundary) -> m (TelView, Boundary)
forall (m :: * -> *) a. Monad m => a -> m a
return ((TelView, Boundary) -> m (TelView, Boundary))
-> (TelView, Boundary) -> m (TelView, Boundary)
forall a b. (a -> b) -> a -> b
$ (TelView
telv, Telescope -> Boundary -> Boundary
fullBoundary Telescope
tel Boundary
bs)
telViewUpToPathBoundaryP :: (MonadReduce m, HasBuiltins m) => Int -> Type -> m (TelView,Boundary)
telViewUpToPathBoundaryP :: Nat -> Type -> m (TelView, Boundary)
telViewUpToPathBoundaryP = Nat -> Type -> m (TelView, Boundary)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Nat -> Type -> m (TelView, Boundary)
telViewUpToPathBoundary'
telViewPathBoundaryP :: (MonadReduce m, HasBuiltins m) => Type -> m (TelView,Boundary)
telViewPathBoundaryP :: Type -> m (TelView, Boundary)
telViewPathBoundaryP = Nat -> Type -> m (TelView, Boundary)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Nat -> Type -> m (TelView, Boundary)
telViewUpToPathBoundaryP (-Nat
1)
teleElims :: DeBruijn a => Telescope -> Boundary' (a,a) -> [Elim' a]
teleElims :: Telescope -> Boundary' (a, a) -> [Elim' a]
teleElims Telescope
tel [] = (Arg a -> Elim' a) -> [Arg a] -> [Elim' a]
forall a b. (a -> b) -> [a] -> [b]
map Arg a -> Elim' a
forall a. Arg a -> Elim' a
Apply ([Arg a] -> [Elim' a]) -> [Arg a] -> [Elim' a]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Arg a]
forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Telescope
tel
teleElims Telescope
tel Boundary' (a, a)
boundary = [Arg a] -> [Elim' a]
recurse (Telescope -> [Arg a]
forall a t. DeBruijn a => Tele (Dom t) -> [Arg a]
teleArgs Telescope
tel)
where
recurse :: [Arg a] -> [Elim' a]
recurse = (Arg a -> Elim' a) -> [Arg a] -> [Elim' a]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Arg a -> Elim' a
updateArg
matchVar :: Nat -> Maybe (a, a)
matchVar Nat
x =
(Term, (a, a)) -> (a, a)
forall a b. (a, b) -> b
snd ((Term, (a, a)) -> (a, a)) -> Maybe (Term, (a, a)) -> Maybe (a, a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (((Term, (a, a)) -> Bool)
-> Boundary' (a, a) -> Maybe (Term, (a, a)))
-> Boundary' (a, a)
-> ((Term, (a, a)) -> Bool)
-> Maybe (Term, (a, a))
forall a b c. (a -> b -> c) -> b -> a -> c
flip ((Term, (a, a)) -> Bool)
-> Boundary' (a, a) -> Maybe (Term, (a, a))
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
find Boundary' (a, a)
boundary (\case
(Var Nat
i [],(a, a)
_) -> Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
x
(Term, (a, a))
_ -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__)
updateArg :: Arg a -> Elim' a
updateArg a :: Arg a
a@(Arg ArgInfo
info a
p) =
case a -> Maybe Nat
forall a. DeBruijn a => a -> Maybe Nat
deBruijnView a
p of
Just Nat
i | Just (a
t,a
u) <- Nat -> Maybe (a, a)
matchVar Nat
i -> a -> a -> a -> Elim' a
forall a. a -> a -> a -> Elim' a
IApply a
t a
u a
p
Maybe Nat
_ -> Arg a -> Elim' a
forall a. Arg a -> Elim' a
Apply Arg a
a
pathViewAsPi
:: (MonadReduce m, HasBuiltins m)
=>Type -> m (Either (Dom Type, Abs Type) Type)
pathViewAsPi :: Type -> m (Either (Dom Type, Abs Type) Type)
pathViewAsPi Type
t = (((Dom Type, Abs Type), (Term, Term))
-> Either (Dom Type, Abs Type) Type)
-> (Type -> Either (Dom Type, Abs Type) Type)
-> Either ((Dom Type, Abs Type), (Term, Term)) Type
-> Either (Dom Type, Abs Type) Type
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ((Dom Type, Abs Type) -> Either (Dom Type, Abs Type) Type
forall a b. a -> Either a b
Left ((Dom Type, Abs Type) -> Either (Dom Type, Abs Type) Type)
-> (((Dom Type, Abs Type), (Term, Term)) -> (Dom Type, Abs Type))
-> ((Dom Type, Abs Type), (Term, Term))
-> Either (Dom Type, Abs Type) Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Dom Type, Abs Type), (Term, Term)) -> (Dom Type, Abs Type)
forall a b. (a, b) -> a
fst) Type -> Either (Dom Type, Abs Type) Type
forall a b. b -> Either a b
Right (Either ((Dom Type, Abs Type), (Term, Term)) Type
-> Either (Dom Type, Abs Type) Type)
-> m (Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> m (Either (Dom Type, Abs Type) Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m (Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Type -> m (Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi' Type
t
pathViewAsPi'
:: (MonadReduce m, HasBuiltins m)
=> Type -> m (Either ((Dom Type, Abs Type), (Term,Term)) Type)
pathViewAsPi' :: Type -> m (Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi' Type
t = do
m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (m :: * -> *).
HasBuiltins m =>
m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi'whnf m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> m Type -> m (Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> m Type
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Type
t
pathViewAsPi'whnf
:: (HasBuiltins m)
=> m (Type -> Either ((Dom Type, Abs Type), (Term,Term)) Type)
pathViewAsPi'whnf :: m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi'whnf = do
Type -> PathView
view <- m (Type -> PathView)
forall (m :: * -> *). HasBuiltins m => m (Type -> PathView)
pathView'
Maybe Term
minterval <- ArgName -> m (Maybe Term)
forall (m :: * -> *). HasBuiltins m => ArgName -> m (Maybe Term)
getBuiltin' ArgName
builtinInterval
(Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (m :: * -> *) a. Monad m => a -> m a
return ((Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type))
-> (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall a b. (a -> b) -> a -> b
$ \ Type
t -> case Type -> PathView
view Type
t of
PathType Sort' Term
s QName
l Arg Term
p Arg Term
a Arg Term
x Arg Term
y | Just Term
interval <- Maybe Term
minterval ->
let name :: ArgName
name | Lam ArgInfo
_ (Abs ArgName
n Term
_) <- Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a = ArgName
n
| Bool
otherwise = ArgName
"i"
i :: Type'' t Term
i = Sort' t -> Term -> Type'' t Term
forall t a. Sort' t -> a -> Type'' t a
El Sort' t
forall t. Sort' t
Inf Term
interval
in
((Dom Type, Abs Type), (Term, Term))
-> Either ((Dom Type, Abs Type), (Term, Term)) Type
forall a b. a -> Either a b
Left (((Dom Type, Abs Type), (Term, Term))
-> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> ((Dom Type, Abs Type), (Term, Term))
-> Either ((Dom Type, Abs Type), (Term, Term)) Type
forall a b. (a -> b) -> a -> b
$ ((Type -> Dom Type
forall a. a -> Dom a
defaultDom (Type -> Dom Type) -> Type -> Dom Type
forall a b. (a -> b) -> a -> b
$ Type
forall t. Type'' t Term
i, ArgName -> Type -> Abs Type
forall a. ArgName -> a -> Abs a
Abs ArgName
name (Type -> Abs Type) -> Type -> Abs Type
forall a b. (a -> b) -> a -> b
$ Sort' Term -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Nat -> Sort' Term -> Sort' Term
forall t a. Subst t a => Nat -> a -> a
raise Nat
1 Sort' Term
s) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Nat -> Term -> Term
forall t a. Subst t a => Nat -> a -> a
raise Nat
1 (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a) Term -> Args -> Term
forall t. Apply t => t -> Args -> t
`apply` [Term -> Arg Term
forall a. a -> Arg a
defaultArg (Term -> Arg Term) -> Term -> Arg Term
forall a b. (a -> b) -> a -> b
$ Nat -> Term
var Nat
0]), (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
x, Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
y))
PathView
_ -> Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type
forall a b. b -> Either a b
Right Type
t
piOrPath :: Type -> TCM (Either (Dom Type, Abs Type) Type)
piOrPath :: Type -> TCMT IO (Either (Dom Type, Abs Type) Type)
piOrPath Type
t = do
Either ((Dom Type, Abs Type), (Term, Term)) Type
t <- TCMT IO (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (m :: * -> *).
HasBuiltins m =>
m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi'whnf TCMT IO (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> TCMT IO Type
-> TCMT IO (Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> TCMT IO Type
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
t
case Either ((Dom Type, Abs Type), (Term, Term)) Type
t of
Left ((Dom Type, Abs Type)
p,(Term, Term)
_) -> Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type))
-> Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type)
forall a b. (a -> b) -> a -> b
$ (Dom Type, Abs Type) -> Either (Dom Type, Abs Type) Type
forall a b. a -> Either a b
Left (Dom Type, Abs Type)
p
Right (El Sort' Term
_ (Pi Dom Type
a Abs Type
b)) -> Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type))
-> Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type)
forall a b. (a -> b) -> a -> b
$ (Dom Type, Abs Type) -> Either (Dom Type, Abs Type) Type
forall a b. a -> Either a b
Left (Dom Type
a,Abs Type
b)
Right Type
t -> Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type))
-> Either (Dom Type, Abs Type) Type
-> TCMT IO (Either (Dom Type, Abs Type) Type)
forall a b. (a -> b) -> a -> b
$ Type -> Either (Dom Type, Abs Type) Type
forall a b. b -> Either a b
Right Type
t
telView'UpToPath :: Int -> Type -> TCM TelView
telView'UpToPath :: Nat -> Type -> TCM TelView
telView'UpToPath Nat
0 Type
t = TelView -> TCM TelView
forall (m :: * -> *) a. Monad m => a -> m a
return (TelView -> TCM TelView) -> TelView -> TCM TelView
forall a b. (a -> b) -> a -> b
$ Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t
telView'UpToPath Nat
n Type
t = do
Either ((Dom Type, Abs Type), (Term, Term)) Type
vt <- TCMT IO (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (m :: * -> *).
HasBuiltins m =>
m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi'whnf TCMT IO (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> TCMT IO Type
-> TCMT IO (Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> TCMT IO Type
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
t
case Either ((Dom Type, Abs Type), (Term, Term)) Type
vt of
Left ((Dom Type
a,Abs Type
b),(Term, Term)
_) -> Dom Type -> ArgName -> TelView -> TelView
forall a. Dom a -> ArgName -> TelV a -> TelV a
absV Dom Type
a (Abs Type -> ArgName
forall a. Abs a -> ArgName
absName Abs Type
b) (TelView -> TelView) -> TCM TelView -> TCM TelView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Nat -> Type -> TCM TelView
telViewUpToPath (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) (Abs Type -> Type
forall t a. Subst t a => Abs a -> a
absBody Abs Type
b)
Right (El Sort' Term
_ Term
t) | Pi Dom Type
a Abs Type
b <- Term
t
-> Dom Type -> ArgName -> TelView -> TelView
forall a. Dom a -> ArgName -> TelV a -> TelV a
absV Dom Type
a (Abs Type -> ArgName
forall a. Abs a -> ArgName
absName Abs Type
b) (TelView -> TelView) -> TCM TelView -> TCM TelView
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Nat -> Type -> TCM TelView
telViewUpToPath (Nat
n Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) (Abs Type -> Type
forall t a. Subst t a => Abs a -> a
absBody Abs Type
b)
Right Type
t -> TelView -> TCM TelView
forall (m :: * -> *) a. Monad m => a -> m a
return (TelView -> TCM TelView) -> TelView -> TCM TelView
forall a b. (a -> b) -> a -> b
$ Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t
where
absV :: Dom a -> ArgName -> TelV a -> TelV a
absV Dom a
a ArgName
x (TelV Tele (Dom a)
tel a
t) = Tele (Dom a) -> a -> TelV a
forall a. Tele (Dom a) -> a -> TelV a
TelV (Dom a -> Abs (Tele (Dom a)) -> Tele (Dom a)
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom a
a (ArgName -> Tele (Dom a) -> Abs (Tele (Dom a))
forall a. ArgName -> a -> Abs a
Abs ArgName
x Tele (Dom a)
tel)) a
t
telView'Path :: Type -> TCM TelView
telView'Path :: Type -> TCM TelView
telView'Path = Nat -> Type -> TCM TelView
telView'UpToPath (-Nat
1)
isPath
:: (MonadReduce m, HasBuiltins m)
=> Type -> m (Maybe (Dom Type, Abs Type))
isPath :: Type -> m (Maybe (Dom Type, Abs Type))
isPath Type
t = ((Dom Type, Abs Type) -> Maybe (Dom Type, Abs Type))
-> (Type -> Maybe (Dom Type, Abs Type))
-> Either (Dom Type, Abs Type) Type
-> Maybe (Dom Type, Abs Type)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Dom Type, Abs Type) -> Maybe (Dom Type, Abs Type)
forall a. a -> Maybe a
Just (Maybe (Dom Type, Abs Type) -> Type -> Maybe (Dom Type, Abs Type)
forall a b. a -> b -> a
const Maybe (Dom Type, Abs Type)
forall a. Maybe a
Nothing) (Either (Dom Type, Abs Type) Type -> Maybe (Dom Type, Abs Type))
-> m (Either (Dom Type, Abs Type) Type)
-> m (Maybe (Dom Type, Abs Type))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> m (Either (Dom Type, Abs Type) Type)
forall (m :: * -> *).
(MonadReduce m, HasBuiltins m) =>
Type -> m (Either (Dom Type, Abs Type) Type)
pathViewAsPi Type
t
telePatterns :: DeBruijn a => Telescope -> Boundary -> [NamedArg (Pattern' a)]
telePatterns :: Telescope -> Boundary -> [NamedArg (Pattern' a)]
telePatterns = (forall a. DeBruijn a => Telescope -> [NamedArg a])
-> Telescope -> Boundary -> [NamedArg (Pattern' a)]
forall a.
DeBruijn a =>
(forall a. DeBruijn a => Telescope -> [NamedArg a])
-> Telescope -> Boundary -> [NamedArg (Pattern' a)]
telePatterns' forall a. DeBruijn a => Telescope -> [NamedArg a]
teleNamedArgs
telePatterns' :: DeBruijn a =>
(forall a. (DeBruijn a) => Telescope -> [NamedArg a]) -> Telescope -> Boundary -> [NamedArg (Pattern' a)]
telePatterns' :: (forall a. DeBruijn a => Telescope -> [NamedArg a])
-> Telescope -> Boundary -> [NamedArg (Pattern' a)]
telePatterns' forall a. DeBruijn a => Telescope -> [NamedArg a]
f Telescope
tel [] = Telescope -> [NamedArg (Pattern' a)]
forall a. DeBruijn a => Telescope -> [NamedArg a]
f Telescope
tel
telePatterns' forall a. DeBruijn a => Telescope -> [NamedArg a]
f Telescope
tel Boundary
boundary = [Arg (Named (WithOrigin (Ranged ArgName)) a)]
-> [NamedArg (Pattern' a)]
recurse ([Arg (Named (WithOrigin (Ranged ArgName)) a)]
-> [NamedArg (Pattern' a)])
-> [Arg (Named (WithOrigin (Ranged ArgName)) a)]
-> [NamedArg (Pattern' a)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Arg (Named (WithOrigin (Ranged ArgName)) a)]
forall a. DeBruijn a => Telescope -> [NamedArg a]
f Telescope
tel
where
recurse :: [Arg (Named (WithOrigin (Ranged ArgName)) a)]
-> [NamedArg (Pattern' a)]
recurse = ((Arg (Named (WithOrigin (Ranged ArgName)) a)
-> NamedArg (Pattern' a))
-> [Arg (Named (WithOrigin (Ranged ArgName)) a)]
-> [NamedArg (Pattern' a)]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Arg (Named (WithOrigin (Ranged ArgName)) a)
-> NamedArg (Pattern' a))
-> [Arg (Named (WithOrigin (Ranged ArgName)) a)]
-> [NamedArg (Pattern' a)])
-> ((a -> Pattern' a)
-> Arg (Named (WithOrigin (Ranged ArgName)) a)
-> NamedArg (Pattern' a))
-> (a -> Pattern' a)
-> [Arg (Named (WithOrigin (Ranged ArgName)) a)]
-> [NamedArg (Pattern' a)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Named (WithOrigin (Ranged ArgName)) a
-> Named (WithOrigin (Ranged ArgName)) (Pattern' a))
-> Arg (Named (WithOrigin (Ranged ArgName)) a)
-> NamedArg (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Named (WithOrigin (Ranged ArgName)) a
-> Named (WithOrigin (Ranged ArgName)) (Pattern' a))
-> Arg (Named (WithOrigin (Ranged ArgName)) a)
-> NamedArg (Pattern' a))
-> ((a -> Pattern' a)
-> Named (WithOrigin (Ranged ArgName)) a
-> Named (WithOrigin (Ranged ArgName)) (Pattern' a))
-> (a -> Pattern' a)
-> Arg (Named (WithOrigin (Ranged ArgName)) a)
-> NamedArg (Pattern' a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Pattern' a)
-> Named (WithOrigin (Ranged ArgName)) a
-> Named (WithOrigin (Ranged ArgName)) (Pattern' a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap) a -> Pattern' a
forall x. DeBruijn x => x -> Pattern' x
updateVar
matchVar :: Nat -> Maybe (Term, Term)
matchVar Nat
x =
(Term, (Term, Term)) -> (Term, Term)
forall a b. (a, b) -> b
snd ((Term, (Term, Term)) -> (Term, Term))
-> Maybe (Term, (Term, Term)) -> Maybe (Term, Term)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (((Term, (Term, Term)) -> Bool)
-> Boundary -> Maybe (Term, (Term, Term)))
-> Boundary
-> ((Term, (Term, Term)) -> Bool)
-> Maybe (Term, (Term, Term))
forall a b c. (a -> b -> c) -> b -> a -> c
flip ((Term, (Term, Term)) -> Bool)
-> Boundary -> Maybe (Term, (Term, Term))
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
find Boundary
boundary (\case
(Var Nat
i [],(Term, Term)
_) -> Nat
i Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
x
(Term, (Term, Term))
_ -> Bool
forall a. HasCallStack => a
__IMPOSSIBLE__)
updateVar :: x -> Pattern' x
updateVar x
x =
case x -> Maybe Nat
forall a. DeBruijn a => a -> Maybe Nat
deBruijnView x
x of
Just Nat
i | Just (Term
t,Term
u) <- Nat -> Maybe (Term, Term)
matchVar Nat
i -> PatternInfo -> Term -> Term -> x -> Pattern' x
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
defaultPatternInfo Term
t Term
u x
x
Maybe Nat
_ -> PatternInfo -> x -> Pattern' x
forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
defaultPatternInfo x
x
mustBePi :: MonadReduce m => Type -> m (Dom Type, Abs Type)
mustBePi :: Type -> m (Dom Type, Abs Type)
mustBePi Type
t = Type
-> (Type -> m (Dom Type, Abs Type))
-> (Dom Type -> Abs Type -> m (Dom Type, Abs Type))
-> m (Dom Type, Abs Type)
forall (m :: * -> *) a.
MonadReduce m =>
Type -> (Type -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
ifNotPiType Type
t Type -> m (Dom Type, Abs Type)
forall a. HasCallStack => a
__IMPOSSIBLE__ ((Dom Type -> Abs Type -> m (Dom Type, Abs Type))
-> m (Dom Type, Abs Type))
-> (Dom Type -> Abs Type -> m (Dom Type, Abs Type))
-> m (Dom Type, Abs Type)
forall a b. (a -> b) -> a -> b
$ \ Dom Type
a Abs Type
b -> (Dom Type, Abs Type) -> m (Dom Type, Abs Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Dom Type
a,Abs Type
b)
ifPi :: MonadReduce m => Term -> (Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a
ifPi :: Term -> (Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a
ifPi Term
t Dom Type -> Abs Type -> m a
yes Term -> m a
no = do
Term
t <- Term -> m Term
forall a (m :: * -> *). (Reduce a, MonadReduce m) => a -> m a
reduce Term
t
case Term
t of
Pi Dom Type
a Abs Type
b -> Dom Type -> Abs Type -> m a
yes Dom Type
a Abs Type
b
Term
_ -> Term -> m a
no Term
t
ifPiType :: MonadReduce m => Type -> (Dom Type -> Abs Type -> m a) -> (Type -> m a) -> m a
ifPiType :: Type -> (Dom Type -> Abs Type -> m a) -> (Type -> m a) -> m a
ifPiType (El Sort' Term
s Term
t) Dom Type -> Abs Type -> m a
yes Type -> m a
no = Term -> (Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a
forall (m :: * -> *) a.
MonadReduce m =>
Term -> (Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a
ifPi Term
t Dom Type -> Abs Type -> m a
yes (Type -> m a
no (Type -> m a) -> (Term -> Type) -> Term -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sort' Term -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El Sort' Term
s)
ifNotPi :: MonadReduce m => Term -> (Term -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
ifNotPi :: Term -> (Term -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
ifNotPi = ((Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a)
-> (Term -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (((Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a)
-> (Term -> m a) -> (Dom Type -> Abs Type -> m a) -> m a)
-> (Term -> (Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a)
-> Term
-> (Term -> m a)
-> (Dom Type -> Abs Type -> m a)
-> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> (Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a
forall (m :: * -> *) a.
MonadReduce m =>
Term -> (Dom Type -> Abs Type -> m a) -> (Term -> m a) -> m a
ifPi
ifNotPiType :: MonadReduce m => Type -> (Type -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
ifNotPiType :: Type -> (Type -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
ifNotPiType = ((Dom Type -> Abs Type -> m a) -> (Type -> m a) -> m a)
-> (Type -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (((Dom Type -> Abs Type -> m a) -> (Type -> m a) -> m a)
-> (Type -> m a) -> (Dom Type -> Abs Type -> m a) -> m a)
-> (Type -> (Dom Type -> Abs Type -> m a) -> (Type -> m a) -> m a)
-> Type
-> (Type -> m a)
-> (Dom Type -> Abs Type -> m a)
-> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> (Dom Type -> Abs Type -> m a) -> (Type -> m a) -> m a
forall (m :: * -> *) a.
MonadReduce m =>
Type -> (Dom Type -> Abs Type -> m a) -> (Type -> m a) -> m a
ifPiType
ifNotPiOrPathType :: (MonadReduce tcm, MonadTCM tcm) => Type -> (Type -> tcm a) -> (Dom Type -> Abs Type -> tcm a) -> tcm a
ifNotPiOrPathType :: Type -> (Type -> tcm a) -> (Dom Type -> Abs Type -> tcm a) -> tcm a
ifNotPiOrPathType Type
t Type -> tcm a
no Dom Type -> Abs Type -> tcm a
yes = do
Type -> (Dom Type -> Abs Type -> tcm a) -> (Type -> tcm a) -> tcm a
forall (m :: * -> *) a.
MonadReduce m =>
Type -> (Dom Type -> Abs Type -> m a) -> (Type -> m a) -> m a
ifPiType Type
t Dom Type -> Abs Type -> tcm a
yes (\ Type
t -> (((Dom Type, Abs Type), (Term, Term)) -> tcm a)
-> (Type -> tcm a)
-> Either ((Dom Type, Abs Type), (Term, Term)) Type
-> tcm a
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ((Dom Type -> Abs Type -> tcm a) -> (Dom Type, Abs Type) -> tcm a
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Type -> tcm a
yes ((Dom Type, Abs Type) -> tcm a)
-> (((Dom Type, Abs Type), (Term, Term)) -> (Dom Type, Abs Type))
-> ((Dom Type, Abs Type), (Term, Term))
-> tcm a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Dom Type, Abs Type), (Term, Term)) -> (Dom Type, Abs Type)
forall a b. (a, b) -> a
fst) (tcm a -> Type -> tcm a
forall a b. a -> b -> a
const (tcm a -> Type -> tcm a) -> tcm a -> Type -> tcm a
forall a b. (a -> b) -> a -> b
$ Type -> tcm a
no Type
t) (Either ((Dom Type, Abs Type), (Term, Term)) Type -> tcm a)
-> tcm (Either ((Dom Type, Abs Type), (Term, Term)) Type) -> tcm a
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (TCMT IO (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> tcm (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (tcm :: * -> *) a. MonadTCM tcm => TCM a -> tcm a
liftTCM TCMT IO (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (m :: * -> *).
HasBuiltins m =>
m (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
pathViewAsPi'whnf tcm (Type -> Either ((Dom Type, Abs Type), (Term, Term)) Type)
-> tcm Type
-> tcm (Either ((Dom Type, Abs Type), (Term, Term)) Type)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Type -> tcm Type
forall (f :: * -> *) a. Applicative f => a -> f a
pure Type
t))
class PiApplyM a where
piApplyM :: MonadReduce m => Type -> a -> m Type
instance PiApplyM Term where
piApplyM :: Type -> Term -> m Type
piApplyM Type
t Term
v = Type
-> (Type -> m Type) -> (Dom Type -> Abs Type -> m Type) -> m Type
forall (m :: * -> *) a.
MonadReduce m =>
Type -> (Type -> m a) -> (Dom Type -> Abs Type -> m a) -> m a
ifNotPiType Type
t Type -> m Type
forall a. HasCallStack => a
__IMPOSSIBLE__ ((Dom Type -> Abs Type -> m Type) -> m Type)
-> (Dom Type -> Abs Type -> m Type) -> m Type
forall a b. (a -> b) -> a -> b
$ \ Dom Type
_ Abs Type
b -> Type -> m Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> m Type) -> Type -> m Type
forall a b. (a -> b) -> a -> b
$ Abs Type -> Term -> Type
forall t a. Subst t a => Abs a -> t -> a
absApp Abs Type
b Term
v
instance PiApplyM a => PiApplyM (Arg a) where
piApplyM :: Type -> Arg a -> m Type
piApplyM Type
t = Type -> a -> m Type
forall a (m :: * -> *).
(PiApplyM a, MonadReduce m) =>
Type -> a -> m Type
piApplyM Type
t (a -> m Type) -> (Arg a -> a) -> Arg a -> m Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg a -> a
forall e. Arg e -> e
unArg
instance PiApplyM a => PiApplyM (Named n a) where
piApplyM :: Type -> Named n a -> m Type
piApplyM Type
t = Type -> a -> m Type
forall a (m :: * -> *).
(PiApplyM a, MonadReduce m) =>
Type -> a -> m Type
piApplyM Type
t (a -> m Type) -> (Named n a -> a) -> Named n a -> m Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Named n a -> a
forall name a. Named name a -> a
namedThing
instance PiApplyM a => PiApplyM [a] where
piApplyM :: Type -> [a] -> m Type
piApplyM Type
t = (m Type -> a -> m Type) -> m Type -> [a] -> m Type
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (\ m Type
mt a
v -> m Type
mt m Type -> (Type -> m Type) -> m Type
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (Type -> a -> m Type
forall a (m :: * -> *).
(PiApplyM a, MonadReduce m) =>
Type -> a -> m Type
`piApplyM` a
v)) (Type -> m Type
forall (m :: * -> *) a. Monad m => a -> m a
return Type
t)
typeArity :: Type -> TCM Nat
typeArity :: Type -> TCM Nat
typeArity Type
t = do
TelV Telescope
tel Type
_ <- Type -> TCM TelView
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Type -> m TelView
telView Type
t
Nat -> TCM Nat
forall (m :: * -> *) a. Monad m => a -> m a
return (Telescope -> Nat
forall a. Sized a => a -> Nat
size Telescope
tel)
data OutputTypeName
= OutputTypeName QName
| OutputTypeVar
| OutputTypeVisiblePi
| OutputTypeNameNotYetKnown
| NoOutputTypeName
getOutputTypeName :: Type -> TCM (Telescope, OutputTypeName)
getOutputTypeName :: Type -> TCM (Telescope, OutputTypeName)
getOutputTypeName Type
t = do
TelV Telescope
tel Type
t' <- Nat -> (Dom Type -> Bool) -> Type -> TCM TelView
forall (m :: * -> *).
(MonadReduce m, MonadAddContext m) =>
Nat -> (Dom Type -> Bool) -> Type -> m TelView
telViewUpTo' (-Nat
1) Dom Type -> Bool
forall a. LensHiding a => a -> Bool
notVisible Type
t
Term
-> (MetaId -> Term -> TCM (Telescope, OutputTypeName))
-> (NotBlocked -> Term -> TCM (Telescope, OutputTypeName))
-> TCM (Telescope, OutputTypeName)
forall t (m :: * -> *) a.
(Reduce t, IsMeta t, MonadReduce m, HasBuiltins m) =>
t -> (MetaId -> t -> m a) -> (NotBlocked -> t -> m a) -> m a
ifBlocked (Type -> Term
forall t a. Type'' t a -> a
unEl Type
t') (\ MetaId
_ Term
_ -> (Telescope, OutputTypeName) -> TCM (Telescope, OutputTypeName)
forall (m :: * -> *) a. Monad m => a -> m a
return (Telescope
tel , OutputTypeName
OutputTypeNameNotYetKnown)) ((NotBlocked -> Term -> TCM (Telescope, OutputTypeName))
-> TCM (Telescope, OutputTypeName))
-> (NotBlocked -> Term -> TCM (Telescope, OutputTypeName))
-> TCM (Telescope, OutputTypeName)
forall a b. (a -> b) -> a -> b
$ \ NotBlocked
_ Term
v ->
case Term
v of
Def QName
n [Elim' Term]
_ -> (Telescope, OutputTypeName) -> TCM (Telescope, OutputTypeName)
forall (m :: * -> *) a. Monad m => a -> m a
return (Telescope
tel , QName -> OutputTypeName
OutputTypeName QName
n)
Sort{} -> (Telescope, OutputTypeName) -> TCM (Telescope, OutputTypeName)
forall (m :: * -> *) a. Monad m => a -> m a
return (Telescope
tel , OutputTypeName
NoOutputTypeName)
Var Nat
n [Elim' Term]
_ -> (Telescope, OutputTypeName) -> TCM (Telescope, OutputTypeName)
forall (m :: * -> *) a. Monad m => a -> m a
return (Telescope
tel , OutputTypeName
OutputTypeVar)
Pi{} -> (Telescope, OutputTypeName) -> TCM (Telescope, OutputTypeName)
forall (m :: * -> *) a. Monad m => a -> m a
return (Telescope
tel , OutputTypeName
OutputTypeVisiblePi)
Con{} -> TCM (Telescope, OutputTypeName)
forall a. HasCallStack => a
__IMPOSSIBLE__
Lam{} -> TCM (Telescope, OutputTypeName)
forall a. HasCallStack => a
__IMPOSSIBLE__
Lit{} -> TCM (Telescope, OutputTypeName)
forall a. HasCallStack => a
__IMPOSSIBLE__
Level{} -> TCM (Telescope, OutputTypeName)
forall a. HasCallStack => a
__IMPOSSIBLE__
MetaV{} -> TCM (Telescope, OutputTypeName)
forall a. HasCallStack => a
__IMPOSSIBLE__
DontCare{} -> TCM (Telescope, OutputTypeName)
forall a. HasCallStack => a
__IMPOSSIBLE__
Dummy ArgName
s [Elim' Term]
_ -> ArgName -> TCM (Telescope, OutputTypeName)
forall (m :: * -> *) a.
(HasCallStack, MonadDebug m) =>
ArgName -> m a
__IMPOSSIBLE_VERBOSE__ ArgName
s
addTypedInstance :: QName -> Type -> TCM ()
addTypedInstance :: QName -> Type -> TCM ()
addTypedInstance QName
x Type
t = do
(Telescope
tel , OutputTypeName
n) <- Type -> TCM (Telescope, OutputTypeName)
getOutputTypeName Type
t
case OutputTypeName
n of
OutputTypeName QName
n -> QName -> QName -> TCM ()
addNamedInstance QName
x QName
n
OutputTypeName
OutputTypeNameNotYetKnown -> QName -> TCM ()
addUnknownInstance QName
x
OutputTypeName
NoOutputTypeName -> Warning -> TCM ()
forall (m :: * -> *). MonadWarning m => Warning -> m ()
warning (Warning -> TCM ()) -> Warning -> TCM ()
forall a b. (a -> b) -> a -> b
$ Warning
WrongInstanceDeclaration
OutputTypeName
OutputTypeVar -> Warning -> TCM ()
forall (m :: * -> *). MonadWarning m => Warning -> m ()
warning (Warning -> TCM ()) -> Warning -> TCM ()
forall a b. (a -> b) -> a -> b
$ Warning
WrongInstanceDeclaration
OutputTypeName
OutputTypeVisiblePi -> Warning -> TCM ()
forall (m :: * -> *). MonadWarning m => Warning -> m ()
warning (Warning -> TCM ()) -> Warning -> TCM ()
forall a b. (a -> b) -> a -> b
$ QName -> Warning
InstanceWithExplicitArg QName
x
resolveUnknownInstanceDefs :: TCM ()
resolveUnknownInstanceDefs :: TCM ()
resolveUnknownInstanceDefs = do
Set QName
anonInstanceDefs <- TCM (Set QName)
getAnonInstanceDefs
TCM ()
clearAnonInstanceDefs
Set QName -> (QName -> TCM ()) -> TCM ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ Set QName
anonInstanceDefs ((QName -> TCM ()) -> TCM ()) -> (QName -> TCM ()) -> TCM ()
forall a b. (a -> b) -> a -> b
$ \ QName
n -> QName -> Type -> TCM ()
addTypedInstance QName
n (Type -> TCM ()) -> TCMT IO Type -> TCM ()
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< QName -> TCMT IO Type
forall (m :: * -> *).
(HasConstInfo m, ReadTCState m) =>
QName -> m Type
typeOfConst QName
n
getInstanceDefs :: TCM InstanceTable
getInstanceDefs :: TCM InstanceTable
getInstanceDefs = do
TCM ()
resolveUnknownInstanceDefs
TempInstanceTable
insts <- TCM TempInstanceTable
getAllInstanceDefs
Bool -> TCM () -> TCM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Set QName -> Bool
forall a. Null a => a -> Bool
null (Set QName -> Bool) -> Set QName -> Bool
forall a b. (a -> b) -> a -> b
$ TempInstanceTable -> Set QName
forall a b. (a, b) -> b
snd TempInstanceTable
insts) (TCM () -> TCM ()) -> TCM () -> TCM ()
forall a b. (a -> b) -> a -> b
$
TypeError -> TCM ()
forall (m :: * -> *) a.
(MonadTCEnv m, ReadTCState m, MonadError TCErr m) =>
TypeError -> m a
typeError (TypeError -> TCM ()) -> TypeError -> TCM ()
forall a b. (a -> b) -> a -> b
$ ArgName -> TypeError
GenericError (ArgName -> TypeError) -> ArgName -> TypeError
forall a b. (a -> b) -> a -> b
$ ArgName
"There are instances whose type is still unsolved"
InstanceTable -> TCM InstanceTable
forall (m :: * -> *) a. Monad m => a -> m a
return (InstanceTable -> TCM InstanceTable)
-> InstanceTable -> TCM InstanceTable
forall a b. (a -> b) -> a -> b
$ TempInstanceTable -> InstanceTable
forall a b. (a, b) -> a
fst TempInstanceTable
insts