module Agda.Utils.Singleton where
import Data.Monoid (Endo(..))
import Data.Hashable (Hashable)
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.HashSet (HashSet)
import qualified Data.HashSet as HashSet
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.IntSet (IntSet)
import qualified Data.IntSet as IntSet
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Sequence (Seq)
import qualified Data.Sequence as Seq
import Data.Set (Set)
import qualified Data.Set as Set
class Singleton el coll | coll -> el where
singleton :: el -> coll
instance Singleton a (Maybe a) where singleton :: a -> Maybe a
singleton = a -> Maybe a
forall a. a -> Maybe a
Just
instance Singleton a [a] where singleton :: a -> [a]
singleton = (a -> [a] -> [a]
forall a. a -> [a] -> [a]
:[])
instance Singleton a ([a] -> [a]) where singleton :: a -> [a] -> [a]
singleton = (:)
instance Singleton a (Endo [a]) where singleton :: a -> Endo [a]
singleton = ([a] -> [a]) -> Endo [a]
forall a. (a -> a) -> Endo a
Endo (([a] -> [a]) -> Endo [a]) -> (a -> [a] -> [a]) -> a -> Endo [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (:)
instance Singleton a (NonEmpty a)
where singleton :: a -> NonEmpty a
singleton = (a -> [a] -> NonEmpty a
forall a. a -> [a] -> NonEmpty a
:| [])
instance Singleton a (Seq a) where singleton :: a -> Seq a
singleton = a -> Seq a
forall a. a -> Seq a
Seq.singleton
instance Singleton a (Set a) where singleton :: a -> Set a
singleton = a -> Set a
forall a. a -> Set a
Set.singleton
instance Singleton Int IntSet where singleton :: Int -> IntSet
singleton = Int -> IntSet
IntSet.singleton
instance Singleton (k ,a) (Map k a) where singleton :: (k, a) -> Map k a
singleton = (k -> a -> Map k a) -> (k, a) -> Map k a
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry k -> a -> Map k a
forall k a. k -> a -> Map k a
Map.singleton
instance Singleton (Int,a) (IntMap a) where singleton :: (Int, a) -> IntMap a
singleton = (Int -> a -> IntMap a) -> (Int, a) -> IntMap a
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
IntMap.singleton
instance Hashable a => Singleton a (HashSet a) where singleton :: a -> HashSet a
singleton = a -> HashSet a
forall a. Hashable a => a -> HashSet a
HashSet.singleton
instance Hashable k => Singleton (k,a) (HashMap k a) where singleton :: (k, a) -> HashMap k a
singleton = (k -> a -> HashMap k a) -> (k, a) -> HashMap k a
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry k -> a -> HashMap k a
forall k v. Hashable k => k -> v -> HashMap k v
HashMap.singleton