{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -freduction-depth=0 #-}
{-# OPTIONS_GHC -Wno-redundant-constraints #-}
module ZkFold.Symbolic.Data.ByteString
( ByteString(..)
, ShiftBits (..)
, reverseEndianness
, isSet
, isUnset
, toWords
, concat
, truncate
, emptyByteString
, toBsBits
) where
import Control.DeepSeq (NFData)
import Control.Monad (replicateM)
import Data.Aeson (FromJSON (..), ToJSON (..))
import qualified Data.Bits as B
import qualified Data.ByteString as Bytes
import Data.Foldable (foldlM)
import Data.Kind (Type)
import Data.List (reverse, unfoldr)
import Data.Maybe (Maybe (..))
import Data.String (IsString (..))
import Data.Traversable (for)
import GHC.Generics (Generic, Par1 (..))
import GHC.Natural (naturalFromInteger)
import Numeric (readHex, showHex)
import Prelude (Integer, const, drop, fmap, otherwise, pure, return, take,
type (~), ($), (.), (<$>), (<), (<>), (==), (>=))
import qualified Prelude as Haskell
import Test.QuickCheck (Arbitrary (..), chooseInteger)
import ZkFold.Base.Algebra.Basic.Class
import ZkFold.Base.Algebra.Basic.Field (Zp)
import ZkFold.Base.Algebra.Basic.Number
import ZkFold.Base.Data.HFunctor (HFunctor (..))
import ZkFold.Base.Data.Package (packWith, unpackWith)
import ZkFold.Base.Data.Utils (zipWithM)
import qualified ZkFold.Base.Data.Vector as V
import ZkFold.Base.Data.Vector (Vector (..))
import ZkFold.Prelude (replicateA, (!!))
import ZkFold.Symbolic.Class
import ZkFold.Symbolic.Data.Bool (Bool (..), BoolType (..))
import ZkFold.Symbolic.Data.Class (SymbolicData)
import ZkFold.Symbolic.Data.Combinators
import ZkFold.Symbolic.Data.Eq (Eq)
import ZkFold.Symbolic.Data.Eq.Structural
import ZkFold.Symbolic.Data.FieldElement (FieldElement)
import ZkFold.Symbolic.Data.Input (SymbolicInput, isValid)
import ZkFold.Symbolic.Interpreter (Interpreter (..))
import ZkFold.Symbolic.MonadCircuit (ClosedPoly, MonadCircuit, newAssigned)
newtype ByteString (n :: Natural) (context :: (Type -> Type) -> Type) = ByteString (context (Vector n))
deriving ((forall x. ByteString n context -> Rep (ByteString n context) x)
-> (forall x. Rep (ByteString n context) x -> ByteString n context)
-> Generic (ByteString n context)
forall (n :: Natural) (context :: (Type -> Type) -> Type) x.
Rep (ByteString n context) x -> ByteString n context
forall (n :: Natural) (context :: (Type -> Type) -> Type) x.
ByteString n context -> Rep (ByteString n context) x
forall x. Rep (ByteString n context) x -> ByteString n context
forall x. ByteString n context -> Rep (ByteString n context) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
$cfrom :: forall (n :: Natural) (context :: (Type -> Type) -> Type) x.
ByteString n context -> Rep (ByteString n context) x
from :: forall x. ByteString n context -> Rep (ByteString n context) x
$cto :: forall (n :: Natural) (context :: (Type -> Type) -> Type) x.
Rep (ByteString n context) x -> ByteString n context
to :: forall x. Rep (ByteString n context) x -> ByteString n context
Generic)
deriving stock instance Haskell.Show (c (Vector n)) => Haskell.Show (ByteString n c)
deriving stock instance Haskell.Eq (c (Vector n)) => Haskell.Eq (ByteString n c)
deriving anyclass instance NFData (c (Vector n)) => NFData (ByteString n c)
deriving newtype instance SymbolicData (ByteString n c)
deriving via (Structural (ByteString n c))
instance (Symbolic c, KnownNat n) => Eq (Bool c) (ByteString n c)
instance
( Symbolic c
, m * 8 ~ n
) => IsString (ByteString n c) where
fromString :: String -> ByteString n c
fromString = ByteString -> ByteString n c
forall a b. FromConstant a b => a -> b
fromConstant (ByteString -> ByteString n c)
-> (String -> ByteString) -> String -> ByteString n c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. IsString a => String -> a
fromString @Bytes.ByteString
instance
( Symbolic c
, m * 8 ~ n
) => FromConstant Bytes.ByteString (ByteString n c) where
fromConstant :: ByteString -> ByteString n c
fromConstant ByteString
bytes = forall (k :: Natural) (m :: Natural) (c :: (Type -> Type) -> Type).
Symbolic c =>
Vector k (ByteString m c) -> ByteString (k * m) c
concat @_ @8 (Vector m (ByteString 8 c) -> ByteString (m * 8) c)
-> Vector m (ByteString 8 c) -> ByteString (m * 8) c
forall a b. (a -> b) -> a -> b
$ forall a b. FromConstant a b => a -> b
fromConstant @Natural @(ByteString 8 c)
(Natural -> ByteString 8 c)
-> (Word8 -> Natural) -> Word8 -> ByteString 8 c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Natural
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral
(Integer -> Natural) -> (Word8 -> Integer) -> Word8 -> Natural
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> Integer
forall a. Integral a => a -> Integer
Haskell.toInteger (Word8 -> ByteString 8 c)
-> Vector m Word8 -> Vector m (ByteString 8 c)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall (size :: Natural) a. [a] -> Vector size a
V.unsafeToVector @m ([Word8] -> Vector m Word8) -> [Word8] -> Vector m Word8
forall a b. (a -> b) -> a -> b
$ ByteString -> [Word8]
Bytes.unpack ByteString
bytes)
emptyByteString :: FromConstant Natural (ByteString 0 c) => ByteString 0 c
emptyByteString :: forall (c :: (Type -> Type) -> Type).
FromConstant Natural (ByteString 0 c) =>
ByteString 0 c
emptyByteString = forall a b. FromConstant a b => a -> b
fromConstant @Natural Natural
0
class ShiftBits a where
{-# MINIMAL (shiftBits | (shiftBitsL, shiftBitsR)), (rotateBits | (rotateBitsL, rotateBitsR)) #-}
shiftBits :: a -> Integer -> a
shiftBits a
a Integer
s
| Integer
s Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0 = a -> Natural -> a
forall a. ShiftBits a => a -> Natural -> a
shiftBitsR a
a (Integer -> Natural
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral (Integer -> Natural) -> (Integer -> Integer) -> Integer -> Natural
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Integer
forall a. AdditiveGroup a => a -> a
negate (Integer -> Natural) -> Integer -> Natural
forall a b. (a -> b) -> a -> b
$ Integer
s)
| Bool
otherwise = a -> Natural -> a
forall a. ShiftBits a => a -> Natural -> a
shiftBitsL a
a (Integer -> Natural
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral Integer
s)
shiftBitsL :: a -> Natural -> a
shiftBitsL a
a Natural
s = a -> Integer -> a
forall a. ShiftBits a => a -> Integer -> a
shiftBits a
a (Natural -> Integer
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral Natural
s)
shiftBitsR :: a -> Natural -> a
shiftBitsR a
a Natural
s = a -> Integer -> a
forall a. ShiftBits a => a -> Integer -> a
shiftBits a
a (Integer -> Integer
forall a. AdditiveGroup a => a -> a
negate (Integer -> Integer) -> (Natural -> Integer) -> Natural -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Natural -> Integer
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral (Natural -> Integer) -> Natural -> Integer
forall a b. (a -> b) -> a -> b
$ Natural
s)
rotateBits :: a -> Integer -> a
rotateBits a
a Integer
s
| Integer
s Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0 = a -> Natural -> a
forall a. ShiftBits a => a -> Natural -> a
rotateBitsR a
a (Integer -> Natural
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral (Integer -> Natural) -> (Integer -> Integer) -> Integer -> Natural
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Integer
forall a. AdditiveGroup a => a -> a
negate (Integer -> Natural) -> Integer -> Natural
forall a b. (a -> b) -> a -> b
$ Integer
s)
| Bool
otherwise = a -> Natural -> a
forall a. ShiftBits a => a -> Natural -> a
rotateBitsL a
a (Integer -> Natural
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral Integer
s)
rotateBitsL :: a -> Natural -> a
rotateBitsL a
a Natural
s = a -> Integer -> a
forall a. ShiftBits a => a -> Integer -> a
rotateBits a
a (Natural -> Integer
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral Natural
s)
rotateBitsR :: a -> Natural -> a
rotateBitsR a
a Natural
s = a -> Integer -> a
forall a. ShiftBits a => a -> Integer -> a
rotateBits a
a (Integer -> Integer
forall a. AdditiveGroup a => a -> a
negate (Integer -> Integer) -> (Natural -> Integer) -> Natural -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Natural -> Integer
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral (Natural -> Integer) -> Natural -> Integer
forall a b. (a -> b) -> a -> b
$ Natural
s)
instance ToConstant (ByteString n (Interpreter (Zp p))) where
type Const (ByteString n (Interpreter (Zp p))) = Natural
toConstant :: ByteString n (Interpreter (Zp p))
-> Const (ByteString n (Interpreter (Zp p)))
toConstant (ByteString (Interpreter Vector n (Zp p)
bits)) = (Natural -> Zp p -> Natural)
-> Natural -> Vector n (Zp p) -> Natural
forall b a. (b -> a -> b) -> b -> Vector n a -> b
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Haskell.foldl (\Natural
y Zp p
p -> Zp p -> Const (Zp p)
forall a. ToConstant a => a -> Const a
toConstant Zp p
p Natural -> Natural -> Natural
forall a. AdditiveSemigroup a => a -> a -> a
+ Natural
base Natural -> Natural -> Natural
forall a. MultiplicativeSemigroup a => a -> a -> a
* Natural
y) Natural
0 Vector n (Zp p)
bits
where base :: Natural
base = Natural
2
instance (Symbolic c, KnownNat n) => FromConstant Natural (ByteString n c) where
fromConstant :: Natural -> ByteString n c
fromConstant Natural
n = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c)
-> (Vector n (BaseField c) -> c (Vector n))
-> Vector n (BaseField c)
-> ByteString n c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (c :: (Type -> Type) -> Type) (f :: Type -> Type).
(Symbolic c, Functor f) =>
f (BaseField c) -> c f
embed @c (Vector n (BaseField c) -> ByteString n c)
-> Vector n (BaseField c) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ [BaseField c] -> Vector n (BaseField c)
forall (size :: Natural) a. [a] -> Vector size a
V.unsafeToVector ([BaseField c] -> Vector n (BaseField c))
-> [BaseField c] -> Vector n (BaseField c)
forall a b. (a -> b) -> a -> b
$ Natural -> BaseField c
forall a b. FromConstant a b => a -> b
fromConstant (Natural -> BaseField c) -> [Natural] -> [BaseField c]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Natural -> Natural -> [Natural]
toBsBits Natural
n (forall (n :: Natural). KnownNat n => Natural
value @n)
instance (Symbolic c, KnownNat n) => FromConstant Integer (ByteString n c) where
fromConstant :: Integer -> ByteString n c
fromConstant = Natural -> ByteString n c
forall a b. FromConstant a b => a -> b
fromConstant (Natural -> ByteString n c)
-> (Integer -> Natural) -> Integer -> ByteString n c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Natural
naturalFromInteger (Integer -> Natural) -> (Integer -> Integer) -> Integer -> Natural
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`Haskell.mod` (Integer
2 Integer -> Natural -> Integer
forall a b. Exponent a b => a -> b -> a
^ forall (n :: Natural). KnownNat n => Natural
getNatural @n))
instance (Symbolic c, KnownNat n) => Arbitrary (ByteString n c) where
arbitrary :: Gen (ByteString n c)
arbitrary = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c)
-> ([BaseField c] -> c (Vector n))
-> [BaseField c]
-> ByteString n c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (c :: (Type -> Type) -> Type) (f :: Type -> Type).
(Symbolic c, Functor f) =>
f (BaseField c) -> c f
embed @c (Vector n (BaseField c) -> c (Vector n))
-> ([BaseField c] -> Vector n (BaseField c))
-> [BaseField c]
-> c (Vector n)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [BaseField c] -> Vector n (BaseField c)
forall (size :: Natural) a. [a] -> Vector size a
V.unsafeToVector ([BaseField c] -> ByteString n c)
-> Gen [BaseField c] -> Gen (ByteString n c)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Natural -> Gen (BaseField c) -> Gen [BaseField c]
forall (f :: Type -> Type) a.
Applicative f =>
Natural -> f a -> f [a]
replicateA (forall (n :: Natural). KnownNat n => Natural
value @n) (Natural -> Gen (BaseField c)
forall {b} {b}.
(FromConstant Integer b, Exponent Integer b) =>
b -> Gen b
toss (Natural
1 :: Natural))
where toss :: b -> Gen b
toss b
b = Integer -> b
forall a b. FromConstant a b => a -> b
fromConstant (Integer -> b) -> Gen Integer -> Gen b
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (Integer, Integer) -> Gen Integer
chooseInteger (Integer
0, Integer
2 Integer -> b -> Integer
forall a b. Exponent a b => a -> b -> a
^ b
b Integer -> Integer -> Integer
forall a. AdditiveGroup a => a -> a -> a
- Integer
1)
reverseEndianness' :: forall wordSize k m x {n}.
( KnownNat wordSize
, n ~ k * wordSize
, m * 8 ~ wordSize
) => Vector n x -> Vector n x
reverseEndianness' :: forall (wordSize :: Natural) (k :: Natural) (m :: Natural) x
{n :: Natural}.
(KnownNat wordSize, n ~ (k * wordSize), (m * 8) ~ wordSize) =>
Vector n x -> Vector n x
reverseEndianness' Vector n x
v =
let chunks :: Vector k (Vector wordSize x)
chunks = forall (m :: Natural) (n :: Natural) a.
KnownNat n =>
Vector (m * n) a -> Vector m (Vector n a)
V.chunks @k @wordSize Vector n x
Vector (k * wordSize) x
v
chunks' :: Vector k (Vector wordSize x)
chunks' = (Vector wordSize x -> Vector wordSize x)
-> Vector k (Vector wordSize x) -> Vector k (Vector wordSize x)
forall a b. (a -> b) -> Vector k a -> Vector k b
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (Vector m (Vector 8 x) -> Vector wordSize x
Vector m (Vector 8 x) -> Vector (m * 8) x
forall (m :: Natural) (n :: Natural) a.
Vector m (Vector n a) -> Vector (m * n) a
V.concat (Vector m (Vector 8 x) -> Vector wordSize x)
-> (Vector wordSize x -> Vector m (Vector 8 x))
-> Vector wordSize x
-> Vector wordSize x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Vector m (Vector 8 x) -> Vector m (Vector 8 x)
forall (size :: Natural) a. Vector size a -> Vector size a
V.reverse (Vector m (Vector 8 x) -> Vector m (Vector 8 x))
-> (Vector wordSize x -> Vector m (Vector 8 x))
-> Vector wordSize x
-> Vector m (Vector 8 x)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: Natural) (n :: Natural) a.
KnownNat n =>
Vector (m * n) a -> Vector m (Vector n a)
V.chunks @m @8) Vector k (Vector wordSize x)
chunks
in Vector k (Vector wordSize x) -> Vector (k * wordSize) x
forall (m :: Natural) (n :: Natural) a.
Vector m (Vector n a) -> Vector (m * n) a
V.concat Vector k (Vector wordSize x)
chunks'
reverseEndianness :: forall wordSize k c m {n}.
( Symbolic c
, KnownNat wordSize
, n ~ k * wordSize
, m * 8 ~ wordSize
) => ByteString n c -> ByteString n c
reverseEndianness :: forall (wordSize :: Natural) (k :: Natural)
(c :: (Type -> Type) -> Type) (m :: Natural) {n :: Natural}.
(Symbolic c, KnownNat wordSize, n ~ (k * wordSize),
(m * 8) ~ wordSize) =>
ByteString n c -> ByteString n c
reverseEndianness (ByteString c (Vector n)
v) = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c) -> c (Vector n) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ (forall a. Vector n a -> Vector n a)
-> c (Vector n) -> c (Vector n)
forall {k} (c :: (k -> Type) -> Type) (f :: k -> Type)
(g :: k -> Type).
HFunctor c =>
(forall (a :: k). f a -> g a) -> c f -> c g
forall (f :: Type -> Type) (g :: Type -> Type).
(forall a. f a -> g a) -> c f -> c g
hmap (forall (wordSize :: Natural) (k :: Natural) (m :: Natural) x
{n :: Natural}.
(KnownNat wordSize, n ~ (k * wordSize), (m * 8) ~ wordSize) =>
Vector n x -> Vector n x
reverseEndianness' @wordSize @k) c (Vector n)
v
instance (Symbolic c, KnownNat n) => BoolType (ByteString n c) where
false :: ByteString n c
false = Natural -> ByteString n c
forall a b. FromConstant a b => a -> b
fromConstant (Natural
0 :: Natural)
true :: ByteString n c
true = ByteString n c -> ByteString n c
forall b. BoolType b => b -> b
not ByteString n c
forall b. BoolType b => b
false
not :: ByteString n c -> ByteString n c
not (ByteString c (Vector n)
bits) = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c) -> c (Vector n) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ c (Vector n)
-> CircuitFun (Vector n) (Vector n) (BaseField c) -> c (Vector n)
forall (f :: Type -> Type) (g :: Type -> Type).
c f -> CircuitFun f g (BaseField c) -> c g
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type).
Symbolic c =>
c f -> CircuitFun f g (BaseField c) -> c g
fromCircuitF c (Vector n)
bits Vector n i -> m (Vector n i)
CircuitFun (Vector n) (Vector n) (BaseField c)
solve
where
solve :: MonadCircuit i (BaseField c) m => Vector n i -> m (Vector n i)
solve :: CircuitFun (Vector n) (Vector n) (BaseField c)
solve Vector n i
xv = do
let xs :: [i]
xs = Vector n i -> [i]
forall (size :: Natural) a. Vector size a -> [a]
V.fromVector Vector n i
xv
[i]
ys <- [i] -> (i -> m i) -> m [i]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
t a -> (a -> f b) -> f (t b)
for [i]
xs ((i -> m i) -> m [i]) -> (i -> m i) -> m [i]
forall a b. (a -> b) -> a -> b
$ \i
i -> ClosedPoly i (BaseField c) -> m i
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (\i -> x
p -> x
forall a. MultiplicativeMonoid a => a
one x -> x -> x
forall a. AdditiveGroup a => a -> a -> a
- i -> x
p i
i)
Vector n i -> m (Vector n i)
forall a. a -> m a
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Vector n i -> m (Vector n i)) -> Vector n i -> m (Vector n i)
forall a b. (a -> b) -> a -> b
$ [i] -> Vector n i
forall (size :: Natural) a. [a] -> Vector size a
V.unsafeToVector [i]
ys
ByteString n c
l || :: ByteString n c -> ByteString n c -> ByteString n c
|| ByteString n c
r = ByteString n c
-> ByteString n c
-> (forall i. i -> i -> ClosedPoly i (BaseField c))
-> ByteString n c
forall (c :: (Type -> Type) -> Type) (n :: Natural).
Symbolic c =>
ByteString n c
-> ByteString n c
-> (forall i. i -> i -> ClosedPoly i (BaseField c))
-> ByteString n c
bitwiseOperation ByteString n c
l ByteString n c
r i -> i -> (i -> x) -> x
forall i. i -> i -> ClosedPoly i (BaseField c)
forall {a} {t}.
(AdditiveGroup a, MultiplicativeSemigroup a) =>
t -> t -> (t -> a) -> a
cons
where
cons :: t -> t -> (t -> a) -> a
cons t
i t
j t -> a
x =
let xi :: a
xi = t -> a
x t
i
xj :: a
xj = t -> a
x t
j
in a
xi a -> a -> a
forall a. AdditiveSemigroup a => a -> a -> a
+ a
xj a -> a -> a
forall a. AdditiveGroup a => a -> a -> a
- a
xi a -> a -> a
forall a. MultiplicativeSemigroup a => a -> a -> a
* a
xj
ByteString n c
l && :: ByteString n c -> ByteString n c -> ByteString n c
&& ByteString n c
r = ByteString n c
-> ByteString n c
-> (forall i. i -> i -> ClosedPoly i (BaseField c))
-> ByteString n c
forall (c :: (Type -> Type) -> Type) (n :: Natural).
Symbolic c =>
ByteString n c
-> ByteString n c
-> (forall i. i -> i -> ClosedPoly i (BaseField c))
-> ByteString n c
bitwiseOperation ByteString n c
l ByteString n c
r i -> i -> (i -> x) -> x
forall i. i -> i -> ClosedPoly i (BaseField c)
forall {a} {t}.
MultiplicativeSemigroup a =>
t -> t -> (t -> a) -> a
cons
where
cons :: t -> t -> (t -> a) -> a
cons t
i t
j t -> a
x =
let xi :: a
xi = t -> a
x t
i
xj :: a
xj = t -> a
x t
j
in a
xi a -> a -> a
forall a. MultiplicativeSemigroup a => a -> a -> a
* a
xj
xor :: ByteString n c -> ByteString n c -> ByteString n c
xor (ByteString c (Vector n)
l) (ByteString c (Vector n)
r) = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c) -> c (Vector n) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ c (Vector n)
-> c (Vector n)
-> (Vector n (BaseField c)
-> Vector n (BaseField c) -> Vector n (BaseField c))
-> (forall i (m :: Type -> Type).
MonadCircuit i (BaseField c) m =>
Vector n i -> Vector n i -> m (Vector n i))
-> c (Vector n)
forall (c :: (Type -> Type) -> Type) a (f :: Type -> Type)
(g :: Type -> Type) (h :: Type -> Type).
(Symbolic c, BaseField c ~ a) =>
c f
-> c g
-> (f a -> g a -> h a)
-> (forall i (m :: Type -> Type).
MonadCircuit i a m =>
f i -> g i -> m (h i))
-> c h
symbolic2F c (Vector n)
l c (Vector n)
r (\Vector n (BaseField c)
x Vector n (BaseField c)
y -> [BaseField c] -> Vector n (BaseField c)
forall (size :: Natural) a. [a] -> Vector size a
V.unsafeToVector ([BaseField c] -> Vector n (BaseField c))
-> [BaseField c] -> Vector n (BaseField c)
forall a b. (a -> b) -> a -> b
$ Natural -> BaseField c
forall a b. FromConstant a b => a -> b
fromConstant (Natural -> BaseField c) -> [Natural] -> [BaseField c]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Natural -> Natural -> [Natural]
toBsBits (Vector n (BaseField c) -> Natural
forall a.
(ToConstant a, Const a ~ Natural) =>
Vector n a -> Natural
vecToNat Vector n (BaseField c)
x Natural -> Natural -> Natural
forall a. Bits a => a -> a -> a
`B.xor` Vector n (BaseField c) -> Natural
forall a.
(ToConstant a, Const a ~ Natural) =>
Vector n a -> Natural
vecToNat Vector n (BaseField c)
y) (forall (n :: Natural). KnownNat n => Natural
value @n)) Vector n i -> Vector n i -> m (Vector n i)
forall i (m :: Type -> Type).
MonadCircuit i (BaseField c) m =>
Vector n i -> Vector n i -> m (Vector n i)
solve
where
vecToNat :: (ToConstant a, Const a ~ Natural) => Vector n a -> Natural
vecToNat :: forall a.
(ToConstant a, Const a ~ Natural) =>
Vector n a -> Natural
vecToNat = (Natural -> a -> Natural) -> Natural -> Vector n a -> Natural
forall b a. (b -> a -> b) -> b -> Vector n a -> b
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Haskell.foldl (\Natural
x a
p -> a -> Const a
forall a. ToConstant a => a -> Const a
toConstant a
p Natural -> Natural -> Natural
forall a. AdditiveSemigroup a => a -> a -> a
+ Natural
2 Natural -> Natural -> Natural
forall a. MultiplicativeSemigroup a => a -> a -> a
* Natural
x :: Natural) Natural
0
solve :: MonadCircuit i (BaseField c) m => Vector n i -> Vector n i -> m (Vector n i)
solve :: forall i (m :: Type -> Type).
MonadCircuit i (BaseField c) m =>
Vector n i -> Vector n i -> m (Vector n i)
solve Vector n i
lv Vector n i
rv = do
let varsLeft :: Vector n i
varsLeft = Vector n i
lv
varsRight :: Vector n i
varsRight = Vector n i
rv
(i -> i -> m i) -> Vector n i -> Vector n i -> m (Vector n i)
forall (f :: Type -> Type) (m :: Type -> Type) a b c.
(Traversable f, Zip f, Applicative m) =>
(a -> b -> m c) -> f a -> f b -> m (f c)
zipWithM (\i
i i
j -> ClosedPoly i (BaseField c) -> m i
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (ClosedPoly i (BaseField c) -> m i)
-> ClosedPoly i (BaseField c) -> m i
forall a b. (a -> b) -> a -> b
$ i -> i -> (i -> x) -> x
forall {a} {t}.
(AdditiveGroup a, MultiplicativeSemigroup a) =>
t -> t -> (t -> a) -> a
cons i
i i
j) Vector n i
varsLeft Vector n i
varsRight
cons :: t -> t -> (t -> a) -> a
cons t
i t
j t -> a
x =
let xi :: a
xi = t -> a
x t
i
xj :: a
xj = t -> a
x t
j
in a
xi a -> a -> a
forall a. AdditiveSemigroup a => a -> a -> a
+ a
xj a -> a -> a
forall a. AdditiveGroup a => a -> a -> a
- (a
xi a -> a -> a
forall a. MultiplicativeSemigroup a => a -> a -> a
* a
xj a -> a -> a
forall a. AdditiveSemigroup a => a -> a -> a
+ a
xi a -> a -> a
forall a. MultiplicativeSemigroup a => a -> a -> a
* a
xj)
toWords :: forall m wordSize c. (Symbolic c, KnownNat wordSize) => ByteString (m * wordSize) c -> Vector m (ByteString wordSize c)
toWords :: forall (m :: Natural) (wordSize :: Natural)
(c :: (Type -> Type) -> Type).
(Symbolic c, KnownNat wordSize) =>
ByteString (m * wordSize) c -> Vector m (ByteString wordSize c)
toWords (ByteString c (Vector (m * wordSize))
bits) = c (Vector wordSize) -> ByteString wordSize c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector wordSize) -> ByteString wordSize c)
-> Vector m (c (Vector wordSize))
-> Vector m (ByteString wordSize c)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall a. Vector (m * wordSize) a -> Vector m (Vector wordSize a))
-> c (Vector (m * wordSize)) -> Vector m (c (Vector wordSize))
forall {k1} (c :: (k1 -> Type) -> Type) (f :: Type -> Type)
(h :: k1 -> Type) (g :: k1 -> Type).
(Package c, Functor f) =>
(forall (a :: k1). h a -> f (g a)) -> c h -> f (c g)
forall (f :: Type -> Type) (h :: Type -> Type) (g :: Type -> Type).
Functor f =>
(forall a. h a -> f (g a)) -> c h -> f (c g)
unpackWith (forall (m :: Natural) (n :: Natural) a.
KnownNat n =>
Vector (m * n) a -> Vector m (Vector n a)
V.chunks @m @wordSize) c (Vector (m * wordSize))
bits
concat :: forall k m c. (Symbolic c) => Vector k (ByteString m c) -> ByteString (k * m) c
concat :: forall (k :: Natural) (m :: Natural) (c :: (Type -> Type) -> Type).
Symbolic c =>
Vector k (ByteString m c) -> ByteString (k * m) c
concat Vector k (ByteString m c)
bs = c (Vector (k * m)) -> ByteString (k * m) c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector (k * m)) -> ByteString (k * m) c)
-> c (Vector (k * m)) -> ByteString (k * m) c
forall a b. (a -> b) -> a -> b
$ (forall a. Vector k (Vector m a) -> Vector (k * m) a)
-> Vector k (c (Vector m)) -> c (Vector (k * m))
forall {k1} (c :: (k1 -> Type) -> Type) (f :: Type -> Type)
(g :: k1 -> Type) (h :: k1 -> Type).
(Package c, Foldable f, Functor f) =>
(forall (a :: k1). f (g a) -> h a) -> f (c g) -> c h
forall (f :: Type -> Type) (g :: Type -> Type) (h :: Type -> Type).
(Foldable f, Functor f) =>
(forall a. f (g a) -> h a) -> f (c g) -> c h
packWith Vector k (Vector m a) -> Vector (k * m) a
forall (m :: Natural) (n :: Natural) a.
Vector m (Vector n a) -> Vector (m * n) a
forall a. Vector k (Vector m a) -> Vector (k * m) a
V.concat ((\(ByteString c (Vector m)
bits) -> c (Vector m)
bits) (ByteString m c -> c (Vector m))
-> Vector k (ByteString m c) -> Vector k (c (Vector m))
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Vector k (ByteString m c)
bs)
truncate :: forall n m c. (
Symbolic c
, KnownNat n
, n <= m
) => ByteString m c -> ByteString n c
truncate :: forall (n :: Natural) (m :: Natural) (c :: (Type -> Type) -> Type).
(Symbolic c, KnownNat n, n <= m) =>
ByteString m c -> ByteString n c
truncate (ByteString c (Vector m)
bits) = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c) -> c (Vector n) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ (forall a. Vector m a -> Vector n a)
-> c (Vector m) -> c (Vector n)
forall {k} (c :: (k -> Type) -> Type) (f :: k -> Type)
(g :: k -> Type).
HFunctor c =>
(forall (a :: k). f a -> g a) -> c f -> c g
forall (f :: Type -> Type) (g :: Type -> Type).
(forall a. f a -> g a) -> c f -> c g
hmap (forall (n :: Natural) (size :: Natural) a.
KnownNat n =>
Vector size a -> Vector n a
V.take @n) c (Vector m)
bits
instance (Symbolic c, KnownNat n) => ShiftBits (ByteString n c) where
shiftBits :: ByteString n c -> Integer -> ByteString n c
shiftBits bs :: ByteString n c
bs@(ByteString c (Vector n)
oldBits) Integer
s
| Integer
s Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 = ByteString n c
bs
| Integer -> Integer
forall a. Num a => a -> a
Haskell.abs Integer
s Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Natural -> Integer
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral (forall (n :: Natural). KnownNat n => Natural
getNatural @n) = ByteString n c
forall b. BoolType b => b
false
| Bool
otherwise = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c) -> c (Vector n) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ c (Vector n)
-> (Vector n (BaseField c) -> Vector n (BaseField c))
-> CircuitFun (Vector n) (Vector n) (BaseField c)
-> c (Vector n)
forall a (f :: Type -> Type) (g :: Type -> Type).
(BaseField c ~ a) =>
c f -> (f a -> g a) -> CircuitFun f g a -> c g
forall (c :: (Type -> Type) -> Type) a (f :: Type -> Type)
(g :: Type -> Type).
(Symbolic c, BaseField c ~ a) =>
c f -> (f a -> g a) -> CircuitFun f g a -> c g
symbolicF c (Vector n)
oldBits (\Vector n (BaseField c)
v -> Vector n (BaseField c)
-> Integer -> BaseField c -> Vector n (BaseField c)
forall (size :: Natural) a.
KnownNat size =>
Vector size a -> Integer -> a -> Vector size a
V.shift Vector n (BaseField c)
v Integer
s (Integer -> BaseField c
forall a b. FromConstant a b => a -> b
fromConstant (Integer
0 :: Integer))) Vector n i -> m (Vector n i)
CircuitFun (Vector n) (Vector n) (BaseField c)
solve
where
solve :: forall a m. MonadCircuit a (BaseField c) m => Vector n a -> m (Vector n a)
solve :: CircuitFun (Vector n) (Vector n) (BaseField c)
solve Vector n a
bitsV = do
let bits :: [a]
bits = Vector n a -> [a]
forall (size :: Natural) a. Vector size a -> [a]
V.fromVector Vector n a
bitsV
[a]
zeros <- Int -> m a -> m [a]
forall (m :: Type -> Type) a. Applicative m => Int -> m a -> m [a]
replicateM (Integer -> Int
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral (Integer -> Int) -> Integer -> Int
forall a b. (a -> b) -> a -> b
$ Integer -> Integer
forall a. Num a => a -> a
Haskell.abs Integer
s) (m a -> m [a]) -> m a -> m [a]
forall a b. (a -> b) -> a -> b
$ ClosedPoly a (BaseField c) -> m a
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (x -> (a -> x) -> x
forall a b. a -> b -> a
Haskell.const x
forall a. AdditiveMonoid a => a
zero)
let newBits :: [a]
newBits = case Integer
s Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0 of
Bool
Haskell.True -> Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
take (Natural -> Int
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral (Natural -> Int) -> Natural -> Int
forall a b. (a -> b) -> a -> b
$ forall (n :: Natural). KnownNat n => Natural
getNatural @n) ([a] -> [a]) -> [a] -> [a]
forall a b. (a -> b) -> a -> b
$ [a]
zeros [a] -> [a] -> [a]
forall a. Semigroup a => a -> a -> a
<> [a]
bits
Bool
Haskell.False -> Int -> [a] -> [a]
forall a. Int -> [a] -> [a]
drop (Integer -> Int
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral Integer
s) ([a] -> [a]) -> [a] -> [a]
forall a b. (a -> b) -> a -> b
$ [a]
bits [a] -> [a] -> [a]
forall a. Semigroup a => a -> a -> a
<> [a]
zeros
Vector n a -> m (Vector n a)
forall a. a -> m a
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Vector n a -> m (Vector n a)) -> Vector n a -> m (Vector n a)
forall a b. (a -> b) -> a -> b
$ [a] -> Vector n a
forall (size :: Natural) a. [a] -> Vector size a
V.unsafeToVector [a]
newBits
rotateBits :: ByteString n c -> Integer -> ByteString n c
rotateBits (ByteString c (Vector n)
bits) Integer
s = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c) -> c (Vector n) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ (forall a. Vector n a -> Vector n a)
-> c (Vector n) -> c (Vector n)
forall {k} (c :: (k -> Type) -> Type) (f :: k -> Type)
(g :: k -> Type).
HFunctor c =>
(forall (a :: k). f a -> g a) -> c f -> c g
forall (f :: Type -> Type) (g :: Type -> Type).
(forall a. f a -> g a) -> c f -> c g
hmap (Vector n a -> Integer -> Vector n a
forall (size :: Natural) a.
KnownNat size =>
Vector size a -> Integer -> Vector size a
`V.rotate` Integer
s) c (Vector n)
bits
instance
( Symbolic c
, KnownNat k
, KnownNat n
, k <= n
) => Extend (ByteString k c) (ByteString n c) where
extend :: ByteString k c -> ByteString n c
extend (ByteString c (Vector k)
oldBits) = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c) -> c (Vector n) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ c (Vector k)
-> (Vector k (BaseField c) -> Vector n (BaseField c))
-> CircuitFun (Vector k) (Vector n) (BaseField c)
-> c (Vector n)
forall a (f :: Type -> Type) (g :: Type -> Type).
(BaseField c ~ a) =>
c f -> (f a -> g a) -> CircuitFun f g a -> c g
forall (c :: (Type -> Type) -> Type) a (f :: Type -> Type)
(g :: Type -> Type).
(Symbolic c, BaseField c ~ a) =>
c f -> (f a -> g a) -> CircuitFun f g a -> c g
symbolicF c (Vector k)
oldBits (\Vector k (BaseField c)
v -> [BaseField c] -> Vector n (BaseField c)
forall (size :: Natural) a. [a] -> Vector size a
V.unsafeToVector ([BaseField c] -> Vector n (BaseField c))
-> [BaseField c] -> Vector n (BaseField c)
forall a b. (a -> b) -> a -> b
$ [BaseField c]
zeroA [BaseField c] -> [BaseField c] -> [BaseField c]
forall a. Semigroup a => a -> a -> a
<> Vector k (BaseField c) -> [BaseField c]
forall (size :: Natural) a. Vector size a -> [a]
V.fromVector Vector k (BaseField c)
v) Vector k i -> m (Vector n i)
CircuitFun (Vector k) (Vector n) (BaseField c)
solve
where
solve :: forall i m. MonadCircuit i (BaseField c) m => Vector k i -> m (Vector n i)
solve :: CircuitFun (Vector k) (Vector n) (BaseField c)
solve Vector k i
bitsV = do
let bits :: [i]
bits = Vector k i -> [i]
forall (size :: Natural) a. Vector size a -> [a]
V.fromVector Vector k i
bitsV
[i]
zeros <- Int -> m i -> m [i]
forall (m :: Type -> Type) a. Applicative m => Int -> m a -> m [a]
replicateM Int
diff (m i -> m [i]) -> m i -> m [i]
forall a b. (a -> b) -> a -> b
$ ClosedPoly i (BaseField c) -> m i
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (x -> (i -> x) -> x
forall a b. a -> b -> a
Haskell.const x
forall a. AdditiveMonoid a => a
zero)
Vector n i -> m (Vector n i)
forall a. a -> m a
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Vector n i -> m (Vector n i)) -> Vector n i -> m (Vector n i)
forall a b. (a -> b) -> a -> b
$ [i] -> Vector n i
forall (size :: Natural) a. [a] -> Vector size a
V.unsafeToVector ([i] -> Vector n i) -> [i] -> Vector n i
forall a b. (a -> b) -> a -> b
$ [i]
zeros [i] -> [i] -> [i]
forall a. Semigroup a => a -> a -> a
<> [i]
bits
diff :: Haskell.Int
diff :: Int
diff = Natural -> Int
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral (Natural -> Int) -> Natural -> Int
forall a b. (a -> b) -> a -> b
$ forall (n :: Natural). KnownNat n => Natural
getNatural @n Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
Haskell.- forall (n :: Natural). KnownNat n => Natural
getNatural @k
zeroA :: [BaseField c]
zeroA = Int -> BaseField c -> [BaseField c]
forall a. Int -> a -> [a]
Haskell.replicate Int
diff (Integer -> BaseField c
forall a b. FromConstant a b => a -> b
fromConstant (Integer
0 :: Integer ))
instance
( Symbolic c
, KnownNat n
) => SymbolicInput (ByteString n c) where
isValid :: ByteString n c -> Bool (Context (ByteString n c))
isValid (ByteString c (Vector n)
bits) = Context (ByteString n c) Par1 -> Bool (Context (ByteString n c))
forall (c :: (Type -> Type) -> Type). c Par1 -> Bool c
Bool (Context (ByteString n c) Par1 -> Bool (Context (ByteString n c)))
-> Context (ByteString n c) Par1 -> Bool (Context (ByteString n c))
forall a b. (a -> b) -> a -> b
$ c (Vector n) -> CircuitFun (Vector n) Par1 (BaseField c) -> c Par1
forall (f :: Type -> Type) (g :: Type -> Type).
c f -> CircuitFun f g (BaseField c) -> c g
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type).
Symbolic c =>
c f -> CircuitFun f g (BaseField c) -> c g
fromCircuitF c (Vector n)
bits Vector n i -> m (Par1 i)
CircuitFun (Vector n) Par1 (BaseField c)
solve
where
solve :: MonadCircuit i (BaseField c) m => Vector n i -> m (Par1 i)
solve :: CircuitFun (Vector n) Par1 (BaseField c)
solve Vector n i
v = do
let vs :: [i]
vs = Vector n i -> [i]
forall (size :: Natural) a. Vector size a -> [a]
V.fromVector Vector n i
v
[i]
ys <- [i] -> (i -> m i) -> m [i]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
t a -> (a -> f b) -> f (t b)
for [i]
vs ((i -> m i) -> m [i]) -> (i -> m i) -> m [i]
forall a b. (a -> b) -> a -> b
$ \i
i -> ClosedPoly i (BaseField c) -> m i
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (\i -> x
p -> i -> x
p i
i x -> x -> x
forall a. MultiplicativeSemigroup a => a -> a -> a
* (x
forall a. MultiplicativeMonoid a => a
one x -> x -> x
forall a. AdditiveGroup a => a -> a -> a
- i -> x
p i
i))
[Par1 i]
us <-[i] -> (i -> m (Par1 i)) -> m [Par1 i]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
t a -> (a -> f b) -> f (t b)
for [i]
ys ((i -> m (Par1 i)) -> m [Par1 i])
-> (i -> m (Par1 i)) -> m [Par1 i]
forall a b. (a -> b) -> a -> b
$ \i
i -> Par1 i -> m (Par1 i)
forall i a (m :: Type -> Type) (f :: Type -> Type).
(MonadCircuit i a m, Representable f, Traversable f) =>
f i -> m (f i)
isZero (Par1 i -> m (Par1 i)) -> Par1 i -> m (Par1 i)
forall a b. (a -> b) -> a -> b
$ i -> Par1 i
forall p. p -> Par1 p
Par1 i
i
[Par1 i] -> m (Par1 i)
forall i a (m :: Type -> Type).
MonadCircuit i a m =>
[Par1 i] -> m (Par1 i)
helper [Par1 i]
us
helper :: MonadCircuit i a m => [Par1 i] -> m (Par1 i)
helper :: forall i a (m :: Type -> Type).
MonadCircuit i a m =>
[Par1 i] -> m (Par1 i)
helper [Par1 i]
xs = case [Par1 i]
xs of
[] -> i -> Par1 i
forall p. p -> Par1 p
Par1 (i -> Par1 i) -> m i -> m (Par1 i)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ClosedPoly i a -> m i
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (x -> (i -> x) -> x
forall a b. a -> b -> a
const x
forall a. MultiplicativeMonoid a => a
one)
(Par1 i
b : [Par1 i]
bs) -> (Par1 i -> Par1 i -> m (Par1 i))
-> Par1 i -> [Par1 i] -> m (Par1 i)
forall (t :: Type -> Type) (m :: Type -> Type) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldlM (\(Par1 i
v1) (Par1 i
v2) -> i -> Par1 i
forall p. p -> Par1 p
Par1 (i -> Par1 i) -> m i -> m (Par1 i)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ClosedPoly i a -> m i
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (((i -> x) -> i -> x
forall a b. (a -> b) -> a -> b
$ i
v1) ((i -> x) -> x) -> ((i -> x) -> x) -> (i -> x) -> x
forall a. MultiplicativeSemigroup a => a -> a -> a
* ((i -> x) -> i -> x
forall a b. (a -> b) -> a -> b
$ i
v2))) Par1 i
b [Par1 i]
bs
isSet :: forall c n. Symbolic c => ByteString n c -> Natural -> Bool c
isSet :: forall (c :: (Type -> Type) -> Type) (n :: Natural).
Symbolic c =>
ByteString n c -> Natural -> Bool c
isSet (ByteString c (Vector n)
bits) Natural
ix = c Par1 -> Bool c
forall (c :: (Type -> Type) -> Type). c Par1 -> Bool c
Bool (c Par1 -> Bool c) -> c Par1 -> Bool c
forall a b. (a -> b) -> a -> b
$ c (Vector n) -> CircuitFun (Vector n) Par1 (BaseField c) -> c Par1
forall (f :: Type -> Type) (g :: Type -> Type).
c f -> CircuitFun f g (BaseField c) -> c g
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type).
Symbolic c =>
c f -> CircuitFun f g (BaseField c) -> c g
fromCircuitF c (Vector n)
bits Vector n i -> m (Par1 i)
CircuitFun (Vector n) Par1 (BaseField c)
solve
where
solve :: forall i m . MonadCircuit i (BaseField c) m => Vector n i -> m (Par1 i)
solve :: CircuitFun (Vector n) Par1 (BaseField c)
solve Vector n i
v = do
let vs :: [i]
vs = Vector n i -> [i]
forall (size :: Natural) a. Vector size a -> [a]
V.fromVector Vector n i
v
Par1 i -> m (Par1 i)
forall a. a -> m a
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Par1 i -> m (Par1 i)) -> Par1 i -> m (Par1 i)
forall a b. (a -> b) -> a -> b
$ i -> Par1 i
forall p. p -> Par1 p
Par1 (i -> Par1 i) -> i -> Par1 i
forall a b. (a -> b) -> a -> b
$ ([i] -> Natural -> i
forall a. [a] -> Natural -> a
!! Natural
ix) [i]
vs
isUnset :: forall c n. Symbolic c => ByteString n c -> Natural -> Bool c
isUnset :: forall (c :: (Type -> Type) -> Type) (n :: Natural).
Symbolic c =>
ByteString n c -> Natural -> Bool c
isUnset (ByteString c (Vector n)
bits) Natural
ix = c Par1 -> Bool c
forall (c :: (Type -> Type) -> Type). c Par1 -> Bool c
Bool (c Par1 -> Bool c) -> c Par1 -> Bool c
forall a b. (a -> b) -> a -> b
$ c (Vector n) -> CircuitFun (Vector n) Par1 (BaseField c) -> c Par1
forall (f :: Type -> Type) (g :: Type -> Type).
c f -> CircuitFun f g (BaseField c) -> c g
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type).
Symbolic c =>
c f -> CircuitFun f g (BaseField c) -> c g
fromCircuitF c (Vector n)
bits Vector n i -> m (Par1 i)
CircuitFun (Vector n) Par1 (BaseField c)
solve
where
solve :: forall i m . MonadCircuit i (BaseField c) m => Vector n i -> m (Par1 i)
solve :: CircuitFun (Vector n) Par1 (BaseField c)
solve Vector n i
v = do
let vs :: [i]
vs = Vector n i -> [i]
forall (size :: Natural) a. Vector size a -> [a]
V.fromVector Vector n i
v
i :: i
i = ([i] -> Natural -> i
forall a. [a] -> Natural -> a
!! Natural
ix) [i]
vs
i
j <- ClosedPoly i (BaseField c) -> m i
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (ClosedPoly i (BaseField c) -> m i)
-> ClosedPoly i (BaseField c) -> m i
forall a b. (a -> b) -> a -> b
$ \i -> x
p -> x
forall a. MultiplicativeMonoid a => a
one x -> x -> x
forall a. AdditiveGroup a => a -> a -> a
- i -> x
p i
i
Par1 i -> m (Par1 i)
forall a. a -> m a
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Par1 i -> m (Par1 i)) -> Par1 i -> m (Par1 i)
forall a b. (a -> b) -> a -> b
$ i -> Par1 i
forall p. p -> Par1 p
Par1 i
j
toBsBits :: Natural -> Natural -> [Natural]
toBsBits :: Natural -> Natural -> [Natural]
toBsBits Natural
num Natural
n = [Natural] -> [Natural]
forall a. [a] -> [a]
reverse [Natural]
bits
where
base :: Natural
base = Natural
2
availableBits :: [Natural]
availableBits = (Natural -> Maybe (Natural, Natural)) -> Natural -> [Natural]
forall b a. (b -> Maybe (a, b)) -> b -> [a]
unfoldr (Natural -> Natural -> Maybe (Natural, Natural)
toBase Natural
base) (Natural
num Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
`Haskell.mod` (Natural
2 Natural -> Natural -> Natural
forall a b. (Num a, Integral b) => a -> b -> a
Haskell.^ Natural
n)) [Natural] -> [Natural] -> [Natural]
forall a. Semigroup a => a -> a -> a
<> Natural -> [Natural]
forall a. a -> [a]
Haskell.repeat Natural
0
bits :: [Natural]
bits = Int -> [Natural] -> [Natural]
forall a. Int -> [a] -> [a]
take (Natural -> Int
forall a b. (Integral a, Num b) => a -> b
Haskell.fromIntegral Natural
n) [Natural]
availableBits
toBase :: Natural -> Natural -> Maybe (Natural, Natural)
toBase :: Natural -> Natural -> Maybe (Natural, Natural)
toBase Natural
_ Natural
0 = Maybe (Natural, Natural)
forall a. Maybe a
Nothing
toBase Natural
base Natural
b = let (Natural
d, Natural
m) = Natural
b Natural -> Natural -> (Natural, Natural)
forall a. SemiEuclidean a => a -> a -> (a, a)
`divMod` Natural
base in (Natural, Natural) -> Maybe (Natural, Natural)
forall a. a -> Maybe a
Just (Natural
m, Natural
d)
bitwiseOperation
:: forall c n
. Symbolic c
=> ByteString n c
-> ByteString n c
-> (forall i. i -> i -> ClosedPoly i (BaseField c))
-> ByteString n c
bitwiseOperation :: forall (c :: (Type -> Type) -> Type) (n :: Natural).
Symbolic c =>
ByteString n c
-> ByteString n c
-> (forall i. i -> i -> ClosedPoly i (BaseField c))
-> ByteString n c
bitwiseOperation (ByteString c (Vector n)
bits1) (ByteString c (Vector n)
bits2) forall i. i -> i -> ClosedPoly i (BaseField c)
cons = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c) -> c (Vector n) -> ByteString n c
forall a b. (a -> b) -> a -> b
$ c (Vector n)
-> c (Vector n)
-> (forall i (m :: Type -> Type).
MonadCircuit i (BaseField c) m =>
Vector n i -> Vector n i -> m (Vector n i))
-> c (Vector n)
forall (c :: (Type -> Type) -> Type) (f :: Type -> Type)
(g :: Type -> Type) (h :: Type -> Type).
Symbolic c =>
c f
-> c g
-> (forall i (m :: Type -> Type).
MonadCircuit i (BaseField c) m =>
f i -> g i -> m (h i))
-> c h
fromCircuit2F c (Vector n)
bits1 c (Vector n)
bits2 Vector n i -> Vector n i -> m (Vector n i)
forall i (m :: Type -> Type).
MonadCircuit i (BaseField c) m =>
Vector n i -> Vector n i -> m (Vector n i)
solve
where
solve :: MonadCircuit i (BaseField c) m => Vector n i -> Vector n i -> m (Vector n i)
solve :: forall i (m :: Type -> Type).
MonadCircuit i (BaseField c) m =>
Vector n i -> Vector n i -> m (Vector n i)
solve Vector n i
lv Vector n i
rv = do
let varsLeft :: Vector n i
varsLeft = Vector n i
lv
varsRight :: Vector n i
varsRight = Vector n i
rv
(i -> i -> m i) -> Vector n i -> Vector n i -> m (Vector n i)
forall (f :: Type -> Type) (m :: Type -> Type) a b c.
(Traversable f, Zip f, Applicative m) =>
(a -> b -> m c) -> f a -> f b -> m (f c)
zipWithM (\i
i i
j -> ClosedPoly i (BaseField c) -> m i
forall var a (m :: Type -> Type).
MonadCircuit var a m =>
ClosedPoly var a -> m var
newAssigned (ClosedPoly i (BaseField c) -> m i)
-> ClosedPoly i (BaseField c) -> m i
forall a b. (a -> b) -> a -> b
$ i -> i -> ClosedPoly i (BaseField c)
forall i. i -> i -> ClosedPoly i (BaseField c)
cons i
i i
j) Vector n i
varsLeft Vector n i
varsRight
instance (Symbolic c, NumberOfBits (BaseField c) ~ n) => Iso (FieldElement c) (ByteString n c) where
from :: FieldElement c -> ByteString n c
from = c (Vector n) -> ByteString n c
forall (n :: Natural) (context :: (Type -> Type) -> Type).
context (Vector n) -> ByteString n context
ByteString (c (Vector n) -> ByteString n c)
-> (FieldElement c -> c (Vector n))
-> FieldElement c
-> ByteString n c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. FieldElement c -> c (Vector n)
FieldElement c -> Bits (FieldElement c)
forall a. BinaryExpansion a => a -> Bits a
binaryExpansion
instance (Symbolic c, NumberOfBits (BaseField c) ~ n) => Iso (ByteString n c) (FieldElement c) where
from :: ByteString n c -> FieldElement c
from (ByteString c (Vector n)
a) = Bits (FieldElement c) -> FieldElement c
forall a. BinaryExpansion a => Bits a -> a
fromBinary c (Vector n)
Bits (FieldElement c)
a
instance (Symbolic c, KnownNat n)
=> FromJSON (ByteString n c) where
parseJSON :: Value -> Parser (ByteString n c)
parseJSON Value
val = do
String
str <- Value -> Parser String
forall a. FromJSON a => Value -> Parser a
parseJSON Value
val
case forall (c :: (Type -> Type) -> Type) (n :: Natural).
(Symbolic c, KnownNat n) =>
String -> Maybe (ByteString n c)
hexToByteString @c @n String
str of
Maybe (ByteString n c)
Nothing -> String -> Parser (ByteString n c)
forall a. String -> Parser a
forall (m :: Type -> Type) a. MonadFail m => String -> m a
Haskell.fail String
"bad bytestring!"
Just ByteString n c
a -> ByteString n c -> Parser (ByteString n c)
forall a. a -> Parser a
forall (m :: Type -> Type) a. Monad m => a -> m a
return ByteString n c
a
instance ToJSON (ByteString n (Interpreter (Zp p))) where
toJSON :: ByteString n (Interpreter (Zp p)) -> Value
toJSON = String -> Value
forall a. ToJSON a => a -> Value
toJSON (String -> Value)
-> (ByteString n (Interpreter (Zp p)) -> String)
-> ByteString n (Interpreter (Zp p))
-> Value
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ByteString n (Interpreter (Zp p)) -> String
forall (n :: Natural) (p :: Natural).
ByteString n (Interpreter (Zp p)) -> String
byteStringToHex
byteStringToHex :: ByteString n (Interpreter (Zp p)) -> Haskell.String
byteStringToHex :: forall (n :: Natural) (p :: Natural).
ByteString n (Interpreter (Zp p)) -> String
byteStringToHex ByteString n (Interpreter (Zp p))
bytes = Natural -> ShowS
forall a. Integral a => a -> ShowS
showHex (ByteString n (Interpreter (Zp p))
-> Const (ByteString n (Interpreter (Zp p)))
forall a. ToConstant a => a -> Const a
toConstant ByteString n (Interpreter (Zp p))
bytes :: Natural) String
""
hexToByteString :: (Symbolic c, KnownNat n) => Haskell.String -> Maybe (ByteString n c)
hexToByteString :: forall (c :: (Type -> Type) -> Type) (n :: Natural).
(Symbolic c, KnownNat n) =>
String -> Maybe (ByteString n c)
hexToByteString String
str = case ReadS Natural
forall a. (Eq a, Num a) => ReadS a
readHex String
str of
[(Natural
n, String
"")] -> ByteString n c -> Maybe (ByteString n c)
forall a. a -> Maybe a
Just (forall a b. FromConstant a b => a -> b
fromConstant @Natural Natural
n)
[(Natural, String)]
_ -> Maybe (ByteString n c)
forall a. Maybe a
Nothing