{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE DerivingVia #-} {-# LANGUAGE UndecidableInstances #-} module ZkFold.Symbolic.Data.FieldElement where import Control.DeepSeq (NFData) import Data.Foldable (foldr) import Data.Function (($), (.)) import Data.Functor (fmap, (<$>)) import Data.Tuple (snd) import GHC.Generics (Generic, Par1 (..)) import Prelude (Integer) import qualified Prelude as Haskell import ZkFold.Base.Algebra.Basic.Class import ZkFold.Base.Algebra.Basic.Number import ZkFold.Base.Data.HFunctor (hmap) import ZkFold.Base.Data.Par1 () import ZkFold.Base.Data.Vector (Vector, fromVector, unsafeToVector) import ZkFold.Symbolic.Class import ZkFold.Symbolic.Data.Bool (Bool, BoolType (true)) import ZkFold.Symbolic.Data.Class import ZkFold.Symbolic.Data.Combinators (expansion, horner, runInvert) import ZkFold.Symbolic.Data.Eq (Eq) import ZkFold.Symbolic.Data.Input import ZkFold.Symbolic.Data.Ord import ZkFold.Symbolic.MonadCircuit (newAssigned) newtype FieldElement c = FieldElement { forall (c :: (Type -> Type) -> Type). FieldElement c -> c Par1 fromFieldElement :: c Par1 } deriving (forall x. FieldElement c -> Rep (FieldElement c) x) -> (forall x. Rep (FieldElement c) x -> FieldElement c) -> Generic (FieldElement c) forall x. Rep (FieldElement c) x -> FieldElement c forall x. FieldElement c -> Rep (FieldElement c) x forall a. (forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a forall (c :: (Type -> Type) -> Type) x. Rep (FieldElement c) x -> FieldElement c forall (c :: (Type -> Type) -> Type) x. FieldElement c -> Rep (FieldElement c) x $cfrom :: forall (c :: (Type -> Type) -> Type) x. FieldElement c -> Rep (FieldElement c) x from :: forall x. FieldElement c -> Rep (FieldElement c) x $cto :: forall (c :: (Type -> Type) -> Type) x. Rep (FieldElement c) x -> FieldElement c to :: forall x. Rep (FieldElement c) x -> FieldElement c Generic deriving stock instance Haskell.Show (c Par1) => Haskell.Show (FieldElement c) deriving stock instance Haskell.Eq (c Par1) => Haskell.Eq (FieldElement c) deriving stock instance Haskell.Ord (c Par1) => Haskell.Ord (FieldElement c) deriving newtype instance NFData (c Par1) => NFData (FieldElement c) deriving newtype instance SymbolicData (FieldElement c) deriving newtype instance Symbolic c => Eq (Bool c) (FieldElement c) deriving via (Lexicographical (FieldElement c)) instance Symbolic c => Ord (Bool c) (FieldElement c) instance {-# INCOHERENT #-} (Symbolic c, FromConstant k (BaseField c)) => FromConstant k (FieldElement c) where fromConstant :: k -> FieldElement c fromConstant = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> (k -> c Par1) -> k -> FieldElement c forall b c a. (b -> c) -> (a -> b) -> a -> c . Par1 (BaseField c) -> c Par1 forall (c :: (Type -> Type) -> Type) (f :: Type -> Type). (Symbolic c, Functor f) => f (BaseField c) -> c f embed (Par1 (BaseField c) -> c Par1) -> (k -> Par1 (BaseField c)) -> k -> c Par1 forall b c a. (b -> c) -> (a -> b) -> a -> c . BaseField c -> Par1 (BaseField c) forall p. p -> Par1 p Par1 (BaseField c -> Par1 (BaseField c)) -> (k -> BaseField c) -> k -> Par1 (BaseField c) forall b c a. (b -> c) -> (a -> b) -> a -> c . k -> BaseField c forall a b. FromConstant a b => a -> b fromConstant instance Symbolic c => Exponent (FieldElement c) Natural where ^ :: FieldElement c -> Natural -> FieldElement c (^) = FieldElement c -> Natural -> FieldElement c forall a. MultiplicativeMonoid a => a -> Natural -> a natPow instance Symbolic c => Exponent (FieldElement c) Integer where ^ :: FieldElement c -> Integer -> FieldElement c (^) = FieldElement c -> Integer -> FieldElement c forall a. Field a => a -> Integer -> a intPowF instance (Symbolic c, Scale k (BaseField c)) => Scale k (FieldElement c) where scale :: k -> FieldElement c -> FieldElement c scale k k (FieldElement c Par1 c) = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ c Par1 -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1 forall (f :: Type -> Type) (g :: Type -> Type). c f -> CircuitFun f g (BaseField c) -> c g forall (c :: (Type -> Type) -> Type) (f :: Type -> Type) (g :: Type -> Type). Symbolic c => c f -> CircuitFun f g (BaseField c) -> c g fromCircuitF c Par1 c ((forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1 forall a b. (a -> b) -> a -> b $ \(Par1 i i) -> i -> Par1 i forall p. p -> Par1 p Par1 (i -> Par1 i) -> m i -> m (Par1 i) forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b <$> ClosedPoly i (BaseField c) -> m i forall var a (m :: Type -> Type). MonadCircuit var a m => ClosedPoly var a -> m var newAssigned (\i -> x x -> BaseField c -> x forall a b. FromConstant a b => a -> b fromConstant (k -> BaseField c -> BaseField c forall b a. Scale b a => b -> a -> a scale k k BaseField c forall a. MultiplicativeMonoid a => a one :: BaseField c) x -> x -> x forall a. MultiplicativeSemigroup a => a -> a -> a * i -> x x i i) instance {-# OVERLAPPING #-} FromConstant (FieldElement c) (FieldElement c) instance {-# OVERLAPPING #-} Symbolic c => Scale (FieldElement c) (FieldElement c) instance Symbolic c => MultiplicativeSemigroup (FieldElement c) where FieldElement c Par1 x * :: FieldElement c -> FieldElement c -> FieldElement c * FieldElement c Par1 y = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ c Par1 -> c Par1 -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1 forall (c :: (Type -> Type) -> Type) (f :: Type -> Type) (g :: Type -> Type) (h :: Type -> Type). Symbolic c => c f -> c g -> (forall i (m :: Type -> Type). MonadCircuit i (BaseField c) m => f i -> g i -> m (h i)) -> c h fromCircuit2F c Par1 x c Par1 y ((forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1 forall a b. (a -> b) -> a -> b $ \(Par1 i i) (Par1 i j) -> i -> Par1 i forall p. p -> Par1 p Par1 (i -> Par1 i) -> m i -> m (Par1 i) forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b <$> ClosedPoly i (BaseField c) -> m i forall var a (m :: Type -> Type). MonadCircuit var a m => ClosedPoly var a -> m var newAssigned (\i -> x w -> i -> x w i i x -> x -> x forall a. MultiplicativeSemigroup a => a -> a -> a * i -> x w i j) instance Symbolic c => MultiplicativeMonoid (FieldElement c) where one :: FieldElement c one = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ Par1 (BaseField c) -> c Par1 forall (c :: (Type -> Type) -> Type) (f :: Type -> Type). (Symbolic c, Functor f) => f (BaseField c) -> c f embed (BaseField c -> Par1 (BaseField c) forall p. p -> Par1 p Par1 BaseField c forall a. MultiplicativeMonoid a => a one) instance Symbolic c => AdditiveSemigroup (FieldElement c) where FieldElement c Par1 x + :: FieldElement c -> FieldElement c -> FieldElement c + FieldElement c Par1 y = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ c Par1 -> c Par1 -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1 forall (c :: (Type -> Type) -> Type) (f :: Type -> Type) (g :: Type -> Type) (h :: Type -> Type). Symbolic c => c f -> c g -> (forall i (m :: Type -> Type). MonadCircuit i (BaseField c) m => f i -> g i -> m (h i)) -> c h fromCircuit2F c Par1 x c Par1 y ((forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1 forall a b. (a -> b) -> a -> b $ \(Par1 i i) (Par1 i j) -> i -> Par1 i forall p. p -> Par1 p Par1 (i -> Par1 i) -> m i -> m (Par1 i) forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b <$> ClosedPoly i (BaseField c) -> m i forall var a (m :: Type -> Type). MonadCircuit var a m => ClosedPoly var a -> m var newAssigned (\i -> x w -> i -> x w i i x -> x -> x forall a. AdditiveSemigroup a => a -> a -> a + i -> x w i j) instance Symbolic c => AdditiveMonoid (FieldElement c) where zero :: FieldElement c zero = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ Par1 (BaseField c) -> c Par1 forall (c :: (Type -> Type) -> Type) (f :: Type -> Type). (Symbolic c, Functor f) => f (BaseField c) -> c f embed (BaseField c -> Par1 (BaseField c) forall p. p -> Par1 p Par1 BaseField c forall a. AdditiveMonoid a => a zero) instance Symbolic c => AdditiveGroup (FieldElement c) where negate :: FieldElement c -> FieldElement c negate (FieldElement c Par1 x) = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ c Par1 -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1 forall (f :: Type -> Type) (g :: Type -> Type). c f -> CircuitFun f g (BaseField c) -> c g forall (c :: (Type -> Type) -> Type) (f :: Type -> Type) (g :: Type -> Type). Symbolic c => c f -> CircuitFun f g (BaseField c) -> c g fromCircuitF c Par1 x ((forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1 forall a b. (a -> b) -> a -> b $ \(Par1 i i) -> i -> Par1 i forall p. p -> Par1 p Par1 (i -> Par1 i) -> m i -> m (Par1 i) forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b <$> ClosedPoly i (BaseField c) -> m i forall var a (m :: Type -> Type). MonadCircuit var a m => ClosedPoly var a -> m var newAssigned (\i -> x w -> x -> x forall a. AdditiveGroup a => a -> a negate (i -> x w i i)) FieldElement c Par1 x - :: FieldElement c -> FieldElement c -> FieldElement c - FieldElement c Par1 y = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ c Par1 -> c Par1 -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1 forall (c :: (Type -> Type) -> Type) (f :: Type -> Type) (g :: Type -> Type) (h :: Type -> Type). Symbolic c => c f -> c g -> (forall i (m :: Type -> Type). MonadCircuit i (BaseField c) m => f i -> g i -> m (h i)) -> c h fromCircuit2F c Par1 x c Par1 y ((forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> Par1 i -> m (Par1 i)) -> c Par1 forall a b. (a -> b) -> a -> b $ \(Par1 i i) (Par1 i j) -> i -> Par1 i forall p. p -> Par1 p Par1 (i -> Par1 i) -> m i -> m (Par1 i) forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b <$> ClosedPoly i (BaseField c) -> m i forall var a (m :: Type -> Type). MonadCircuit var a m => ClosedPoly var a -> m var newAssigned (\i -> x w -> i -> x w i i x -> x -> x forall a. AdditiveGroup a => a -> a -> a - i -> x w i j) instance Symbolic c => Semiring (FieldElement c) instance Symbolic c => Ring (FieldElement c) instance Symbolic c => Field (FieldElement c) where finv :: FieldElement c -> FieldElement c finv (FieldElement c Par1 x) = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ c Par1 -> (Par1 (BaseField c) -> Par1 (BaseField c)) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1 forall a (f :: Type -> Type) (g :: Type -> Type). (BaseField c ~ a) => c f -> (f a -> g a) -> CircuitFun f g a -> c g forall (c :: (Type -> Type) -> Type) a (f :: Type -> Type) (g :: Type -> Type). (Symbolic c, BaseField c ~ a) => c f -> (f a -> g a) -> CircuitFun f g a -> c g symbolicF c Par1 x (\(Par1 BaseField c v) -> BaseField c -> Par1 (BaseField c) forall p. p -> Par1 p Par1 (BaseField c -> BaseField c forall a. Field a => a -> a finv BaseField c v)) ((forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Par1 i -> m (Par1 i)) -> c Par1 forall a b. (a -> b) -> a -> b $ ((Par1 i, Par1 i) -> Par1 i) -> m (Par1 i, Par1 i) -> m (Par1 i) forall a b. (a -> b) -> m a -> m b forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b fmap (Par1 i, Par1 i) -> Par1 i forall a b. (a, b) -> b snd (m (Par1 i, Par1 i) -> m (Par1 i)) -> (Par1 i -> m (Par1 i, Par1 i)) -> Par1 i -> m (Par1 i) forall b c a. (b -> c) -> (a -> b) -> a -> c . Par1 i -> m (Par1 i, Par1 i) forall i a (m :: Type -> Type) (f :: Type -> Type). (MonadCircuit i a m, Representable f, Traversable f) => f i -> m (f i, f i) runInvert instance ( KnownNat (Order (FieldElement c)) , KnownNat (NumberOfBits (FieldElement c))) => Finite (FieldElement c) where type Order (FieldElement c) = Order (BaseField c) instance Symbolic c => BinaryExpansion (FieldElement c) where type Bits (FieldElement c) = c (Vector (NumberOfBits (BaseField c))) binaryExpansion :: FieldElement c -> Bits (FieldElement c) binaryExpansion (FieldElement c Par1 c) = (forall a. [a] -> Vector (NumberOfBits (BaseField c)) a) -> c [] -> c (Vector (NumberOfBits (BaseField c))) forall {k} (c :: (k -> Type) -> Type) (f :: k -> Type) (g :: k -> Type). HFunctor c => (forall (a :: k). f a -> g a) -> c f -> c g forall (f :: Type -> Type) (g :: Type -> Type). (forall a. f a -> g a) -> c f -> c g hmap [a] -> Vector (NumberOfBits (BaseField c)) a forall (size :: Natural) a. [a] -> Vector size a forall a. [a] -> Vector (NumberOfBits (BaseField c)) a unsafeToVector (c [] -> c (Vector (NumberOfBits (BaseField c)))) -> c [] -> c (Vector (NumberOfBits (BaseField c))) forall a b. (a -> b) -> a -> b $ c Par1 -> (Par1 (BaseField c) -> [BaseField c]) -> CircuitFun Par1 [] (BaseField c) -> c [] forall a (f :: Type -> Type) (g :: Type -> Type). (BaseField c ~ a) => c f -> (f a -> g a) -> CircuitFun f g a -> c g forall (c :: (Type -> Type) -> Type) a (f :: Type -> Type) (g :: Type -> Type). (Symbolic c, BaseField c ~ a) => c f -> (f a -> g a) -> CircuitFun f g a -> c g symbolicF c Par1 c (Natural -> [BaseField c] -> [BaseField c] forall a. AdditiveMonoid a => Natural -> [a] -> [a] padBits Natural n ([BaseField c] -> [BaseField c]) -> (Par1 (BaseField c) -> [BaseField c]) -> Par1 (BaseField c) -> [BaseField c] forall b c a. (b -> c) -> (a -> b) -> a -> c . (Natural -> BaseField c) -> [Natural] -> [BaseField c] forall a b. (a -> b) -> [a] -> [b] forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b fmap Natural -> BaseField c forall a b. FromConstant a b => a -> b fromConstant ([Natural] -> [BaseField c]) -> (Par1 (BaseField c) -> [Natural]) -> Par1 (BaseField c) -> [BaseField c] forall b c a. (b -> c) -> (a -> b) -> a -> c . Natural -> [Natural] Natural -> Bits Natural forall a. BinaryExpansion a => a -> Bits a binaryExpansion (Natural -> [Natural]) -> (Par1 (BaseField c) -> Natural) -> Par1 (BaseField c) -> [Natural] forall b c a. (b -> c) -> (a -> b) -> a -> c . BaseField c -> Natural BaseField c -> Const (BaseField c) forall a. ToConstant a => a -> Const a toConstant (BaseField c -> Natural) -> (Par1 (BaseField c) -> BaseField c) -> Par1 (BaseField c) -> Natural forall b c a. (b -> c) -> (a -> b) -> a -> c . Par1 (BaseField c) -> BaseField c forall p. Par1 p -> p unPar1) (Natural -> i -> m [i] forall i a (m :: Type -> Type). (MonadCircuit i a m, Arithmetic a) => Natural -> i -> m [i] expansion Natural n (i -> m [i]) -> (Par1 i -> i) -> Par1 i -> m [i] forall b c a. (b -> c) -> (a -> b) -> a -> c . Par1 i -> i forall p. Par1 p -> p unPar1) where n :: Natural n = forall a. KnownNat (NumberOfBits a) => Natural numberOfBits @(BaseField c) fromBinary :: Bits (FieldElement c) -> FieldElement c fromBinary Bits (FieldElement c) bits = c Par1 -> FieldElement c forall (c :: (Type -> Type) -> Type). c Par1 -> FieldElement c FieldElement (c Par1 -> FieldElement c) -> c Par1 -> FieldElement c forall a b. (a -> b) -> a -> b $ c (Vector (NumberOfBits (BaseField c))) -> (Vector (NumberOfBits (BaseField c)) (BaseField c) -> Par1 (BaseField c)) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Vector (NumberOfBits (BaseField c)) i -> m (Par1 i)) -> c Par1 forall a (f :: Type -> Type) (g :: Type -> Type). (BaseField c ~ a) => c f -> (f a -> g a) -> CircuitFun f g a -> c g forall (c :: (Type -> Type) -> Type) a (f :: Type -> Type) (g :: Type -> Type). (Symbolic c, BaseField c ~ a) => c f -> (f a -> g a) -> CircuitFun f g a -> c g symbolicF c (Vector (NumberOfBits (BaseField c))) Bits (FieldElement c) bits (BaseField c -> Par1 (BaseField c) forall p. p -> Par1 p Par1 (BaseField c -> Par1 (BaseField c)) -> (Vector (NumberOfBits (BaseField c)) (BaseField c) -> BaseField c) -> Vector (NumberOfBits (BaseField c)) (BaseField c) -> Par1 (BaseField c) forall b c a. (b -> c) -> (a -> b) -> a -> c . (BaseField c -> BaseField c -> BaseField c) -> BaseField c -> Vector (NumberOfBits (BaseField c)) (BaseField c) -> BaseField c forall a b. (a -> b -> b) -> b -> Vector (NumberOfBits (BaseField c)) a -> b forall (t :: Type -> Type) a b. Foldable t => (a -> b -> b) -> b -> t a -> b foldr (\BaseField c x BaseField c y -> BaseField c x BaseField c -> BaseField c -> BaseField c forall a. AdditiveSemigroup a => a -> a -> a + BaseField c y BaseField c -> BaseField c -> BaseField c forall a. AdditiveSemigroup a => a -> a -> a + BaseField c y) BaseField c forall a. AdditiveMonoid a => a zero) ((forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Vector (NumberOfBits (BaseField c)) i -> m (Par1 i)) -> c Par1) -> (forall {i} {m :: Type -> Type}. MonadCircuit i (BaseField c) m => Vector (NumberOfBits (BaseField c)) i -> m (Par1 i)) -> c Par1 forall a b. (a -> b) -> a -> b $ (i -> Par1 i) -> m i -> m (Par1 i) forall a b. (a -> b) -> m a -> m b forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b fmap i -> Par1 i forall p. p -> Par1 p Par1 (m i -> m (Par1 i)) -> (Vector (NumberOfBits (BaseField c)) i -> m i) -> Vector (NumberOfBits (BaseField c)) i -> m (Par1 i) forall b c a. (b -> c) -> (a -> b) -> a -> c . [i] -> m i forall i a (m :: Type -> Type). MonadCircuit i a m => [i] -> m i horner ([i] -> m i) -> (Vector (NumberOfBits (BaseField c)) i -> [i]) -> Vector (NumberOfBits (BaseField c)) i -> m i forall b c a. (b -> c) -> (a -> b) -> a -> c . Vector (NumberOfBits (BaseField c)) i -> [i] forall (size :: Natural) a. Vector size a -> [a] fromVector instance (Symbolic c) => SymbolicInput (FieldElement c) where isValid :: FieldElement c -> Bool (Context (FieldElement c)) isValid FieldElement c _ = Bool c Bool (Context (FieldElement c)) forall b. BoolType b => b true