Copyright | (C) 2019 Oleg Grenrus |
---|---|
License | BSD-3-Clause (see the file LICENSE) |
Maintainer | Oleg Grenrus <oleg.grenrus@iki.fi> |
Safe Haskell | Safe |
Language | Haskell2010 |
Documentation
\(N_5\), is smallest non-modular (and non-distributive) lattice.
Instances
Arbitrary N5 Source # | |
CoArbitrary N5 Source # | |
Defined in Algebra.Lattice.N5 coarbitrary :: N5 -> Gen b -> Gen b # | |
Function N5 Source # | |
Data N5 Source # | |
Defined in Algebra.Lattice.N5 gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> N5 -> c N5 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c N5 # dataTypeOf :: N5 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c N5) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c N5) # gmapT :: (forall b. Data b => b -> b) -> N5 -> N5 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> N5 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> N5 -> r # gmapQ :: (forall d. Data d => d -> u) -> N5 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> N5 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> N5 -> m N5 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> N5 -> m N5 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> N5 -> m N5 # | |
Bounded N5 Source # | |
Enum N5 Source # | |
Generic N5 Source # | |
Read N5 Source # | |
Show N5 Source # | |
NFData N5 Source # | |
Defined in Algebra.Lattice.N5 | |
Eq N5 Source # | |
Ord N5 Source # | |
Hashable N5 Source # | |
Defined in Algebra.Lattice.N5 | |
BoundedJoinSemiLattice N5 Source # | |
Defined in Algebra.Lattice.N5 | |
BoundedMeetSemiLattice N5 Source # | |
Defined in Algebra.Lattice.N5 | |
Lattice N5 Source # | |
PartialOrd N5 Source # | |
Finite N5 Source # | |
Defined in Algebra.Lattice.N5 | |
Universe N5 Source # | |
Defined in Algebra.Lattice.N5 | |
type Rep N5 Source # | |
Defined in Algebra.Lattice.N5 type Rep N5 = D1 ('MetaData "N5" "Algebra.Lattice.N5" "lattices-2.1-FTYhZPoI65oIdMkyt1I5F1" 'False) ((C1 ('MetaCons "N5o" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "N5a" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "N5b" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "N5c" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "N5i" 'PrefixI 'False) (U1 :: Type -> Type)))) |