lattices: Fine-grained library for constructing and manipulating lattices

[ bsd3, library, math ] [ Propose Tags ] [ Report a vulnerability ]

In mathematics, a lattice is a partially ordered set in which every two elements x and y have a unique supremum (also called a least upper bound, join, or x /\ y) and a unique infimum (also called a greatest lower bound, meet, or x \/ y).

This package provide type-classes for different lattice types, as well as a class for the partial order.

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 1.0, 1.1, 1.2, 1.2.1, 1.2.1.1, 1.3, 1.4, 1.4.1, 1.5.0, 1.6.0, 1.7, 1.7.1, 1.7.1.1, 2, 2.0.1, 2.0.2, 2.0.3, 2.1, 2.2, 2.2.1
Change log CHANGELOG.md
Dependencies base (>=4.6 && <4.18), base-compat (>=0.10.5 && <0.13), containers (>=0.5.0.0 && <0.7), deepseq (>=1.3.0.0 && <1.5), ghc-prim, hashable (>=1.2.7.0 && <1.5), integer-logarithms (>=1.0.3 && <1.1), OneTuple (>=0.3 && <0.4), QuickCheck (>=2.12.6.1 && <2.15), semigroupoids (>=5.3.2 && <5.4), semigroups (>=0.18.5 && <0.21), tagged (>=0.8.6 && <0.9), transformers (>=0.3.0.0 && <0.7), universe-base (>=1.1 && <1.2), universe-reverse-instances (>=1.1 && <1.2), unordered-containers (>=0.2.8.0 && <0.3), void (>=0.7.2 && <0.8) [details]
Tested with ghc ==7.6.3 || ==7.8.4 || ==7.10.3 || ==8.0.2 || ==8.2.2 || ==8.4.4 || ==8.6.5 || ==8.8.3 || ==8.10.4 || ==9.0.2 || ==9.2.5 || ==9.4.4
License BSD-3-Clause
Copyright (C) 2010-2015 Maximilian Bolingbroke, 2016-2019 Oleg Grenrus
Author Maximilian Bolingbroke <batterseapower@hotmail.com>, Oleg Grenrus <oleg.grenrus@iki.fi>
Maintainer Oleg Grenrus <oleg.grenrus@iki.fi>
Category Math
Home page http://github.com/phadej/lattices/
Bug tracker http://github.com/phadej/lattices/issues
Source repo head: git clone git://github.com/phadej/lattices.git
Uploaded by phadej at 2023-01-28T19:04:38Z
Distributions Arch:2.1, LTSHaskell:2.2.1, NixOS:2.2.1, Stackage:2.2.1
Reverse Dependencies 28 direct, 42 indirect [details]
Downloads 24760 total (182 in the last 30 days)
Rating 2.25 (votes: 2) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2023-01-28 [all 1 reports]