haspara-0.0.0.0: A library providing definitions to work with monetary values.
Safe HaskellNone
LanguageHaskell2010

Haspara.Quantity

Description

This module provides definitions and functions to encode and work on quantities with fixed decimal points.

Synopsis

Data Definition

data Quantity (s :: Nat) Source #

Type encoding for common quantity values with given scaling (digits after the decimal point).

>>> 42 :: Quantity 0
42
>>> 42 :: Quantity 1
42.0
>>> 42 :: Quantity 2
42.00
>>> 41 + 1 :: Quantity 2
42.00
>>> 43 - 1 :: Quantity 2
42.00
>>> 2 * 3 * 7 :: Quantity 2
42.00
>>> negate (-42) :: Quantity 2
42.00
>>> abs (-42) :: Quantity 2
42.00
>>> signum (-42) :: Quantity 2
-1.00
>>> fromInteger 42 :: Quantity 2
42.00
>>> quantity 0.415 :: Quantity 2
0.42
>>> quantity 0.425 :: Quantity 2
0.42
>>> quantityLossless 0.42 :: Either String (Quantity 2)
Right 0.42
>>> quantityLossless 0.415 :: Either String (Quantity 2)
Left "Underflow while trying to create quantity: 0.415"

Instances

Instances details
Lift (Quantity s :: Type) Source #

Lift instance for Quantity.

Instance details

Defined in Haspara.Internal.Quantity

Methods

lift :: Quantity s -> Q Exp #

liftTyped :: Quantity s -> Q (TExp (Quantity s)) #

Eq (Quantity s) Source # 
Instance details

Defined in Haspara.Internal.Quantity

Methods

(==) :: Quantity s -> Quantity s -> Bool #

(/=) :: Quantity s -> Quantity s -> Bool #

KnownNat s => Fractional (Arith (Quantity s)) Source #

Fractional arithmetic over Quantity values.

>>> import Numeric.Decimal
>>> arithM (fromRational 0.42) :: Either SomeException (Quantity 2)
Right 0.42
>>> arithM (fromRational 0.415) :: Either SomeException (Quantity 2)
Left PrecisionLoss (83 % 200) to 2 decimal spaces
>>> arithM $ (fromRational 0.84) / (fromRational 2) :: Either SomeException (Quantity 2)
Right 0.42
>>> arithM $ (fromRational 0.42) / (fromRational 0) :: Either SomeException (Quantity 2)
Left divide by zero
>>> let a = 84 :: Quantity 2
>>> let b =  2 :: Quantity 2
>>> let c =  0 :: Quantity 2
>>> arithM (Arith a / Arith b) :: Either SomeException (Quantity 2)
Right 42.00
>>> arithM (Arith a / Arith b / Arith c) :: Either SomeException (Quantity 2)
Left divide by zero
Instance details

Defined in Haspara.Internal.Quantity

KnownNat s => Num (Arith (Quantity s)) Source #

Numeric arithmetic over Quantity values.

>>> import Numeric.Decimal
>>> let a = Arith (quantity 10) + Arith (quantity 32) :: Arith (Quantity 2)
>>> arithMaybe a
Just 42.00
>>> arithM (41 + 1) :: Either SomeException (Quantity 2)
Right 42.00
>>> arithM (43 - 1) :: Either SomeException (Quantity 2)
Right 42.00
>>> arithM (2 * 3 * 7) :: Either SomeException (Quantity 2)
Right 42.00
>>> arithM (signum 42) :: Either SomeException (Quantity 2)
Right 1.00
>>> arithM (signum (-42)) :: Either SomeException (Quantity 2)
Right -1.00
>>> arithM (abs 42) :: Either SomeException (Quantity 2)
Right 42.00
>>> arithM (abs (-42)) :: Either SomeException (Quantity 2)
Right 42.00
>>> arithM (fromInteger 42) :: Either SomeException (Quantity 2)
Right 42.00
Instance details

Defined in Haspara.Internal.Quantity

KnownNat s => Num (Quantity s) Source # 
Instance details

Defined in Haspara.Internal.Quantity

Ord (Quantity s) Source # 
Instance details

Defined in Haspara.Internal.Quantity

Methods

compare :: Quantity s -> Quantity s -> Ordering #

(<) :: Quantity s -> Quantity s -> Bool #

(<=) :: Quantity s -> Quantity s -> Bool #

(>) :: Quantity s -> Quantity s -> Bool #

(>=) :: Quantity s -> Quantity s -> Bool #

max :: Quantity s -> Quantity s -> Quantity s #

min :: Quantity s -> Quantity s -> Quantity s #

KnownNat s => Show (Quantity s) Source #

Show instance for Quantity.

>>> show (42 :: Quantity 2)
"42.00"
>>> 42 :: Quantity 2
42.00
Instance details

Defined in Haspara.Internal.Quantity

Methods

showsPrec :: Int -> Quantity s -> ShowS #

show :: Quantity s -> String #

showList :: [Quantity s] -> ShowS #

Generic (Quantity s) Source # 
Instance details

Defined in Haspara.Internal.Quantity

Associated Types

type Rep (Quantity s) :: Type -> Type #

Methods

from :: Quantity s -> Rep (Quantity s) x #

to :: Rep (Quantity s) x -> Quantity s #

KnownNat s => ToJSON (Quantity s) Source #

ToJSON instance for Quantity.

>>> Aeson.encode (quantity 0.42 :: Quantity 2)
"0.42"
Instance details

Defined in Haspara.Internal.Quantity

KnownNat s => FromJSON (Quantity s) Source #

FromJSON instance for Quantity.

>>> Aeson.decode "0.42" :: Maybe (Quantity 2)
Just 0.42
>>> Aeson.decode "0.415" :: Maybe (Quantity 2)
Just 0.42
>>> Aeson.decode "0.425" :: Maybe (Quantity 2)
Just 0.42
Instance details

Defined in Haspara.Internal.Quantity

type Rep (Quantity s) Source # 
Instance details

Defined in Haspara.Internal.Quantity

type Rep (Quantity s) = D1 ('MetaData "Quantity" "Haspara.Internal.Quantity" "haspara-0.0.0.0-2g1Vaq2zya97oIptorNIyA" 'True) (C1 ('MetaCons "MkQuantity" 'PrefixI 'True) (S1 ('MetaSel ('Just "unQuantity") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Decimal RoundHalfEven s Integer))))

Constructors

quantity :: KnownNat s => Scientific -> Quantity s Source #

Constructs Quantity values from Scientific values in a lossy way.

This function uses quantityAux in case that the lossless attempt fails. We could have used quantityAux directly. However, quantityAux is doing too much (see roundScientific). Therefore, we are first attempting a lossless construction (see quantityLossless) and we fallback to quantityAux in case the lossless construction fails.

>>> quantity 0 :: Quantity 0
0
>>> quantity 0 :: Quantity 1
0.0
>>> quantity 0 :: Quantity 2
0.00
>>> quantity 0.04 :: Quantity 1
0.0
>>> quantity 0.05 :: Quantity 1
0.0
>>> quantity 0.06 :: Quantity 1
0.1
>>> quantity 0.14 :: Quantity 1
0.1
>>> quantity 0.15 :: Quantity 1
0.2
>>> quantity 0.16 :: Quantity 1
0.2
>>> quantity 0.04 :: Quantity 2
0.04
>>> quantity 0.05 :: Quantity 2
0.05
>>> quantity 0.06 :: Quantity 2
0.06
>>> quantity 0.14 :: Quantity 2
0.14
>>> quantity 0.15 :: Quantity 2
0.15
>>> quantity 0.16 :: Quantity 2
0.16
>>> quantity 0.04 :: Quantity 3
0.040
>>> quantity 0.05 :: Quantity 3
0.050
>>> quantity 0.06 :: Quantity 3
0.060
>>> quantity 0.14 :: Quantity 3
0.140
>>> quantity 0.15 :: Quantity 3
0.150
>>> quantity 0.16 :: Quantity 3
0.160

quantityLossless :: (KnownNat s, MonadError String m) => Scientific -> m (Quantity s) Source #

Constructs Quantity values from Scientific values in a lossy way.

>>> quantityLossless 0 :: Either String (Quantity 0)
Right 0
>>> quantityLossless 0 :: Either String (Quantity 1)
Right 0.0
>>> quantityLossless 0 :: Either String (Quantity 2)
Right 0.00
>>> quantityLossless 0.04 :: Either String (Quantity 1)
Left "Underflow while trying to create quantity: 4.0e-2"
>>> quantityLossless 0.05 :: Either String (Quantity 1)
Left "Underflow while trying to create quantity: 5.0e-2"
>>> quantityLossless 0.06 :: Either String (Quantity 1)
Left "Underflow while trying to create quantity: 6.0e-2"
>>> quantityLossless 0.14 :: Either String (Quantity 1)
Left "Underflow while trying to create quantity: 0.14"
>>> quantityLossless 0.15 :: Either String (Quantity 1)
Left "Underflow while trying to create quantity: 0.15"
>>> quantityLossless 0.16 :: Either String (Quantity 1)
Left "Underflow while trying to create quantity: 0.16"
>>> quantityLossless 0.04 :: Either String (Quantity 2)
Right 0.04
>>> quantityLossless 0.05 :: Either String (Quantity 2)
Right 0.05
>>> quantityLossless 0.06 :: Either String (Quantity 2)
Right 0.06
>>> quantityLossless 0.14 :: Either String (Quantity 2)
Right 0.14
>>> quantityLossless 0.15 :: Either String (Quantity 2)
Right 0.15
>>> quantityLossless 0.16 :: Either String (Quantity 2)
Right 0.16
>>> quantityLossless 0.04 :: Either String (Quantity 3)
Right 0.040
>>> quantityLossless 0.05 :: Either String (Quantity 3)
Right 0.050
>>> quantityLossless 0.06 :: Either String (Quantity 3)
Right 0.060
>>> quantityLossless 0.14 :: Either String (Quantity 3)
Right 0.140
>>> quantityLossless 0.15 :: Either String (Quantity 3)
Right 0.150
>>> quantityLossless 0.16 :: Either String (Quantity 3)
Right 0.160

Operations

roundQuantity :: KnownNat k => Quantity (n + k) -> Quantity n Source #

Rounds given quantity by k digits.

>>> roundQuantity (quantity 0.415 :: Quantity 3) :: Quantity 2
0.42
>>> roundQuantity (quantity 0.425 :: Quantity 3) :: Quantity 2
0.42

times :: (KnownNat s, KnownNat k) => Quantity s -> Quantity k -> Quantity s Source #

Multiplies two quantities with different scales and rounds back to the scale of the frst operand.

>>> times (quantity 0.42 :: Quantity 2) (quantity 0.42 :: Quantity 2)
0.18

timesLossless :: (KnownNat s, KnownNat k) => Quantity s -> Quantity k -> Quantity (s + k) Source #

Multiplies two quantities with different scales.

>>> timesLossless (quantity 0.42 :: Quantity 2) (quantity 0.42 :: Quantity 2)
0.1764